Supporting Information

"Modeling Pyran Formation in the Molybdenum Cofactor: Protonation of Quinoxalyl-Dithiolene Promotes Pyran Cyclization"

Douglas R. Gisewhite,[†] Alexandra L. Nagelski,[†] Daniel Cummins,[‡] Glenn P. A. Yap,[‡] Sharon J. N. Burgmayer[†]*

[†]Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States

‡Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States

corresponding author email: sburgmay@brynmawr.edu

Contents:

Figure S1	¹ H NMR spectrum of BMOQO in chloroform-d.	Page 1
Figure S2	¹ H NMR spectrum of [TEA][Tp*Mo(O)(S_2BMOQO)] 2 in chloroform-d.	Page 2
Figure S3	¹ H NMR spectrum of [TEA][Tp*Mo(O)(S ₂ BMOQO)] 2 in acetonitrile-d ³ .	Page 3
Figure S4	HSQC of [TEA][Tp*Mo(O)(S ₂ BMOQO)] 2 in chloroform-d.	Page 4
Figure S5	HSQC of [TEA][Tp*Mo(O)(S ₂ BMOQO)] 2 in acetonitrile-d ³ .	Page 5
Figure S6	¹ H NMR spectrum of BDMQO in chloroform-d.	Page 6
Figure S7	¹ H NMR spectrum of [TEA][Tp*Mo(O)(S ₂ BDMQO)] 4 in chloroform-d.	Page 7
Figure S8	¹ H NMR spectrum of [TEA][Tp*Mo(O)(S_2BDMQO)] 4 in acetonitrile-d ³ .	Page 8
Figure S9	HSQC of [TEA][Tp*Mo(O)(S ₂ BDMQO)] 4 in chloroform-d.	Page 9
Figure S10	HSQC of [TEA][Tp*Mo(O)(S ₂ BDMQO)] 4 in acetonitrile-d ³ .	Page 10
Figure S11	HSQC of Tp*Mo(O)(pyrano-H-S ₂ BMOQO) 7 in acetonitrile-d ³ .	Page 11
Figure S12	HSQC of Tp*Mo(O)(pyrrolo-S ₂ BMOQO) 8 in acetonitrile-d ³ .	Page 12
Figure S13	UV-vis overlay of 2 (Blue) and 4 (Red) in acetonitrile.	Page 13
Figure S14	Cyclic voltammogram overlay of 2 (blue) and 4 (red) in acetonitrile.	Page 14
Table S1	Cyclic voltammometric data for 2 and 4 in acetonitrile.	Page 14
Figure S15	Cyclic voltammogram overlay of Protonated and non-protonated forms of 2 in chloroform.	Page 15
Figure S16	Cyclic voltammogram overlay of protonated and non-protonated forms of 2 in acetonitrile.	Page 15
Figure S17	Cyclic voltammogram overlay of protonated and non-protonated forms of 4 in chloroform.	Page 16
Figure S18	Cyclic voltammogram overlay of protonated and non-protonated forms of 4 in acetonitrile.	Page 16
Table S2	Summary of X-ray crystal structure data for complexes 2 and 4.	Page 17
Figure S19	UV-Vis spectroscopic study of protonation of ${\bf 2}$ in $CHCl_3$	Page 18

Figure S1. ¹H NMR spectrum of BMOQO in chloroform-d.

Figure S3. ¹H NMR spectrum of [TEA][Tp*Mo(O)(S₂BMOQO)] **2** in acetonitrile-d³.

Figure S4. HSQC of [TEA][Tp*Mo(O)(S₂BMOQO)] **2** in chloroform-d.

Figure S5. HSQC of [TEA][Tp*Mo(O)(S₂BMOQO)] **2** in acetonitrile-d³.

Figure S6. ¹H NMR spectrum of BDMQO in chloroform-d.

Figure S11. HSQC of Tp*Mo(O)(pyrano-H-S₂BMOQO) **7** after TFAA addition yielding pyran ring formation in acetonitrile- d^3 .

Figure S12. HSQC of Tp*Mo(O)(pyrrolo-S₂BMOQO) **8** after TFAA addition yielding pyrrole ring formation in acetonitrile- d^3 .

Figure S13. UV-vis overlay of **1** (blue) and **2** (red) in acetonitrile at 3.00×10^{-5} M.

Figure S14. Cyclic voltammogram overlay of 1 (blue) and 2 (red) in acetonitrile.

