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Supporting Information Text10

1. The reduced density matrix11

Below we focus on the two-photon subspace of the density matrix. The density matrix in the interaction picture takes the form,1213

ρ (t) = T e−i
∫
dτHI,−(τ)

ρµ ⊗ ρφ,14

where ρ (t = 0) = ρ0 = ρµ ⊗ ρφ. To first order in the interaction HI =
∫
drσ (r, t)A2 (r, t) we get,15

ρ(1) (t) = ρµ ⊗ ρφ − i
∫
dτ [HI (τ) , ρ0] ,

ρ
(1)
int (t) = −i

∫
dtdrσ (r, t)A2 (r, t) ρ0 + iρ0

∫
dtdrσ (r, t)A2 (r, t) ,

for diffraction we take A2 = ApA
†
d + h.c. where the p=pump and d=diffracted modes. By tracing over the matter degrees of16

freedom we get,17

ρ
(1)
int,φ (t) = −i

∫
dtdr 〈σ (r, t)〉A2 (r, t)

∑
s,i,s′i′

ΦsiΦ∗s′i′ |1s1i〉〈1s′1i′ |

+ i
∑
s,i,s′i′

ΦsiΦ∗s′i′ |1s1i〉〈1s′1i′ |
∫
dtdr 〈σ (r, t)〉∗A2 (r, t) .

The vector-potential is given by,18

A (r, t) = i
∑
k

ε̂kake
i(k·r−ωkt) + h.c.

A2 (r, t)→ ApA
†
d + h.c.

=
∑
d,p

(
ε̂pape

i(kp·r−ωpt) − ε̂∗pa†pe−i(kp·r−ωpt)
)(

ε̂dade
i(kd·r−ωdt) − ε̂∗da†de

−i(kd·r−ωdt)
)
,

We will look at the two photon subspace that corresponds to the signal,19

ρ
(1,2)
int,φ (t) = −i

∑
s,i,s′i′

∑
d,p

ΦsiΦ∗s′i′
∫
dtdr 〈σ (r, t)〉 ei(kdp·r−ωdpt)ε̂pε̂∗da†dap|1s1i〉〈1s′1i′ |+ h.c.,

and since only the signal beam interacts with the p,d modes we use,2021

apa
†
d|1s1i〉 = δps|1d1i〉.22

Finally,23

ρ
(1,2)
int,φ (t) = −i

∑
d,s,i,s′i′

ε̂s · ε̂∗dΦ (ks,ki) Φ∗
(
k′s,k

′
i

)
〈σ (kds, ωds)〉 [|1d1i〉〈1s′1i′ |

+iε̂∗s · ε̂d 〈σ (kds′ , ωds′)〉∗ |1s1i〉〈1d1i′ |] .

Using the Schmidt decomposition we arrive at,24

ρ
(1,2)
int,φ (t) = −i

∑
d,s,i,s′i′

ε̂s · ε̂∗d
∑
nm

√
λnλmun (ks) v∗n (ki)u∗m

(
k′s
)
vm
(
k′i
)
〈σ (kds, ωds)〉 [|1d1i〉〈1s′1i′ |

+iε̂∗s · ε̂d 〈σ (kds′ , ωds′)〉∗ |1s1i〉〈1d1i′ |] .

Expanding the complex exponent of the Fourier transform using the summation of mixed space basis functions (one in plane25

waves and the other in real-space), taking the trace with respect to the signal beam yields the reduced density matrix of the26

idler is finally given by,2728

ρIdler =
∑

n,m,i,i′

Pnmv∗n (ki) vm (ki) |1i〉〈1i′ |+ h.c [1]29

where we have defined Pnm = iβnm
√
λnλm. The expectation value of the intensity of the idler beam results in Eq.(1) in the30

main text.31
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2. The coincidence measurement32

