Additional materials

Methods:

Construction of 6×His tag strains

The 6×His tag was fused to C-terminal of four proteins (BgaB, sfGFP, MPH and Chd) using the genome of strain WBSBgaB, WBSGFP, WBSMPH and WBSChd as template, respectively. The primers used were list in supplementary Table S1. The mutant strains were named as WBSBgaBH, WBSGFPH, WBSMPHH and WBSChdH.

Western blot analysis

Briefly, the purified proteins were separated on 9% SDS-PAGE gels, and subsequently transferred to nitrocellulose membranes. The primary antibodies were anti-6×His rabbit antibody (Sangon Biotech, China, NO. D110002). The secondary antibodies were HRP-conjugated Mouse anti-rabbit IgG (Sangon Biotech, China, NO. D110065). The signals were detected using the Pro-Light HRP Chemiluminescent Kit (Tiangen Biotech).

The kinetics of bacterial growth

The kinetics of bacterial growth was described by the logistic equation [1].

$$\frac{dx}{dt} = \mu_m \left(1 - \frac{x}{x_m} \right) \tag{1}$$

$$x = \frac{x_0 x_m e^{\mu_m t}}{x_m - x_0 + x_0 e^{\mu_m t}}$$
(2)

The kinetic model for enzyme production

The kinetic model for enzyme production was described by the Luedeking-Piret equation [2].

$$\frac{dp}{dt} = \alpha \frac{dx}{dt} + \beta x \tag{3}$$

$$P = P_0 + \alpha \frac{x_0(x_m - x_0)(e^{\mu_m t} - 1)}{x_m - x_0 + x_0 e^{\mu_m t}} + \beta \frac{x_m}{\mu_m} \ln \frac{x_m - x_0 + x_0 e^{\mu_m t}}{x_m}$$
(4)

Nomenclature:

X is the biomass concentration (log10 CFU/ml); x_0 is the initial cell concentration; x_m is the maximum cell concentration; μ_m is the maximum specific growth rate (h⁻¹); *P* is the activity of enzyme (U, U/ml or U/L). *P*₀ is the initial activity of enzyme; α is the constant for enzyme accumulation decided by the cell growth rate; β is the constant for enzyme accumulation decided by the cell concentration. R^2 is correlation coefficients.

Results:

Fig. S1 The expression pattern of BgaB in mutant strains with different promoters. (a) strain BS43, (b) strain BSsrfA, (c) strain BSxylA without addition of xylose, (d) strain BSxylA with addition of 1% xylose after cultivation of 2 h. Biomass was plotted in logarithmic scale (logarithmic scale of biomass). Fig. S2 The expression pattern of BgaB in mutant strains with different promoters. (a) strain BS43, (b) strain BSsrfA, (c) strain BSxylA without addition of xylose, (d) strain BSxylA with addition of 1% xylose after cultivation of 2 h. Biomass was plotted in logarithmic scale (logarithmic scale of biomass). Fig. S2 The expression pattern of BgaB in mutant strains with different promoters. (a) strain BS43, (b) strain BSsrfA, (c) strain BSxylA without addition of xylose, (d) strain BSxylA with addition of 1% xylose after cultivation of 2 h. Biomass was plotted in logarithmic scale (linear scale of biomass). Fig. S3 The expression pattern of BgaB controlled by mutant P_{ylb} . (a) strain WB800, (b) strain 35BgaB,

(c) strain 10BgaB, (d) strain 3510BgaB, (e) strain 351022BgaB and (f) strain 351016BgaB (logarithmic scale of biomass).

Fig. S4 The expression pattern of BgaB controlled by mutant P_{ylb}. (a) strain WB800, (b) strain 35BgaB,
(c) strain 10BgaB, (d) strain 3510BgaB, (e) strain 351022BgaB and (f) strain 351016BgaB (linear scale of biomass).

Fig. S5 The expression pattern of BgaB controlled by mutant *P3510*. (a) strain OBgaB, (b) strain JBgaB, (c) strain DBgaB, (d) strain BBgaB, (e) strain WBSBgaB and (f) strain NPBgaB (logarithmic scale of biomass).

Fig. S6 The expression pattern of BgaB controlled by mutant *P3510*. (a) strain OBgaB, (b) strain JBgaB, (c) strain DBgaB, (d) strain BBgaB, (e) strain WBSBgaB and (f) strain NPBgaB (linear scale of biomass).

