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Supplementary Information Text 

Text S1. Supplementary information for the curation process of the bi-locus 

combinations in DIDA 

 

In order to include a bi-locus combination in DIDA as pathogenic, the authors responsible for 

creating DIDA applied criteria that are based on their relevance and the existence of different 

levels of evidence for their pathogenicity.  

 

For the first version of DIDA, 54 out of 108 scientific articles that were published before 

January 2013 and were listed in the work of  Schäffer et al.(1), were manually selected to be 

included in the database. From these articles, 125 bi-locus combinations were extracted. A 

Pubmed search with the keyword “digenic” was then conducted to include medical papers 

published until June 2015, leading to the inclusion of 88 another digenic combinations from 

28 different publications. This first version of DIDA (DIDAv1) corresponds to the training 

set of VarCoPP. Additional bi-locus combinations for developing the second version of 

DIDA (DIDAv2) (where many of them were used as a validation set for VarCoPP) were 

obtained through a Pubmed search with the keyword “digenic” to retrieve publications 

between July 2015 and June 2017, adding 45 new digenic combinations to the database.  

 

Only combinations derived from clinical studies were accepted, and not those derived from 

statistical or predictive methods. For these combinations, three different types of evidence or 

substantial pathogenicity proof were assessed, according to those described by Schäffer et al.:  

 Evidence of a protein-protein or a protein-DNA interaction for the two genes or 

proteins involved in the bi-locus combination or whether there is a combined effect of the 

variants at the functional level (referenced in DIDA as “Functional evidence”). This type 

of evidence highlights experimentally the pathogenic effect of the variant combination as 

opposed to the single effect of the involved variants, and to assess whether this effect is 

related to the observed phenotype in the patient carrying the particular variant 

combination. It was also required that the study was done in human cells, so those 

conducted on animal models were not accepted.  

 Phenotypic difference in the studied family according to the segregation of the bi-locus 

combination (referenced in DIDA as “Familial evidence”). An ideal evidence would be 

the involvement of families with extended pedigrees, where we can compare the 

phenotype of the affected individuals having the bi-locus combination, that of individuals 

carrying one of the involved variants, and of individuals carrying none of the variants. A 

bi-locus combination derived from a pedigree analysis involving only one patient and their 

parents needed to have one of the other types of evidence, in order to be accepted.  

 Indirect evidence based on whether the products of the two genes are involved in the 

same pathway, are co-expressed or whether the two genes are implicated in the same 

disease (referenced in DIDA as different types of “Gene relationship”).  

 

As additional criteria, only bi-locus combinations involving a maximum of four mutated 

alleles were included in DIDA. These contain single nucleotide variants and small indels. 

Copy number variations (CNVs) and repeats are actually excluded, as well as genetic 

diseases where environmental factors are suspected to take part in the development of the 

disease phenotype, or where more than two genes are potentially involved in the phenotype.  

Several plots on statistics regarding the type of data included in DIDA are present in the 

“Statistics” page of the database (http://dida.ibsquare.be/statistics/). 

http://dida.ibsquare.be/statistics/
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Text S2. Supplementary information for overlapping bi-locus combinations between 

DIDA and the 1KGP 

 

During an initial screening of bi-locus combinations in the 1000 Genomes Project 

(1KGP), we discovered at that time 7 bi-locus combinations of DIDA that were also present 

in 14 individuals of the 1KGP. None of the studies analysing these combinations presented a 

comparison with the 1KGP. The bi-locus combinations were present in parents or 

grandparents of 1KGP families and no relative carried extra DIDA bi-locus combinations.  

We detected 2 bi-locus combinations leading to Kallman syndrome both derived from the 

same study(2), which were also present in 5 individuals of the 1KGP. These combinations 

involved the gene pairs KISS1R - PROKR2 (dd202), which had already been reported to be 

relevant for digenicity(3), and GNRHR - PROKR2 (dd203). Although GNRHR has been 

involved in digenic cases with other genes (PROK2 and FGFR1) leading to congenital 

hypogonadotropic hypogonadism(4-6), no other indications of digenicity have been reported 

between this gene and PROKR2. The c.719G>A GNRHR heterozygous variant of dd203 has 

been described previously to be involved in mild symptoms of congenital hypogonadotropic 

hypogonadism(7). On the other hand the c.991G>A PROKR2 heterozygous variant of dd203 

has already been reported to be implicated in Kallman syndrome with variable phenotypes(8). 