Cyclic voltammograms of the Mo^{IV}/Mo^{V} couple of **2** (blue) and **4** (red) in 0.10 M (*n*-Bu₄N)(ClO₄)/CH₃CN vs. Ag/AgCl at a Pt working electrode, scan rate 100 mV/s. Mo^{IV}/Mo^{V} potentials: **1** -566 mV, **2** -681 mV vs. Fc/Fc⁺.

Table S1. Cy	yclic voltammometric	data for 2 and	4 in acetonitrile.
--------------	----------------------	----------------	--------------------

Complex (solvent)	Scan rate, mV/s	E(1/2), mV ^a	$p_c - p_a$, mV ^b	i _c /i _a , ^c
2 (CH ₃ CN)	25	-502	75	1.04
2 (CH ₃ CN)	100	-503	69	1.03
2 (CH ₃ CN)	400	-500	63	0.99
2 (CH₃CN)	800	-500	68	1.00
Fc+/Fc (CH₃CN)	100	+429	66	1.05
4 (CH₃CN)	25	-556	69	0.95
4 (CH₃CN)	100	-552	65	1.05
4 (CH ₃ CN)	400	-557	61	1.06
4 (CH ₃ CN)	800	-557	71	1.01
Fc+/Fc (CH ₃ CN)	100	+438	80	1.08

^a Fc+/Fc vs. Ag/AgCl

^b difference between cathodic and anodic potentials

^c ratio of cathodic to anodic currents

Figure S15. Cyclic voltammogram overlay of protonated and non-protonated forms of 2 in chloroform.

Cyclic voltammograms of the protonated form of **2** (blue) and the non-protonated form of **2** (red) in 0.10 M (n-Bu₄N)(ClO₄)/CHCl₃ vs. Ag/AgCl at a Pt working electrode, scan rate 100 mV/s. Mo^{IV}/Mo^V potentials: protonated **2** -231 mV, non-protonated **2** -566 mV vs. Fc/Fc⁺.

Figure S16. Cyclic voltammogram overlay of protonated and non-protonated forms of 2 in acetonitrile.

Cyclic voltammograms of the protonated form of **2** (blue) and the non-protonated form of **2** (red) in 0.10 M (n-Bu₄N)(ClO₄)/CH₃CN vs. Ag/AgCl at a Pt working electrode, scan rate 100 mV/s. Mo^{IV}/Mo^V potentials: protonated **2** -135 mV, non-protonated **2** -501 mV vs. Fc/Fc⁺.

Figure S17. Cyclic voltammogram overlay of protonated and non-protonated forms of 4 in chloroform.

Cyclic voltammograms of the protonated form of **4** (blue) and the non-protonated form of **4** (red) in 0.10 M (n-Bu₄N)(ClO₄)/CHCl₃ vs. Ag/AgCl at a Pt working electrode, scan rate 100 mV/s.

Figure S18. Cyclic voltammogram overlay of protonated and non-protonated forms of 4 in acetonitrile.

Cyclic voltammograms of the protonated form of **4** (blue) and the non-protonated form of **4** (red) in 0.10 M (n-Bu₄N)(ClO₄)/CH₃CN vs. Ag/AgCl at a Pt working electrode, scan rate 100 mV/s.

	2	4
Formula	$C_{38}H_{58}BCI_2MoN_9O_2S_2$	C ₃₇ H ₅₆ BMoN ₉ OS ₂
Fw	914.70	813.77
Cryst Syst	Orthorhombic	Orthorhombic
space group:	Pbcn	Pbcn
a (Å)	27.8479 (14)	30.2788 (14)
<i>b</i> (Å)	19.8016 (10)	19.0169 (8)
<i>c</i> (Å)	17.9310 (9)	18.1264 (8)
α (deg)	90	90
в (deg)	90	90
γ (deg)	90	90
V (Å ³)	9887.7 (9)	10437.3 (8)
Z	8	8
$ ho_{calc}$ (g/cm ⁻³)	1.229	1.036
Т (К)	200	200
radiation, λ (Å)	0.71073	0.71073
Abs coeff (mm ⁻¹)	0.497	0.363
wR ₂ (%)	16.02	18.08
R ₁ (%)	5.38	5.46
GOF	1.033	1.025

 Table S1. Summary of X-ray crystal structure data for complexes 2 and 4.

Figure S19. UV-Vis time course study over 22 hours for reactions resulting from the protonation of **2** upon addition of 1 eq. of TFAA in $CHCl_3$. Red line: spectrum recorded immediately after 1 eq TFAA is added to **2** in CHCl3 corresponding to **7**. Blue line: spectrum of final product **8**.

