Supplementary Information

Supplementary Figure 1. 3D- classification scheme.

Supplementary Figure 2. Local resolutions of eIF2B - eIF2(αP) complex.

(a) Local resolutions of eIF2B - eIF2(α P) complex in map 2 (related to Fig. 1a) showing surface (left) and two cross-sections around eIF2 α -D1 binding site and location of Ser-51(52 sequence numbering).

(b) Same as in (a), but in in map A (related to Fig. 1b).

Supplementary Figure 3. Superposition of the ISRIB bound human eIF2B to eIF2B - eIF2(αP) complex.

(a) Superposition of eIF2B-eIF2(α P) complex with human ISRIB bound eIF2B (black) (PDB 6CAJ) showing elongation of eIF2B hetero-decamer towards catalytic poles upon binding of eIF2 by ~ 12 Å.

(b) Same superposition as in (a), but also including S. pombe eIF2B structure (grey) (PDB 5B04), shows that elongation of eIF2B is mainly induced by closure eIF2B α and δ around eIF2 α -D1 displacing eIF2B γ outwards.

(c) Same superposition as in (a), showing displacement of $eIF2B\gamma$ in $eIF2B-eIF2(\alpha P)$ complex in one of the eIF2B poles.

(d) The binding site of eIF2 α -D1 contacting the superposed eIF2B α subunit showing reduced contacts with eIF2B δ and local rearrangement of eIF2B α interacting helices (indicated with an arrow).

(e) The other binding site of eIF2 α -D1 showing that on this side the binding pocket for eIF2 α -D1 formed by eIF2B α and δ is wide open.

Supplementary Figure 4. Structural model fitting of eIF2α-D1 in a density map.

(a) Overall density for the contact of eIF2 α -D1 with eIF2B α and δ subunits.

(b) Close view of the density around Ser51(P) (S52 sequence numbering) and our structural model fitting into the density.

(c) Same as in (b) but at different orientation.

(d) Fitting of c structural model cu'l p't ghgt gpeg'3 of the same region as in (b) in our density map.

Supplementary Figure 5. Examples of structural models fitting in density maps.

- (a) Density for eIF2B δ in contact with eIF2B β and eIF2B α subunits.
- (b) Density for $eIF2B\alpha$ subunit.
- (c) Density for eIF2Bɛ PLD domain.
- (d) Density for eIF2B ϵ L β H domain.

Supplementary Figure 6. Multiple sequence alignment of eIF2B regulatory subunits using Clustal Omega. a

elF2Bα_HUMAN elF2Bα_YEAST elF2Bα_SCHPO	40 E 1 40 E 1 53 K 1	I C A A I S	QGI AEM SEI	L <mark>R</mark> MI FM	AN NT DI	L T I K L Q	S S N	A I S T G S	E I E F N T	Γ - Ξ L Γ L	L C I K K E	G G G	VI II V(0 S 2 N 2 N	S S N	V A V S I S	V L L	S R S	S G A G A G	G C C	EI DI DI	F F F	L I M I Q I	R F R F R F	I V V	SI LF TF	A N S	S I L H L H	L E H L H D	Y S Y C V C	D D D D	85 86 99
b	N 248	resid with β/δ b	lue in eIF2a bindin	terac a in e g site	ting IF2E	NK	L	C P	Y	MS	F	L. 7	0.7	C	R	PI	S	A	SI	ИН	IN	A	IF	(F	L	N	KF	28	33			
elF2B8_YEAST elF2B8_SCHP0	315) 186	5 L 6 L	S R S R	N L H L	T	S Y T H	L	S H N S	QQ	I D I A	L Y		KK	A T	R R	P I P I	S	V I	TNSN		NN	A A	II	R W	L	K (Q E L E	35 22	0 !1			
eIF2Bð_HUMAI eIF2Bð_YEAST eIF2Bð_SCHPC	N 28 - 35 D 222	4 I 1 I 2 I	TSL SV	V C I D L D	S S P I	S K S T D L	R I P I T I	E E D <mark>K</mark> D D	E A E	A K A K G K	K E	E I D I L I	L R C L L	A E E	A K K	I I I I	C R G Q C S	Y F Y	V (A I I I	Q E K E R C resid with α/δ	K K R due elF	I I s int 2α iding	V E I E erac in e g sit	L A L A I A ctinc IF2	A D G	QQQ	A I L I V I	31 38 25	9 6 7			
C eIF2B β _HUMAN eIF2B β _MOUSE F1NAP1_CHICK M7B0Y2_CHEM I3KDJ8_ORENI O76863_DROMI Q9XWD5_CAEE eIF2B β _YEAST eIF2B β _SCHPO	I 77 77 77 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7	71 A 71 A 80 P 74 A 86 A 87 A 77 A 88 A	Q P Q P Q P E P Q P L P E R H P Q P	S H S H S H S H Q H S H T H	T T G T T C T T L F	T V T V T V V T I I S C S C	G M G M G M S M G M G M		V F V F I F G I I F I F	R R R R R R R R R R R R R R R R R R R	V I V I V I I I I I I I I I	KKKRKKAR	I V D I L V I L	I R I R H E I R T R A R I R	EEVEEDDE	E E P E E E E E	Y C Y C H E Y C H E V E V E V E	RRPRLQEE	L I L I L I S I L I K I D 7 L I	H G H G R G R G H A K G T M L K	R R R S K G I S	S I S I S I S I S I V (G T T A I		F	AI		* * * * * * * 1		S S	S I S I S I S I S I S I		104 104 104 107 101 97 108 110
elF2Bβ_HUMAN elF2Bβ_MOUSE F1NAP1_CHICK M7B0Y2_CHEM' I3KDJ8_ORENI 076863_DROME Q9XWD5_CAEE elF2Bβ_YEAST elF2Bβ_SCHPO	Y	 		Q Q Q Q Q A Q A Q A A A	Q E Q D Q E S L I P	S L S L S L S L S L S L S L S L		K L K L K L K L K L	L L L L V -	T S T S T S T S T Q T S Q S	G G G T T H	GL GL GL SE - S EP	N S S S S S E V V	P I A I S V	E P E P	L	Y I Y		W M M	R F L r to		- - - - - - - -	QI	 	D E T	- · · - · · Q I L I	 - - - - - - - -	- - - - P	 T H	- - - K	N E T N S K T	119 119 119 121 121 117 112 138 157
human elF2α R52 R53 ↑ ↑ N132 E135																																
elF2Bβ_HUMAN elF2Bβ_MOUSE F1NAP1_CHICK M7B0Y2_CHEM I3KDJ8_ORENI O76863_DROME Q9XWD5_CAEE elF2Bβ_YEAST	- E - E - E - E - E - E - E - E - E - E		FS FS FS FR YS KT SM	FH FH TP QH VP AD KT	Y A F A Y P Y P F A Q H M K K T	Q I P I P I P I I G I K	L Q L R L R L R L R L R L R L R V R	S N A N A N A N E A K I Q V		I H I H I H I H I H L I Q / I Q	A A A A A A A A A A A A A A A A A A A			L L L L V L L V			L L L L L I I I		G T G T G T G T G T S S S S S S S	M T T S R D N			A A A A C A Q E			L L L L E T I			H S H S H S H S H S H S H S H S H S H S	S N S N S S N H N	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	/ 164 / 164 / 164 / 167 / 167 I 164 / 158 I 188