In the current study, the authors compared cases with a small control cohort of 14 individuals 

carrying mutations of either KAL1 and PROKR2, therefore did not explicitly check for bi-

locus combinations in the control cohort. The bi-locus combinations presented are also not 

supported by familial or functional evidence.  

We also detected in 2 individuals of the 1KGP a bi-locus combination (dd220) leading to 

maturity-onset diabetes of the young(9) that involved a novel digenic pair NEUROD1-PDX1. 

Both mutations in these genes are heterozygous, in protein-coding areas. In general, it is 

known that the clinical features of MODY can overlap with those of polygenic diabetes, and 

several genes have been associated so far with this disease. For the dd220 combination, this 

novel gene pair can be relevant for MODY, as both genes are required for β-cell 

development, growth and insulin gene expression participating in a transcription complex 

that is important for short-range DNA looping(10). Both heterozygous c.723C>G NEUROD1 

and c.670G>A PDX1 mutations of that bi-locus combination had already known to be 

individually implicated in forms of obesity and diabetes, respectively(11,12). However, the 

patient that carried this bi-locus combination was not obese, but showed a serious decrease of 

insulin intake compared to controls. The c.670G>A PDX1 variant can present incomplete 

oligogenic penetrance(12) - also suggested by its frequency in the ExAC database (0.002113) 

- and, thus, sometimes can be overlooked. At the same time, although studies have shown a 

contradictory importance of NEUROD1 with the associated clinical phenotypes being 

unclear, microRNA analysis showed that silencing this gene led to loss of β-cell proliferation, 

through the overexpression of miR-24(13). Although the study that presented this 

combination included a familial analysis, they authors did not provide functional evidence. 

Furthermore, in the study the authors performed a genetic comparison with a small cohort of 

60 control individuals with normal glucose intake, something that could maybe have led to 

loss of statistical power to show the presence of the bi-locus combination in the control 

cohort. In general, the relevance of this bi-locus combination may not be unimportant, but it 

should be noted that for MODY other less-known molecular mechanisms may be involved 

that make this bi-locus combination present in two individuals of the 1KGP.  

Finally, we detected 4 novel bi-locus combinations (dd180, dd188, dd193 and dd196) 

leading to familial hemophagocytic lymphohistiocytosis (FHL) in 7 individuals, which were 

all derived from the same study(14). It is worth noticing that one 1KGP individual carried 

two of these combinations: dd188 and dd193. The variant combinations involve heterozygous 
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mutations in PRF1, UNC13D and STXBP2 genes, with three of them (dd180, dd188, dd193) 

sharing the variant c.272C>T at PRF1 gene. All of these genes are involved in the 

lymphocyte cytotoxicity activity for cytotoxic granules and UNC13D along with STXBP2 

belong also in the same cytotoxic pathway(15), while PRF1 assists at a later stage to the 

delivery and penetration of granzymes(16).  

More specifically: 

● Combination dd196 involves an intronic c.*12G>A STXBP2 variant and a protein-

coding c.2896C>T UNC13D variant. These genes belong in the same degranulation 

pathway and the authors show that patients with variants in genes of that pathway had 

earlier age of onset and defective degranulation, compared to those who carried 

variants in PRF1 and another gene. With these findings the authors suggest a 

synergistic deleterious effect of the involved mutations that supports the notion of a 

digenic inheritance for FHL. Digenic implications of this pair have also been 

suggested in further murine and human studies(17,18).  

● Combination dd180 involves two protein coding c.272C>T PRF1 and c.3160A>G 

UNC13D variants. On the other hand, combinations dd188 and dd193 involve the 

gene pair PRF1 - STXBP2. Combination dd188 involves two protein-coding variants 

c.272C>T in PRF1 and c.1034C>T in STXBP2, while dd193 involves the PRF1 

c.272C>T variant and one intronic variant c.795-4C>T in STXBP2. The authors 

present that patients with one mutation in the PRF1 gene and another mutation at one 

of the genes of the granulation pathway had later age of onset compared to those 

carrying mutations in genes of the same cytotoxic pathway and normal degranulation, 

although they showed decreased perforin expression. Nevertheless, digenic variants in 

the pair PRF1 - UNC13D, but not the exact dd180 combination, have been reported in 

another later study(18).  