Fig. S7 The expression pattern of sfGFP in mutant strains using P_{ylb} (a) and *NBP3510* (b). (a) strain WBGFP, (b) strain WBSGFP (logarithmic scale of biomass).

Fig. S8 The expression pattern of sfGFP in mutant strains using P_{ylb} (a) and *NBP3510* (b). (a) strain WBGFP, (b) strain WBSGFP (linear scale of biomass).

Fig. S9 The control of MPH (a) and Chd (b) expression in strain WB800. Biomass was plotted in logarithmic scale.

Fig. S10 The control of MPH (a) and Chd (b) expression in strain WB800. Biomass was plotted in linear scale.

Fig. S11 Purification of BgaB and sfGFP

Fig. S12 Purification of MPH and Chd

Fig. S13 Verification of BgaB, sfGFP, MPH and Chd by western blot

Fig. S14 The kinetics of bacterial growth. (a) strain WB800, (b) strain WBBgaB, (c) strain 35BgaB, (d)

strain 10BgaB, (e) strain 3510BgaB, (f) strain 351022BgaB and (g) strain 351016BgaB.

Fig. S15 The kinetics of bacterial growth. (a) strain OBgaB, (b) strain JBgaB, (c) strain DBgaB, (d)

strain BBgaB, (e) strain WBSBgaB and (f) strain NP3510BgaB.

Fig. S16 The kinetics of bacterial growth. (a) strain WB800, (b) strain WBSMPH and (c) strain WBSChd.

Fig. S17 The kinetic model for BgaB production in mutant strains. (a) strain WBBgaB, (b) strain WBSBgaB.

Table S1 Primers used in this study

Table S2 the parameters in the kinetics of bacterial growth

Table S3 the parameters in the kinetics of BgaB production

Fig. S1 The expression pattern of BgaB in mutant strains with different promoters. (**a**) strain BS43, (**b**) strain BSsrfA, (**c**) strain BSxylA without addition of xylose, (**d**) strain BSxylA with addition of 1% xylose after cultivation of 2 h. Biomass was plotted in logarithmic scale.

Fig. S2 The expression pattern of BgaB in mutant strains with different promoters. (**a**) strain BS43, (**b**) strain BSsrfA, (**c**) strain BSxylA without addition of xylose, (**d**) strain BSxylA with addition of 1% xylose after cultivation of 2 h. Biomass was plotted in linear scale.

Fig. S3 The expression pattern of BgaB controlled by mutant P_{ylb} . (a) strain WB800, (b) strain 35BgaB, (c) strain 10BgaB, (d) strain 3510BgaB, (e) strain 351022BgaB and (f) strain 351016BgaB. Biomass was plotted in logarithmic scale.

Fig. S4 The expression pattern of BgaB controlled by mutant P_{ylb} . (a) strain WB800, (b) strain 35BgaB, (c) strain 10BgaB, (d) strain 3510BgaB, (e) strain 351022BgaB and (f) strain 351016BgaB. Biomass was plotted in in linear scale.

Fig. S5 The expression pattern of BgaB controlled by mutant *P3510*. (a) strain OBgaB, (b) strain JBgaB, (c) strain DBgaB, (d) strain BBgaB, (e) strain WBSBgaB and (f) strain NPBgaB. Biomass was plotted in logarithmic scale.

Fig. S6 The expression pattern of BgaB controlled by mutant *P3510*. (a) strain OBgaB, (b) strain JBgaB, (c) strain DBgaB, (d) strain BBgaB, (e) strain WBSBgaB and (f) strain NPBgaB. Biomass was plotted in linear scale.

Fig. S7 The expression pattern of sfGFP in mutant strains using P_{ylb} (a) and *NBP3510* (b). (a) strain WBGFP, (b) strain WBSGFP. Biomass was plotted in logarithmic scale.

Fig. S8 The expression pattern of sfGFP in mutant strains using P_{ylb} (**a**) and *NBP3510* (**b**). (**a**) strain WBGFP, (**b**) strain WBSGFP. Biomass was plotted in linear scale.

Fig. S9 The control of MPH (a) and Chd (b) expression in strain WB800. Biomass was plotted in logarithmic scale.

