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Computational details 

Molecular dynamics simulations. Molecular dynamics Simulations with 1 fs time step at 

temperatures of 200K, 300K, and 400K were performed using the GROMACS code with NPT 

ensemble and OPLS-AA force fields. Periodic boundary conditions were imposed on a 30.2 Å 

cubic box containing one NMA and 875 TIP4P water molecules (1). Coulomb interactions were 

truncated at 12.0 Å and a shift function was used for vdW forces with the same cutoff. The bond 

lengths were constrained by the LINCS methods (2). Electrostatic interactions were treated by the 

Particle mesh Ewald method (3). At T=300K, we generated two independent trajectories of 2 ns 

and 10 ns, from which 10000 and 50000 configurations were extracted with a 200 fs interval, 

respectively. At T=200K and 400K, we generated 2 ns trajectories, from which 10000 

configurations were harvested with the same time interval. The equilibrated structures were used 

for including quantum chemistry calculations and NN learning. 

 

The machine learning protocol. The NN consists of one input layer, three hidden layers and one 

output layer. For each hidden NN layer we used the Rectified Linear Unit activation function (4). 

The 50000 sets of data at 300K were randomly divided into two subsets: 40000 were used for 

training and the rest (10000) were used for testing (Additional 10000 sets at 300K were randomly 

divided into 7000 and 3000 for training and testing, respectively). And the 10000 sets of data at 

200K and 400K were randomly selected 5000 for testing the NN model obtained in 300K. In 

order to compare the prediction ability of the map method and NN, we take some strongly-

deviated structures to predict, in which the red dots represents the normal NMA structure, and the 

blue dots represents the strongly-deviated structures (Fig. S2 C-F). Then the NN were subjected 

to a supervised training scheme using a back propagation algorithm implemented in TensorFlow 

frame. (5). 

We have taken the following steps to mitigate the over-fitting issue in the neural network training 

process:  

(1) The size of dataset was increased from 10,000 to 50,000 data points. 

(2) For the selection of the descriptors, we calculated Pearson correlation coefficient (r) among the 

descriptors. We find that most descriptors have a low linear correlations (Fig. S4), which 

significantly reduces the over-fitting problem.  

(3) For the training, we added L2 regularization (6) to the structure of the neural network to prevent 

overfitting. 

 

To avoid the use of raw variables with different range of values which may undermine the 

robustness NN results, we firstly normalized the input features i to reduce the dimensional 

inconsistency, i.e., converted data to the dimensionless data in range 0 to 1. This is because 

different raw variables with remarkably different range of values can severely undermine the 

robustness of the result generated by neural network. Therefore, to eliminate the dimensional 

impact between the input data, data normalization is required to resolve the comparability of data. 

The data was transformed with
( )

( )

i min

ma x min

x x
x

x x






, where ix  are input data, x are normalized data, 
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and minx  and ma xx  are minimum and maximum values of the input data, respectively.  

The mean relative error (MRE) was computed with
1

100% n
t t

t t

A F
MRE

n A


  , where tA  is the 

actual value and tF  is the predicted value.  

The cross-validation technique (7) was employed to verify the accuracy and robustness of the 

final NN results. In the cross-validation procedure, N sets of data were randomly and evenly 

distributed into 10 bins. Each bin was used as a test set with the remaining nine bins as training 

sets. 

 

Importance analysis: Random forest is a popular machine learning algorithm. A multitude of 

decision trees are constructed for classification, regression and other tasks (8). In addition, it can 

be used for analyzing the importance of each descriptor which is calculated as follows (8): 

As each tree evolves, predictions are made based on the Out-Of-Bag (OOB) data for that tree. At 

the same time, each descriptor in the OOB data is randomly permuted, one at a time, and each 

such modified data set is also predicted by the same tree. At the end of the model training process, 

the margins for each sample are calculated based on the OOB prediction as well as the OOB 

predictions with each descriptor permuted. Let M be the average margin based on the OOB 

prediction and Mj the average margin based on the OOB prediction with the j th descriptor 

permuted. The difference between M and Mj (M-Mj) reflects the importance for the j th descriptor. 

For regression problems, addressed here. 