As the genes involved in that study are implicated in FHL and digenicity has been 

suggested in further studies, we cannot conclude that the specific variant combinations that 

have an overlap between DIDA and 1KGP are not relevant, although in the paper there is a 

stronger indication of digenicity for the dd196 combination, compared to the rest. It should 

be noted, however, that the study did not present a familial analysis, neither further functional 

evidence concerning the digenic cases. Moreover, the authors did not compare their cases 

with controls or other variant databases for further proof of relevance, but performed a 

clinical analysis.  
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Text S3. Interpretation of validation cases predicted as neutral 

 

Among the 23 independent variant combinations of the independent validation set, we 

predicted 3 of them as neutral (Testpos_4, Testpos_10 and Testpos_15). We provide here our 

interpretation of why we fail to predict them as disease-causing. In general, this can be 

attributed to missing values of some features for the gene recessiveness or haploinsufficiency, 

low CADD score values and high gene haploinsufficiency values in some cases. The 

annotated features for this data set can be further studied at the SI Appendix, Dataset S1.  

1. Testpos_4, which was predicted with SS = 46.2, carrying novel inherited variants in the 

PSMB4-PSMB9 gene pair, is involved in the development of CANDLE syndrome, an 

autoinflammatory disease, and it was detected in two siblings of a familial study. The 

authors state that the heterozygous c.44_45insG mutation in PSB4 causes reduced gene 

expression, while the second missense c.494G>A mutation in PSMB9 affects a highly 

conserved protein residue. Both PSMB4 and PSMB9 were predicted to be 

haploinsufficient in our data. Recessiveness probability of PSMB9 was not known and 

therefore we used a median value, something that may have affected the results, as it 

seems that this feature (RecB), along with the CADD score of the PSMB9 variant allele 

(CADD3) that is low in this case, are important for classification. Therefore, we see that 

this unknown value along with the low value of CADD3 can have an impact on the 

predictions. 

2. Testpos_10, which was predicted with SS = 24, contains variants in the COL4A4-

COL4A3 gene pair known in general to be implicated in Alport syndrome, the first one 

being a heterozygous in-frame c.1293_1310del mutation and the latter being a splicing 

c.1504+1G>A variant that is predicted to cause the loss of the 5’ splice site. The patient 

carrying this bi-locus combination showed symptoms for heamaturia and proteinuria, but 

no hearing loss or ocular lessions. In the paper, the authors show that none of the 

monogenic predictors (SIFT, MutationTaster, Polyphen2) was able to provide a 

pathogenicity score for these variants. Looking at the CADD values, we saw that these 

were actually low (2.36 and 2.84). These low scores most probably guide the prediction 

towards the neutral class.  

3. Testpos_15, which was predicted with SS = 1.6, originated from a female patient who 

showed symptoms of intermittent heamaturia and proteinuria and not hearing loss or 

ocular lessions, therefore not severe symptoms of the disease. It contains three 

heterozygous variants, one in the COL4A5 gene and two in the COL4A4 gene, both 

known to be involved in Alport syndrome. Males carrying mutations in this pair show 

more severe symptoms of the disease, as the COL4A5 gene lies in the X-chromosome. In 

this case, although the CADD score of the COL4A5 variant is relatively high, the very 

low CADD scores for the COL4A4 variants (1.70 and -0.22) and the high COL4A4 

haploinsufficiency probability value (0.84) seem to guide the prediction of this bi-locus 

combination towards the neutral class. We would like to note that in our method, we 

represent a hemizygous X-linked variant in males similarly to a homozygous variant, to 

depict the fact that there is no wild-type allele present to compensate in certain cases for 

the gene and protein function, and thus, this variant, and consequently the bi-locus 

combination, can be predicted to have a stronger impact in males than females.  
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Text S4. Interpretation of PR curves for confidence zones 

 

As the amount of neutral bi-locus combinations tested increases, the precision drops (SI 

Appendix, Fig. S2A), as expected. Clearly, the more combinations need to be checked the 

more the absolute number of elements in the two confidence zones will increase. Figure S2B 

in SI Appendix shows the precision and recall of the 95%-zone and the 99%-zone when 

VarCoPP is tested on the elements of the positive validation set together with the elements of 

a collection of either 100, 1000 and 10000 neutral combinations that fall into these zones. As 

before, increasing the number of neutral cases decreases the precision: the precision of 

finding all 20 TPs in the 95%-zone drops from ~80% to ~30% when increasing the amount of 

bi-locus combinations from 100 to 1000. The more stringent 99%-zone improves precision 

and recall significantly (SI Appendix, Fig. S2B), yet at the cost of missing some of the real 

culprits (SI Appendix, Table S9). 
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Text S5. Supplementary Materials and Methods 

 

 Data collection, filtering and annotation  
 

We used the first version of the Digenic Diseases Database (DIDAv1) as the disease-

causing data set and collected information on the bi-locus combinations, genes and variants. 