Fig. S10 The control of MPH (a) and Chd (b) expression in strain WB800. Biomass was plotted in linear scale.

Fig. S11 Purification of BgaB and sfGFP. The bands indicating to BgaB and sfGFP were marked. WB800 represents the intracellular proteins of strain WB800.

Fig. S12 Purification of MPH and Chd. The bands indicating to MPH and Chd were marked. WB800 represents the extracellular proteins of strain WB800.

Fig. S13 Verification of BgaB (Lane 2), sfGFP (Lane 3), MPH (Lane 5) and Chd (Lane 6) by western blot. M, Marker. Lane 1, intracellular proteins of strain WB800. Lane 2, purified BgaB. Lane 3, purified sfGFP. Lane 4, extracellular proteins of strain WB800. Lane 5, purified MPH. Lane 6, purified Chd.

Fig. S14 The kinetics of bacterial growth. (a) strain WB800, (b) strain WBBgaB, (c) strain 35BgaB, (d) strain 10BgaB, (e) strain 3510BgaB, (f) strain 351022BgaB and (g) strain 351016BgaB.

Fig. S15 The kinetics of bacterial growth. (a) strain OBgaB, (b) strain JBgaB, (c) strain DBgaB, (d) strain BBgaB, (e) strain WBSBgaB and (f) strain NP3510BgaB.

Fig. S16 The kinetics of bacterial growth. (**a**) strain WB800, (**b**) strain WBSMPH and (**c**) strain WBSChd.

Fig. S17 The kinetic model for BgaB production in mutant strains. (a) strain WBBgaB, (b) strain WBSBgaB.

Primers	Sequence (5' to 3')	Purpose
P1	tgtttgacaaaggtagaacgtatgaatgtgttatcctcaatttg	Amplification of promoter P_{ylb}
P2	tcctaacttataggggtaacacctaaaccttcccggcttcatca	Amplification of promoter P_{ylb}
P3	ttgtgctagaggatcaacttctcaaagatcccatgtgc	Amplification of <i>bgaB</i> gene
P4	caaattgaggataacacattcatacgttctacctttgtcaaaca	Amplification of <i>bgaB</i> gene
P5	gtgttacccctataagttagga	Amplification of pAX01 backbone
P6	tgatcctctagcacaaaagaa	Amplification of pAX01 backbone
P7	gcatccgacattcgatcattaca	upstream primer
P8	acatgggatctttgagaagtttctatgagtcgcttttgta	marker-free strain WBBgaB construction
P9	tacaaaagcgactcatagaaacttctcaaagatcccatgt	marker-free strain WBBgaB construction
P10	ttcgatggctttttgaacatca	downstream primer
P11	tacaaaagcgactcatagaatgataggtggtatgttttcg	Amplification of promoter P_{43}
P12	attgaggataacacattcatgcgtacattcctctcttaccca	Amplification of promoter P_{43}
P13	tacaaaagcgactcatagaattacattgtaatcatgtc	Amplification of promoter P_{xylA}
P14	attgaggataacacattcatgtgatttcccccttaaaaataaat	Amplification of promoter P_{xylA}
P15	tacaaaagcgactcatagaagacgctcttcgcaagggtgt	Amplification of promoter P_{srfA}
P16	attgaggataacacattcatattgtcatacctcccctaatc	Amplification of promoter P_{srfA}
P17	cgaaaacataccacctatcattctatgagtcgcttttgta	marker-free strain BS43 construction
P18	tgggtaagagggaatgtacgcatgaatgtgttatcctcaat	marker-free strain BS43 construction
P19	gacatgattacaatgtaattctatgagtcgcttttgta	marker-free strain BSxylA construction
P20	gaatttatttttaagggggaaatcacatgaatgtgttatcctcaat	marker-free strain BSxylA construction
P21	acacccttgcgaagagcgtcttctatgagtcgcttttgta	marker-free strain WBsrfA construction
P22	gattaggggaggtatgacaatatgaatgtgttatcctcaat	marker-free strain WBsrfA construction
P23	taaacgctttatttaaaaatgtcaaatatttaaactttaattttaagc	marker-free strain 35BgaB construction
P24	gcttaaaattaaagtttaaatatttgacatttttaaataaa	marker-free strain 35BgaB construction
P25	ctttgttgtttctacatattattataaacgctttatttaaaaatgt	marker-free strain 10BgaB construction