The setup for the coincidence measurement is depicted in Fig.1 of the main text. An entangled photon pair created by33

parametric down conversion is separated by a beam splitter BS into signal (s) and idler (i) beams with wave-vector, frequency34

and polarization (km, ωm, εm) where m ∈ {s, i}. The signal beam undergoes a diffraction by the material sample prepared by35

an actinic pulse. The image is generated by the coincidence measurement of the signal and idler beams by two detectors, which36

provides an intensity-intensity correlation function (g(2) type). It is recorded Vs. the frequency of the signal photon ω̄s and37

position in the idler (transverse) detection plane ρ̄i. The image is defined by the intensity correlation function of the detected38

photon-pair,39

S [ρ̄i] =
∫
dXsdXiGs

(
Xs, X̄s

)
Gi
(
Xi, X̄i

)
×
〈
T Îs (rs, ts) Îi (ri, ti)UI (t)

〉
, [2]

The gating functions Gm represent the details of the measurement process (1, 2). Îm (rm, tm) ≡ Ê(−)
m,R (rm, tm) · Ê(+)

m,L (rm, tm)40

is the field intensity. Ê(±) are the negative and positive frequency components of the electric field operator. The electric field41

is given by the E (r, t) =
∑

k
E

(+)
k (r, t) +E

(−)
k (r, t) such that,42

E
(+)
k

(r, t) =
(
E

(−)
k

(r, t)
)†

=

√
2π~ωk
Vk

∑
ν

ε
(ν)
k
ak,νe

ik·r−iωkt, [3]

with polarization ε(ν)
k and the field annihilation (creation) operator ak,ν

(
a†k,ν

)
. The photon coordinates Xm ≡ (rm, tm,km, ωm)43

are mapped by the gating to the detected domain X̄m ≡
(
r̄m, t̄m, k̄m, ω̄m

)
. The subscripts L/R stand for left and right44

super-operators which specify from which side they act on an ordinary operator (3), i.e. OR% ≡ %O and OL% ≡ O%. T45

represents super-operators time ordering and UI (t) ≡ exp

[
− i

~

t∫
t0

dτHI,− (τ)

]
is the interaction picture propagator. The46

off-resonance radiation/matter coupling is HI =
∫
drσ (r, t)A2 (r, t) with the vector field A (r, t) = − 1

c
Ė (r, t). The subscript47

(−) on a Hilbert space operators represents the commutator O− ≡ OL −OR. 〈· · · 〉 denotes the average with respect to the48

initial density matrix of the light and matter.49

Expanding UI (t) to first order in the interaction, and subtracting the noninteracting background, the image is finally given50

by a 6-point correlation function,51

S [ρ̄i] =2A
~

Re

∫
dXsdXiGs

(
Xs, X̄s

)
Gi
(
Xi, X̄i

) ts∫
−∞

dr
′
dτ
〈
σ
(
r
′
, τ
)〉

µ

×
〈
T Ê(−)

s,R (rs, ts) · Ê
(+)
s,L (rs, ts) Ê

(−)
i,R (ri, ti) · Ê

(+)
i,L (ri, ti)A(+)

(
r
′
, τ
)
A(−)

(
r
′
, τ
)〉

φ
. [4]

The subscripts φ, µ represent field and the matter degrees of freedom, respectively. Explicitly by the 10 field operator correlation52

function,53

S [ρ̄i] = 2A
~

Re

∫
dXsdXiGs

(
Xs, X̄s

)
Gi
(
Xi, X̄i

) ts∫
−∞

dr
′
dτ
〈
σ
(
r
′
, τ
)〉

µ
[5]

×
∑
ks,ki

∑
k′s,k

′
i

Φ (ks,ki) Φ∗
(
k′s,k

′
i

)
×
〈

0s′ ,0i′ |a†ks,µs
a†ki,µi

ak′s,µs
ak′

i
,µi
T Ê(−)

s,R (rs, ts) · Ê
(+)
s,L (rs, ts) Ê

(−)
i,R (ri, ti) · Ê

(+)
i,L (ri, ti)A(+)

(
r
′
, τ
)
A(−)

(
r
′
, τ
)
|0s,0i

〉
,

[6]