213 bi-locus combinations were present in the database and included single nucleotide 

variations (SNVs) and small insertions and deletions (indels). These combinations 

contributed to 44 different diseases. To create the control bi-locus combinations, we used the 

variant data of the 1000 Genomes Project (1KGP) of Phase 3. The 1KGP contains a broad 

representation of the human genetic variation, including variants of 2,504 healthy individuals 

from 26 different populations. For computational reasons, we selected a random 25% subset 

of the human proteome from the 1KGP, using the list of the curated human proteome from 

Uniprot(19) and filtered the variants using Highlander (http://sites.uclouvain.be/highlander/). 

This filtering enabled us to limit the amount of gene pairs and bi-locus combinations present 

in the control set, in order to be similar to the type of disease-causing combinations 

composing DIDA. 

The filtering process took place in such a way that both sets would contain comparable 

variants and genes. We used the Ensembl BioMart tool(20) for the Grch37.p13 version of the 

human genome to obtain information about exon positions and 1KGP Minor Allele 

Frequency (MAF). We included variants of MAF<=3%, as this variant frequency threshold 

represents the vast majority of variants in DIDAv1 and in this way we could limit potential 

noise of the abundance of more common variants from the control dataset. We included 

exonic SNVs and small indels, as well as intronic variants with a maximum distance of 13 

nucleotides (nt) from the exon edge. We also collected synonymous variants close to splicing 

sites in a maximum distance of 6 nt from the exon boundary, according to the synonymous 

variants present in DIDAv1. At the gene level, we selected only protein-coding genes from 

1KGP, as this type of genes was present in DIDAv1. To further ensure the presence of true 

protein-coding genes in the control set, we further filtered the genes based on the protein-

coding genes of the consensus coding sequence (CCDS) project(21). Finally, we removed 

from the 1KGP data set 14 individuals who carried disease-causing bi-locus combinations 

(Fig. 2, and SI Appendix, Table S3), as well as the 7 corresponding bi-locus combinations. 

After the filtering process, 200 disease-causing bi-locus DIDAv1 combinations remained, 

whereas around 8,000,000 unique gene pairs were present in the 1KGP control set leading to 

billions of possible combinations to choose. 

We annotated both sets based on information at the variant, gene and gene pair level. A 

summary of the features and a brief explanation is displayed in SI Appendix, Table S4 and 

shown schematically in Fig. 3C. We used the combined annotation dependent depletion 

(CADD) score(22) as a single-variant deleteriousness metric because it can predict the 

damaging effect of not only missense variants, but also splicing, nonsense variants, as well as 

small deletions and insertions and shows good overall performance. We implemented an in-

house code to calculate the flexibility and hydrophobicity differences between the wild-type 

and mutated amino acids, using the flexibility variation scale of Bhaskaran & 

Ponnuswamy(23) and the Wimley & White whole residue hydrophobicity scale(24) 

respectively. We also extracted information from Pfam(25) using the Ensembl BioMart tool 

for the Grch37.p13 version of the human genome(20) to predict whether the variant alleles lie 

in a conserved protein family domain. For the gene features, we used the gene 

haploinsufficiency(26) and recessiveness probability(27) retrieved from dbNSFP2.8(28,29). 

Finally, as a gene pair feature we exploited the biological distance, a metric of biological 

https://paperpile.com/c/aYO2jf/2zLCB
https://paperpile.com/c/aYO2jf/Sa9aC
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relatedness in terms of protein-protein interactions between two genes, obtained with the 

script provided by the Human Gene Connectome tool(30).  

 

 Representation of a bi-locus variant combination 

 

We represented a bi-locus variant combination as a vector of categorical and numerical 

features (see Fig. 3B and SI Appendix, Table S4 and Table S5 for numerical representation). 

In general, a bi-locus combination always contained four different alleles (2 for gene A and 2 

for gene B), including wild-type alleles. This was done in accordance with the type of 

information in DIDA, where for each bi-locus combination we had maximum two mutated 

alleles in each gene. Therefore, we encoded each variant-related feature four times (four 

dimensions), each one representing a different allele. With this representation, we also 

considered the zygosity of the variants, meaning that if a variant was homozygous in one 

gene, then both alleles corresponding to this gene would contain the same information. We 

encoded gene-related features using two dimensions, one for each gene involved in the bi-

locus combination. In the end, a set of vectors was created where each vector represented a 

bi-locus combination and each element in the vector represented a unique feature of that 

combination.  