 

The average maximum of the frequency. The average maximum of the frequency was used to 

compare the difference between of the UV absorption spectra at different temperatures of NMA 

by TDDFT and NN, it was computed with 
( )

( )

d f

d f

 

 

 


 




, where   is the frequency and f  is 

the oscillator strength. 

 

Map (1): 
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where the four bond lengths 
i

d  are COd , CNd , LC Cd , and RNCd , the four angles 
i
  are OCN , 

CNH , LNCC , and RCNC , and the dihedral angle  is OCNH . 
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The spectra was obtained by 1,

2 2
1, 1,

( )
( )

n

i n n

f
f 

  
   

,where f1,n and Ω1,n denotes the 

oscillator strength and frequency of electronic excitations respectively, and the n denotes the 

numbers of structures of NMA molecules, in our work n=5000. 

 

 

Table S1. Time required to compute transition energies, dipole moments, transition dipole 

moments of 5000 frames for TDDFT (PBE0/cc-pVDZ) and NN. 

 

Method 
Transition 

Energy 
Dipole Moment 

 

Transition Dipole 

Moment 

 

DFT (nπ*) 65000s 65000s 65000s 

NN (nπ*) 24.63s 29.48s 231.16s 

DFT (ππ*) 65000s 65000s 65000s 

NN (ππ*) 61.33s 29.48s 65.96s 
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Fig. S1. Descriptors used for predicting transition energies. 
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Fig. S2. (A) Distribution of NMA nπ* transition energies calculated by TDDFT. (B) Same as (A) 

but for the ππ* transition (C) Correlation plots of nπ* transition energies by TDDFT (ω_TD) and 

map method (ω_MAP).(1) (D) Same as (C) but for the ππ* transition. (E) Comparison of nπ* 

transition energies by TDDFT (ω_TD) and neural network (ω_NN). (F) Same as (E) but for the 

ππ* transition. The red lines/dots represent the transition energies (ω_TD) of NMA calculated by 

TDDFT which performed at the PBE0/cc-pvdz level. Black points refer to those NMA structures 

close to minima, while blue points refer to those far from minima. 



7 
 

Fig. S3. (A) Correlation plots of nπ* transition energies by TDDFT (ω_TD) and map method 

(ω_MAP).
1
 (B) Same as (a) but for the ππ* transition. (C) Comparison of nπ* transition energies 

by TDDFT (ω_TD) and map method (ω_MAP)
1 

which fitted by different data sets. (D) Same as 

(C) but for the ππ* transition. (E) Comparison of nπ* transition energies by TDDFT (ω_TD) and 

neural network (ω_NN). (F) Same as (E) but for the ππ* transition. The red lines/dots on the 

figures represent the transition energies (ω_TD) of NMA calculated by TDDFT which performed 

at the (B3LYP/6-31G(d,p)) level. 
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Fig. S4. Heat map of the Pearson correlation coefficient (r) among the descriptors for predicting 

the nπ* and ππ*transition energy. 
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Fig. S5. The NMA molecular orbitals which after localizing analysis were included in the two 

transitions: nπ* and ππ* transition. 
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Fig. S6. (A) Correlation of dipole moment by DFT (μ_DFT) and NN (μ_NN). (B) Comparison of 

dipole moment in the x direction by DFT (μx_DFT) and NN (μx_NN). (C) Comparison of dipole 

moment in the y direction by DFT (μy_DFT) and NN (μy_NN). (D) Comparison of dipole moment 

in the z direction by DFT (μz_DFT) and NN (μz_NN). The red lines/dots on the figures represent 

μ_DFT, μx_DFT, μy_DFT and μz_DFT of NMA calculated by DFT which performed at the 

(B3LYP/6-311G++(d,p)) level, respectively. 
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Fig. S7. (A) Descriptor importance analysis of dipole moment. (B) Descriptor importance analysis 

of dipole moments in x direction. (C) Descriptor importance analysis of dipole moments in y 

direction. (D) Descriptor importance analysis of dipole moments in z direction. 
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Fig. S8. (A) The importance of transition dipole moment descriptors for nπ*transition. (B) Same 

as (A) but for the ππ* transition. 
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Fig. S9. (A) The root mean square deviation (RMSD) of CO bond. (B) Same as (A) but for the 

CN bond. 
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