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SUPPLEMENTARY MATERIALS

QUS Feature evaluation

QUS Analysis was carried out using the dual ROI 
method published previously [1]. In each B-mode breast 
ultrasound image, tumour core and 5 mm surrounding 
tissue ROIs were manually contoured. Each ROI was 
divided into analysis blocks of 2 × 2 mm in size with 
94% overlap in axial and lateral directions.  This ensured 
a standardization of the QUS analysis block size among 
all patients. For each ROI, the mean normalized power 
spectrum was computed from each block via fast Fourier 
transform and used tissue-equivalent-phantom-based 
normalization, as described previously [2]. The normalized 
power spectrum was then subjected to attenuation 
correction and linear regression calculation and parameters 
including MBF, SS, and SI were determined. Attenuation 
correction was performed using the point-compensation 
method [3] after obtaining an estimate of the local 
attenuation coefficient (ACE) via the reference phantom 
technique [4].

For SAS estimation, the power spectrum of the 
tumour was estimated using the autoregressive (AR) 
model and the AR model parameters were estimated using 
Burg’s recursive algorithm [5]. For SAS computation, 
the power spectrum was estimated using the AR-method 
rather than the FFT since the former offers two advantages 
– it produces more conspicuous peaks, resulting in 
more accurate estimates of SAS, and it is less prone to 
ringing artifacts at small gate lengths [6]. The order of 
the AR model, p, was determined experimentally using 
an ultrasound image of an LABC patient’s breast. The 
value was chosen by plotting the spectral autocorrelations 
(SAC) for a range of p-values (from 10 to 100) and 
finding the p-value at which the peak in the SAC was 
most conspicuous and did not contain multiple peaks. 
This value was experimentally determined to be 50 for 
the breast ultrasound data that was used in this study. The 
power spectrum was then normalized to that of a planar 
reflector. The planar reflector normalization at different 
depths was performed using pre-recorded reference RF 
data acquired from a Plexiglas-water interface at six 
different depths (1–6 cm). For each RF block in the sample 
image, a reference RF block was selected by a nearest 
neighbour approach. By computing the autocorrelation 
of the normalized power spectrum, the SAS parameter 
was determined from the frequency at which the 

autocorrelation peak occurred. The method used here for 
SAS estimation is described elsewhere [7].

Next, using backscatter coefficient estimation 
and form factor model fitting [2], estimates of ASD and 
AAC were obtained. By generating a spatial map of the 
parameter values computed over all analysis blocks, 
parametric images were generated. In order to evaluate 
differences in spatial patterns of parametric images 
in the responding and non-responding groups, texture 
features were computed via a gray-level co-occurrence 
(GLCM) matrix calculation on the parametric images 
[8, 9]. The GLCM represents, statistically, the angular 
relationship between neighbouring pixels as well as the 
distance between them [8]. Texture features computed 
included contrast (CON), correlation (COR), energy 
(ENE), and homogeneity (HOM). Contrast gives a 
measure of intensity variation between pixel pairs over 
a ROI. Correlation provides a measure of intensity-level 
linear dependence between two pixels. Energy gives the 
squared sum of the elements in the GLCM. Homogeneity 
quantifies the closeness of the distribution of GLCM 
elements to the GLCM diagonal (the diagonal of the 
GLCM represents all pixel pairs with the same intensity). 
Sixteen symmetric GLCMs were constructed for each 
parametric map, corresponding to four pixel-to-pixel 
distances (1 pixel, 2 pixels, 3 pixels, and 4 pixels) and four 
directions (0°, 45°, 90°, and 135°). The texture features 
for each of the 16 symmetric GLCMs were computed and 
averaged to obtain a mean value. This resulted in a total of 
24 texture features computed from the tumour core ROI 
since there were four texture features for each of the six 
parametric maps (MBF, SS, SI, SAS, ASD, and AAC; 
ACE was a single-value parameter).  Texture features were 
not computed from the tumour margin ROI due to the size 
limitation of the ROI.

In addition to tumour core texture features, four 
additional features were computed from each of the six 
parametric maps: mean of intensity in the core ROI, 
mean of intensity in the margin ROI, core-to-margin 
ratio (CMR), and core-to-margin contrast ratio (CMCR). 
CMR was defined as the ratio of the mean of the core 
ROI to the standard deviation of the margin ROI, and 
CMCR was defined as the ratio of the difference between 
the mean of core ROI and mean of margin ROI to the 
mean of the standard deviations of the core and margin 
ROIs, as previously defined in [1]. These image metrics 



are image quality features similar to signal-to-noise ratio 
(SNR) and contrast-to-noise ratio (CNR) typically used to 
assess image quality in medical imaging systems as X-ray 
computed tomography systems [10]. A total of 52 features 
were submitted to the ANN classifier for tumour response 
classification. 
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Supplementary Table 1: Pre-treatment clinical characteristics of individual patient subjects. See Supplementary_
Table_1

Supplementary Table 2: Treatment outcomes of individual patient subjects. See Supplementary_Table_2
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