To ensure a fair prediction process, we defined the order of variants and genes inside each 

bi-locus combination (Fig. 3B) in the same way for both data sets. We used the Gene 

Damage Index (GDI)(31) to determine the order of the two genes in a bi-locus combination, 

so that gene A was the gene with the lowest GDI index and, thus, has with a higher 

probability to be associated with a disease. We also ordered different variant alleles inside the 

same gene (in cases of heterozygous-compound variants in gene A or gene B) using the 

CADD raw score(22), so that the first variant allele in that gene would be the one with the 

highest score. 

 

 Stratification and sampling of the 1KGP neutral data for training  

 

The 1KGP neutral set contained a huge number of bi-locus combinations compared to 

DIDA, leading to a class imbalance problem (Fig. 3D). A recent work has shown that 

Random Forests (RFs)(32) can outperform other classifiers even when used as base-

classifiers to create ensemble predictors, especially in cases where one of the two training 

sets, i.e. the 1KGP set in our study, is much bigger and has to be under sampled(33). 

Although partitioning of the entire 1KGP data set into smaller samples could offer a good 

solution(33,34) we were aware that this would pose other computational issues, as it would 

have resulted in millions of different predictors and would dramatically increase the running 

time of our method. Therefore, we decided to perform a bagging procedure instead and we 

created multiple balanced sets, each consisting of 200 1KGP bi-locus combinations of 

randomly chosen gene pairs and the 200 disease-causing combinations of DIDAv1. We first 

performed a preliminary analysis to assess the variance of the performance of our method 

relative to the number of neutral variants it is trained with, by creating different ensemble 

predictors trained on either 10, 100, 500, 1000, 1500, 2000 and 3500 balanced training sets. 

Although we did not observe significant performance differences, we finally decided to use 

500 balanced sets as they showed small variance and they were the starting point of a 

performance plateau for bigger sets (SI Appendix, Table S6). 

The bi-locus control combinations contained one to four variant alleles similarly to those 

present in DIDAv1. Bi-locus combinations with four non-wild type alleles in two different 

genes were not included in the 1KGP set, as this type of combinations was not yet present in 

DIDAv1. As variants from African populations are generally over-represented in the 1KGP 
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set and consequently in our random subsets, we created an equal continent distribution 

among the individuals for each random 1KGP subset, in order to avoid bias towards variants 

specific to a particular population. However, preliminary analysis has shown that there is no 

significant difference in performance when the predictor is trained using 1KGP variant 

combinations only from individuals of a particular continent against DIDAv2 confirming that 

the method, being a qualitative machine-learning approach, is not subject to population bias 

(SI Appendix, Table S10). Finally, each random control subset contained gene pairs following 

a degrees of separation distribution (i.e. number of direct protein interacting connections 

between two genes) equal to that of DIDAv1, based on information obtained from the Human 

Gene Connectome tool(30) to again avoid obvious biological relatedness differences between 

the randomly chosen control pairs and the disease-causing gene pairs (SI Appendix, Fig. S5). 

 

 Training of the ensemble-based machine learning method 

 

We used the scikit-learn version 0.18.1 implementation(32) of the RF algorithm(32) as a 

base-classifier for each of the 500 balanced sets. Each RF predictor consisted of 100 decision 

trees using bootstrapping with a maximum tree depth of 10, while the number of features to 

consider when looking for the best split at each node was set to the square root of their total 

number. As most of the used features were numerical, except for the two-class Pfam 

categorical feature, we selected the default Gini importance option to assess feature 

importance. 

To assess the overall performance between the independent RFs, we implemented a 

Leave-One-Pair-Out stratified cross-validation procedure individually for each predictor, 

similarly to the methodology presented in the work of Gazzo et al.(36). In this type of cross-

validation, we iteratively removed all variant combinations of a particular gene pair and 

trained the RF predictor with the rest of the combinations. Then, we used the bi-locus 

combinations of the left-out pair to assess the performance. This procedure was repeated for 

all gene pairs inside each balanced set and to conclude statistics for the performance among 

the RF predictors, the results were averaged among all balanced sets.   

 

 Selection of the most relevant biological features 

 

The initial number of predictor features, based on the representation of each bi-locus 

combination, was 21 (SI Appendix, Table S4). To optimize the model and minimize 

overfitting, we used a recursive feature elimination (RFE) procedure(37) using a balanced set 

with median performance among all sets. In each iteration we removed the least important 

feature based on the Gini importance metric, and calculated statistics about the predictor 

performance (e.g. accuracy, sensitivity, MCC etc.).  