(a) Alignment of human, S. cerevisiae and S. pombe eIF2B α sequences in the region of eIF2 α binding site between α and δ subunits of eIF2B. Residues important for the interaction with eIF2 α kp/tgh4 and this paper are boxed.

(b) Alignment of human, S. cerevisiae and S. pombe eIF2B δ sequences in the region of both eIF2 α binding sites. Residues that important for the interaction with eIF2 α kp⁺tghgtgpegu'4"cpf '5, and this paper are boxed.

(c) Alignment of human (Homo sapiens), mouse (Mus musculus), chicken (Gallus gallus), green sea-turtle (Chelonia mydas), fish (Oreochromis niloticus), fruit fly (Drosophila melanogaster), Caenorhabditis elegans, S. cerevisiae and S. pombe eIF2B β sequences in the region of alternative eIF2 α binding site between β and δ subunits of eIF2B. Residues important for the interaction in in this site based on the structures of human eIF2B-eIF2 complex *tghu'4, 5+are boxed. Alignment shows conservation of these residues (N132 and E135 according to human numbering) in vertebrates, however they are not conserved in yeast. Also part of the loop - tether (boxed), which in yeast interacts with eIF2B α , is missing in the species where alternative binding site evolved. Drosophila melanogaster lost the tether, however alternative binding site is not entirely conserved.

Supplementary Figure 7. Biochemical and MS analysis of eIF2B-eIF2α(P) complex.

(a) SDS PAGE of eIF2B - eIF2(α P) complex with eIF2B subunits labelled in black and eIF2 subunits in red.

(b) Western blotting of eIF2 using antibodies specific against human eIF2 α (P) (Invitrogen 44-728G) before and after phosphorylation with PKR (5 µg of eIF2 protein was loaded in each lane).

(c) Mass spectra of the 2+ and 3+ charge states of eIF2 α peptide 36-53 (LLEYDNIEGMILLSESRR) after eIF2 was phosphorylated with PKR. Phosphorylation (89.4 %) was calculated based on the area of the peaks of modified (phosphorylation) and non-modified peptides in both charge states.

Supplementary Figure 8. Cryo-EM methods.

- (a) Typical micrograph of eIF2B eIF2(α P) complex (see methods for details).
- (b) FSC curves.

(c) Representative 2-D classes after 2-D classification of $eIF2B - eIF2(\alpha P)$ complex.

(d) Orientation distribution plot for the eIF2B-eIF2 complex map from dataset I. Efficiency of the reconstruction measured with cryoEF⁴ is $0.62 \pmod{>} 0.8$; bad < 0.5) which shows that the complex suffers from some preferred orientation.

(e) FSC curve of the model versus map.

- Adomavicius, T., Guaita M., Zhou Y, Jennings, M.D., Latif Z, Roseman, A.M., Pavitt, G.D. The structural basis of translational control by eIF2 phosphorylation. *BioRxiv, doi: https://doi.org/10.1101/501411* (2018).
- Kenner, L. R., Anand, A.A., Nguyen, H.C., Myasnikov, A.G., Klose, C.J., McGeever, L.A., Tsai, J.C., MillerVedam, L.E., Walter, P., Frost, A. eIF2Bcatalyzed nucleotide exchange and phosphoregulation by the integrated stress response. *Science* 364, 491-495 (2019).
- Kashiwagi, K., Yokoyama, T., Nishimoto, M., Takahashi, M., Sakamoto, A., Yonemochi, M., Shirouzu, M., Ito, T. Structural Basis for eIF2B Inhibition in Integrated Stress Response. *Science* 364, 495-499 (2019).
- Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. *Nat Commun.* 8, 629 (2017).