P26	acatttttaaataaagcgtttataatatatgtagaaacaacaaag	marker-free stra
P27	ttgttgtttctacatatattataaacgctttatttaaaaatgtcaaatatttaaactt	marker-free stra
P28	aagtttaaatatttgacatttttaaataaagcgtttataatatatgtagaaacaacaa	marker-free stra
P29	ctcccctttgttgtttctacatatattataacatctttattaaaaatgtcaaat	marker-free stra
P30	atttgacatttttaaataaagatgttataatatatgtagaaacaacaaagggggag	marker-free stra
P31	acatatattataaacgctttccctaaaaatgtcaaatatttaaac	marker-free stra
P32	gtttaaatatttgacatttttagggaaagcgtttataatatatgt	marker-free stra
P33	caaatattatgacacaaaaaagcgcagcatgggatctttgagaagtgttatcg	marker-free stra
P34	tcccatgctgcgcttttttgtgtcataatatttggattttttaaataaa	marker-free stra
P35	caaatatttttttgaagaaatactaaggatgggatctttgagaagtgttatcg	marker-free stra
P36	tcccatccttagtatttcttcaaaaaaatatttggattttttaaataaa	marker-free stra
P37	caaatacttttttaaaagaatatcctcgatgggatctttgagaagtgttatcg	marker-free stra
P38	tcccatcgaggatattcttttaaaaaagtatttggatttttaaataaa	marker-free stra
P39	caaatattttttaaaaaaaaatctataaaatgggatctttgagaagtgttatcg	marker-free stra
P40	tcccattttatagatttttttaaaaaatatttggatttttaaataaagcgtt	marker-free stra
P41	atttaaaaatgtcaaatattttttaaaaaaaatttttaaatgggatctttgagaagt	marker-free stra
P42	acttctcaaagatcccatttaaaaattttttttaaaaaaatatttgacatttttaaat	marker-free stra
P43	gcaacatgtctgcgcaggctgcagcaccgcaggtgcgcac	Amplification of
P44	tgactattetcagataaagtteatcateacttggggttga	Amplification of
P45	acatgtctgcgcaggctaccgaactcatcttggacttc	Amplification of
P46	ctagtaacatctgaccgagtcaaggcctggctgcgaga	Amplification of
P47	gtttgacaaaggtagaacgtatgagaagcaaaaaattgtg	aprE signal pept
P48	gtgcgcacctgcggtgctgcagcctgcgcagacatgttgc	aprE signal pept
P49	gtttgacaaaggtagaacgtatgagaagcaaaaaattgtg	aprE signal pept
P50	gaagtccaagatgagttcggtagcctgcgcagacatgt	aprE signal pept
P51	tgtttgacaaaggtagaacgtatgtcaaaaggagaagaact	marker-free stra
P52	tatggacgaactttataaataagtgttacccctataagttaggagc	marker-free stra

in 10BgaB construction ain 3510BgaB construction ain 3510BgaB construction ain 351016BgaB construction ain 351016BgaB construction ain 351022BgaB construction ain 351022BgaB construction in OBgaB construction in OBgaB construction ain JBgaB construction in JBgaB construction in DBgaB construction ain DBgaB construction in BBgaB construction in BBgaB construction in WBSBgaB construction in WBSBgaB construction of mpd gene of mpd gene of chd gene of chd gene tide fused to mpd tide fused to mpd tide fused to chd tide fused to chd ain WBGFP construction marker-free strain WBGFP construction