The order of elimination of features (starting from all 21 features to 0) was: Flex4, Hydr4, 

Pfam2, Pfam4, Pfam1, Flex2, Pfam3, Hydr2, CADD4, Flex3, Hydr3, Hydr1, Flex1, 

Biol_Dist, HI_B, HI_A, CADD2, RecA, RecB, CADD1, CADD3. This means that for e.g. 

the turn with 2 features at the x-axis included only CADD1 and CADD3. 

Based on this procedure, we observed that the use of the 10 lastly eliminated features led 

to the first optimal performance peak (SI Appendix, Fig. S3). We also observed that in 

general, information about the fourth allele of a bi-locus combination (gene B, allele B) was 

removed at the early stages of the feature elimination procedure, indicating that this allele 

does not contribute significantly to the classification. Although no variant features about the 

fourth allele remained among the 10 selected ones, we decided for interpretability reasons to 

include the CADD score of this allele (CADD4), being the feature of the fourth allele that 

was eliminated last, finalizing the number of selected features to 11 (Fig. 3C). 

https://paperpile.com/c/aYO2jf/Az377


 10 

 Definition of the Classification Score (CS) and Support Score (SS) 

 

VarCoPP implements a majority vote to predict the final class (“disease-causing” or 

“neutral”) for a bi-locus combination x, see Equation (1). 

 

Equation (1):   

𝑚𝑎𝑗. 𝑣𝑜𝑡𝑒 (𝒙) = arg max
𝑐=𝑁,𝐷

∑ 𝑑𝑡,𝑐

𝑇

𝑡=1
(𝒙) 

 

 

Each individual RF t, where t ∈ {1,⋯,T} and T is the total number of RFs, gives a class 

decision dt,c(x), with class c = {neutral (N), disease-causing (D)} for an instance x, see 

Equation (2). The majority vote function returns the class that obtained the most votes among 

the RFs. To make this class decision, each RF calculates a probability pt(x) for the disease-

causing class and a probability 1-pt(x) for the neutral class. Based on the work of Fan & 

Lin(38), adjusting the probability decision thresholds can improve the performance of a 

multi-label classifier, a reasoning that could also be applied to our two-label classification. 

We identified that the best prediction performance was obtained for a probability threshold of 

0.489, which has the best median True Positive / False Positive ratio (0.88/0.11) over all 

individual RF predictors in the ensemble (SI Appendix, Fig. S1). Therefore, the decision 

function dt,c(x) is defined as follows: 

 

Equation (2):  

𝑑𝑡,𝑐 (𝒙) =  {
0, ( 𝑐 = 𝑁 and 𝑝𝑡(𝒙)  > 0.489) and (𝑐 = 𝐷 and 𝑝𝑡(𝒙)  ≤ 0.489) 

1, (𝑐 = 𝑁 and 𝑝𝑡(𝒙)  ≤ 0.489) and (𝑐 = 𝐷 and 𝑝𝑡(𝒙)  > 0.489)
 

 

Each final class prediction for a bi-locus combination x is, therefore, supported by a 

classification score (CS), see Equation (3), that is defined as the median (med) of the disease-

causing class probabilities over all 500 independent RFs for that bi-locus combination. 

 

Equation (3): 

𝐶𝑆 (𝒙) = med
𝑡=1,…,𝑇

{𝑝𝑡 (𝒙)} 

 

 

The final prediction also provides a support score (SS), see Equation (4), that indicates the 

percentage of RFs that agree on the disease-causing label for a bi-locus combination x. 

 

Equation (4): 

𝑆𝑆 (𝒙) =  
∑ 𝑑𝑡,𝐷(𝒙)𝑇

𝑡=1

𝑇
 ×  100 

 

Using these equations, we determined that bi-locus variant combinations predicted as 

disease-causing with VarCoPP require CS > 0.489 and SS > 50. Higher CS and SS provide a 

stronger indication of pathogenicity for a bi-locus combination. 