Contracting the field operators defined in Eq. 3 of the intensity-intensity expectation value Eq. 2, with the vector potential of54

the scattered modes (initially in the vacuum), We find a nonvanishing linear contribution. Assuming spatial gating for the idler55

tracing over the signal yields, operators results in,56

S [ρ̄i] = CRe

∫
drsdtsdti

∑
s,s′,i,i′,d

Φ (ks,ki) Φ∗
(
k′s,k

′
i

) ∫
dr′ dt 〈σ (r, t)〉µ

×eikds′ ·rs−iωds′ tseikii′ ·ri−iωii′ tieikds·r−iωdst,
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by integration over the signal and matter coordinates and expanding the transverse two-photon amplitudes in Schmidt modes57

we obtain,58

S [ρ̄i] = ARe
∑
nm

√
λnλmβnmv

∗
n (ρi) vm (ρi) , [7]

where A = C
∫
dωddωsdωiG (ωs)G (ωd) |G (ωi)|2 A (ωs + ωi)A∗ (ωd + ωi) and,59

βnm =
∑
s,d

un (qs) 〈σ (qd − qs, k
z
ds, ωds)〉µ u

∗
m (qd) [8]

=
∫
dr un (ρ) 〈σ̄ (ρ)〉µ u

∗
m (ρ) ,

and σ̄ (ρ) =
∑

ds
σ (ρ). This expresses the role of the charge density in diffraction in an intuitive manner, generating weighted60

rotations.61

We next derive an expression for the far field diffraction after rotational averaging. This coincidence image in the far-field62

yields a similar expression to the one calculated from the reduced density matrix in Eq.(1) with additional spatial phase factor63

characteristic to far-field diffraction. Estimation of Eq.(6), using initial entangled state of the field for the setup depicted in64

Fig.1 of the main text, followed by rotational averaging and far-field approximation we obtain,65

S [ρ̄i] = CRe

∫
dωsE [ωs]

∫
dρsΦ (ρs, ρ̄i)×∫

dρ
′
Φ
(
ρ
′
, ρ̄i

)
σ
(
ρ
′
)
e−iQs·ρ

′

. [9]

Here Qs = ωs
c
ρ̂s, E [ωs] =

∫
dωiG (ωs)G (ωi) |A (ωs + ωi)|2is a functional of the frequency, S = − (S − S0) is the image with66

the noninteracting-uniform background (S0) subtracted, and ρ̄i is the mapping onto the detector plane with the corresponding67

sign. σ (ρ) ≡
∑

α;a,b 〈a|σ̂ (ρ− ρα) |b〉 denotes a matrix element of the charge-density operator with respect to the eigenstates68

{a, b} and α specify the location of particles initially.69

The matter is initially in a superposition state, created by a preparation process. σ (ρ) denotes summation over the70

longitudinal direction and ρα are positions of particles in the sample. Substituting the Schmidt decomposition (Eq.(??)) in71

Eq.(9) gives,72

S [ρ̄i] = CRe

∫
dωsE [ωs] dρs

∞∑
nm

√
λnλmun (ρs) v

∗
n (ρ̄i)×

vm (ρ̄i)
∫
dρ
′
u∗m

(
ρ
′
)
σ
(
ρ
′
)
e−i

ωs
c
ρ̂s·ρ

′

. [10]

This shows a smooth transition from momentum to real space imaging. For low Schmidt modes that do not vary a lot along73

the charge density scale, the last term yields σ (Qs, ·) ∝
∫
dρ
′
u∗m

(
ρ
′
)
σ
(
ρ
′
)
e−i

ωs
c
ρ̂s·ρ

′
. Then this quantity is projected on74

un and reweights the corresponding idler modes. When many of these projections are measured, the resulting image is the75

real-space image of the charge density. Expressing the complex exponent as superposition of Schmidt modes such that,76

S [ρ̄i] ∝ Re

∞∑
nm

γnm
√
λnλmv

∗
n (ρ̄i) vm (ρ̄i) [11]

where,7778

γnm =
∑
k

βkm

∫
dρsdωsE [ωs]un (ρs)u

∗
k (Qs) , [12]79

introduced by Eqs.(15, 16) in the main text. Here βnm is the same overlap defined for the density matrix. From the definition80

of Qs it is evident that its angular component of uk is identical the corresponding in un and therefore γnm is composed of81

summation over modes with the same angular momentum if one considers LG basis set.82
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