P53	tgtttgacaaaggtagaacgtatgtcaaaaggagaagaact	marker-free strain WBSGFP construction
P54	ggtatggacgaactttataaataagtgttacccctataagttaggagc	marker-free strain WBSGFP construction
P55	cacaattttttgcttctcatacgttctacctttgtcaaac	marker-free strain WBSMPH construction
P56	tcaaccccaagtgatgatgaactttatctgagaatagtca	marker-free strain WBSMPH construction
P57	caattttttgcttctcatacgttctacctttgtcaaa	marker-free strain WBSChd construction
P58	tetegeagecaggeettgaactttatetgagaatagtea	marker-free strain WBSChd construction
P59	agggaagttacacagttaggg	Construction of strain WBSBgaBH
P60	cgataacctagtggtggtggtggtggtggtgaaccttcccggcttcatc	Construction of strain WBSBgaBH
P61	aaggttcaccaccaccaccactaggttatcgattttcgttcg	Construction of strain WBSBgaBH
P62	ctccaaatatagcttgaaccgttcgtataatgtatgct	Construction of strain WBSBgaBH
P63	atacattatacgaacggttcaagctatatttggagttg	Construction of strain WBSBgaBH
P64	caggcatcgtggtgtca	Construction of strain WBSBgaBH
P65	ccttttctcttacttgttgcta	Construction of strain WBSGFPH
P66	taacacttagtggtggtggtggtggtgtttataaagttcgtccatacc	Construction of strain WBSGFPH
P67	ctttataaacaccaccaccaccaccactaagtgttacccctataagttaggagc	Construction of strain WBSGFPH
P68	gctgagattcgcccagg	Construction of strain WBSGFPH
P69	gattgggatgatagcgg	Construction of strain WBSMPHH
P70	catgggatctttgagaagttgatcctaagaatagtaatacaggat	Construction of strain WBSMPHH
P71	gtattactattettaggateaactteteaaagateecatgtg	Construction of strain WBSMPHH
P72	ttcatcatcagtggtggtggtggtggtggtggtggtgacgaccg	Construction of strain WBSMPHH
P73	caaccccaagcaccaccaccaccactgatgatgaactttatctgagaatag	Construction of strain WBSMPHH
P74	ccttccagggtatgtttct	Construction of strain WBSMPHH
P75	gattgggatgatagcgggagcat	Construction of strain WBSChdH
P76	ataaagttcagtggtggtggtggtggtgggggcctggctgcgagatc	Construction of strain WBSChdH
P77	caggcctcaccaccaccaccactgaactttatctgagaatagtcaatcttc	Construction of strain WBSChdH
P78	ccttccagggtatgtttctctttgat	Construction of strain WBSChdH

Strains		Parameters ^a		
	X_0	X _m	$\mu_{\rm m}$	R^2
Intracellular expression				
WB800	4.85383	7.66359	0.59551	0.99996
WBBgaB	4.84786	7.64975	0.55991	0.99964
35BgaB	4.86995	7.57226	0.46163	0.99771
10BgaB	4.87265	7.56569	0.46017	0.9968
3510BgaB	4.81805	7.63049	0.53233	0.99361
351022BgaB	4.77512	7.6415	0.44152	0.98399
351016BgaB	4.77512	7.6415	0.44152	0.98399
OBgaB	4.86631	7.59167	0.50105	0.99897
JBgaB	4.86913	7.61232	0.53241	0.99901
DBgaB	4.84192	7.60168	0.45503	0.99937
BBgaB	4.86301	7.58496	0.53900	0.99956
NPBgaB	4.86263	7.58538	0.55051	0.9992
WBSBgaB	4.86301	7.58496	0.53900	0.99956
Extracellular expression				
WB800	4.81759	8.06541	0.51417	0.97395
WBSMPH	4.77897	8.04185	0.48726	0.96098
WBSChd	4.77897	8.04185	0.48726	0.96098

Table S2 the parameters in the kinetics of bacterial growth

^{*a*} X is the biomass concentration (log₁₀ CFU/ml); X₀ is the initial cell concentration; X_m is the maximum cell concentration; μ_m is the maximum specific growth rate (h⁻¹); R² is correlation coefficients.

Strains		Parameters ^{<i>a</i>}		
	P_0	α	β	\mathbf{R}^2
WBBgaB	-27.4086	-36.31947	1.63177	0.78631
WBSBgaB	-248.573	-146.9144	75.76605	0.89093

Table S3 the parameters in the kinetics of BgaB production

^{α} *P* is the activity of enzyme (U, U/ml or U/L). *P*₀ is the initial activity of enzyme; α is the constant for enzyme accumulation decided by the cell growth rate; β is the constant for enzyme accumulation decided by the cell concentration. R² is correlation coefficients.

References:

- Phisalaphong M, Srirattana N, Tanthapanichakoon W. Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochem Eng J. 2006; 28:36-43.
- 2. Luedeking R, Piret EL. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. BIOTECHNOL BIOENG. 2000; 67:636-644.