 

 Validation of VarCoPP using independent disease-causing and neutral data 

 

As a validation set, we collected 23 new disease-causing bi-locus combinations derived 

from independent scientific papers published after the release of DIDAv1 (Fig. 3E and SI 
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Appendix, Table S7 and Dataset S1). We also collected different sets of random 100, 1000 

and 10000 neutral bi-locus combinations from the 1KGP that were unused during training to 

assess the amount of FPs that we can obtain (Fig. 3D and SI Appendix, Datasets S2, S3 and 

S4), without considering the population of individuals and degrees of separation between 

genes in a bi-locus combination. However, the genes and variants had similar properties to 

those used during the training of VarCoPP. The gene pairs that were involved in all these bi-

locus combinations had not been exploited during the training phase of the predictor. To 

assess the predictive ability of VarCoPP on these new data, we created three Precision-Recall 

(PR) curves using the validation set with the 23 disease-causing combinations and either the 

100, 1000 or 10000 random neutral test bi-locus test combinations (SI Appendix, Fig. S2). 

The variant filtering procedure, as well as the order of variants and genes inside each 

combination, was defined in the same way as for the training sets that were used in this work.  

 

 Gene panel analysis for assessment of False Positives 

 

We first assessed the performance of VarCoPP on random lists of genes on multiple 1KGP 

individuals. We created 100 iterations of random panels consisting of 10, 30, 100 and 300 

genes and tested each gene panel on 100 random 1KGP individuals. To create the gene panel 

specific for Bardet-Biedl syndrome (BBS), we used the publicly available 21-gene list 

obtained from the Genome Diagnostics Nijmegen laboratory 

(http://www.genomediagnosticsnijmegen.nl/). We obtained the autism/intellectual disability 

(ID) gene panels from the SFARI Gene database (https://gene.sfari.org/) and more 

specifically the gene panel of scoring category 1 (high confidence, 24 genes), category 2 

(strong candidate, 56 genes) and category 3 (suggestive evidence, 158 genes). The variant 

filtering procedure on these panels was similar with the one performed during the creation of 

the predictor. 

 

 

 Understanding the contribution of each feature to the predictions using 

treeinterpreter 

 

To gain insight in how each feature contributes to the classification of a bi-locus 

combination as either disease-causing or neutral, we exploited the treeinterpreter Python 

package (https://github.com/andosa/treeinterpreter, Ando Saabas). This library explores, for 

each bi-locus combination, information on the order and the way features are used during a 

decision path from the root of each decision tree to the final leaf. This helps assess how much 

each feature contributes or “votes” for either the disease-causing or neutral class. The 

contribution or “vote” for a particular class is represented with a contribution value that is 

calculated from treeinterpreter. A positive feature contribution value means that this feature 

votes for the disease-causing class, while a negative feature contribution value means that the 

feature contributes to the neutral class. This also indicates that in the end, the sum of the 

decision values of all features for a particular bi-locus combination delivers the final 

classification; positive sum for the disease-causing class and negative sum for the neutral 

class. As we obtain a contribution value for each decision tree, in order to obtain the feature 

contribution values for each bi-locus combination inside an individual RF, the contribution 

values were averaged among all trees of that RF, providing us with a vector called the 

Decision Profile (DP), which contained average decision values for each feature. Feature 

contribution values should not be confused with the actual feature values of a bi-locus 

combination; the former values are derived using treeinterpreter, whereas the latter are the 

actual values of the features used for classification. Thus, if a bi-locus combination is 

https://gene.sfari.org/
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represented with a feature vector x = (x1,x2,...,x10), then, using the treeinterpreter library, 

we get a DP vector y=(y1,y2,...,y10) for each individual RF, where yi is the contribution 

value of the feature i.  
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Fig. S1. Performance of VarCoPP during cross-validation. The different colored lines 

represent the curve from each individual predictor of the ensemble, while the black curve is 

the average curve among all predictors. (A) Receive Operator Characteristic (ROC) curve. 

The median optimal True Positive (TP) and False Positive (FP) ratio is 0.88 / 0.11 and is 

associated with a median probability threshold of 0.489 that differentiates disease-causing 

from neutral combinations. (B) Precision - Recall (PR) curve.  
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Fig. S2. Precision - Recall curve (PR) curves when VarCoPP is tested on the neutral test set 

and validation set bi-locus combinations. An interpretation of the PR curves is available in SI 

Appendix, Text S4. (A) PR using the instances of the validation set together with either the 

100 (straight line), 1000 (dashed line) or 10000 test neutral combinations (dotted line). This 

PR curve contains the average performance among all independent 500 predictors of 

VarCoPP. (B) PR curve using the validation set instances together with those of either the 

100 (straight line), 1000 (dashed line) or 10000 test neutral sets (dark blue), which fall into 

the 95%-zone (light blue) or 99%-zone (dark blue). 
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Fig. S3. Predictor performance during the recursive feature elimination procedure of a 

balanced training set with median performance among the balanced sets, after a cross 

validation procedure. The x-axis represents the number of features included for prediction 

during each elimination procedure, while the y axis represents the average performance 

during the cross-validation for that number of features. The order of elimination of features 

(starting from all 21 features to 0) was: Flex4, Hydr4, Pfam2, Pfam4, Pfam1, Flex2, Pfam3, 

Hydr2, CADD4, Flex3, Hydr3, Hydr1, Flex1, Biol_Dist, HI_B, HI_A, CADD2, RecA, RecB, 

CADD1, CADD3. This means that for e.g. the turn with 2 features at the x-axis included only 

CADD1 and CADD3. Performance was measured in terms of accuracy, specificity, F1 score 

(a balanced measure between precision and recall) and Matthews Correlation Coefficient (a 

balanced measure of the quality of a two-class classification, resembling a correlation 

coefficient between the observed and predicted binary classifications). It is shown that a set 

of 10 features inferred the first best peak among all performance measures (with slightly 

better scores than that of 6 features). For interpretation reasons, we also included CADD4, 

which was not part of the 10 first selected features, finalizing the number of features to 11.  
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Fig. S4. Distribution of feature values for (A) CADD1, (B) CADD3, (C) RecB and (D) RecA 

between DIDAv1 and the 1000 Genomes Project training sets. 
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Fig. S5. Histogram of the degrees separation for the gene pairs present in the subset of the 

1KGP (in blue) used in our analysis and DIDA (in red). Degrees separation is a metric that 

depicts how many proteins intervene in the pathway between a pair of genes. Value of 1 

indicates that the proteins of two genes in a pair are directly interacting. 
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Fig. S6. Performance of VarCoPP on 76 Dual Molecular Diagnosis cases, extracted from 

Posey et al.(39) 
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Table S1. Information on the ancestry of the 1KGP individuals carrying 4 or more DIDA 

bi-locus combinations (including those that carry a DIDA combination).  

 

 

Number of DIDA variants per 

1KGP individual 

# 1KGP individuals Ancestry 

4 DIDA variants 22 Europe: 3 

Africa: 19 

5 DIDA variants 1 South Asia 

6 DIDA variants 1 Europe 
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Table S2. Information on the frequency of the DIDA variants found in the 1KGP individuals of Table S1, as well as the effect of the DIDA 

combinations they are involved in. Associated overlapping 1KGP-DIDA bi-locus variant combinations that were removed from the 

creation of VarCoPP (see Table S3) are depicted with *. Bi-locus combinations that were removed from the creation of VarCoPP during 

the variant filtering process, are depicted with ** (TD = True Digenic, MD = Monogenic + Modifier, N/A: Unknown). 
 

 
Variant 

dbSNP ID 

Gene gnomAD 

MAF 

1KGP MAF Corresponding DIDA 

combination(s) 

Associated disease name in DIDA Oligogenic 

effect(s) of DIDA 

combinations 

rs186471205 MYH7B 0.01062 0.004193 dd171 Left ventricular non-compaction N/A 

rs72546668 CAV3 0.002667 0.001997 dd070 Familial Long QT syndrome N/A 

rs61747728 NPHS2 0.03025 0.014577 dd131 Familial idiopathic steroid-resistant 

nephrotic syndrome 

N/A 

rs151257815 STXBP2 0.01171 0.004 dd193* Familial hemophagocytic 

lymphohistiocytosis 

TD 

rs41281314 CDH23 
 

0.01378 0.049321 dd009 Usher syndrome MD 

rs28464386 STXBP2 0.00763 0.027 dd195, dd196* Familial hemophagocytic 

lymphohistiocytosis 

TD 

rs73507527 KISS1R 0.006764 0.019968 dd140, dd202* Normosmic congenital 

hypogonadotropic hypogonadism,  

Kallman syndrome 

N/A 

rs78861628 PROKR2 0.004944 0.01258 dd202* Kallman syndrome N/A 

rs75366116 UNC13D 0.005203 0.019169 dd184 Familial hemophagocytic 

lymphohistiocytosis 

TD 

rs6499838 BBS2 0.01198 0.038 dd105 Bardet-Biedl syndrome N/A 

rs34982899 NPHS1 0.01519 0.010783 dd115 Familial idiopathic steroid-resistant 

nephrotic syndrome 

TD 

rs78028658 UNC13D 0.0005123 9.98E-04 dd176 Familial hemophagocytic 

lymphohistiocytosis 

TD 
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rs74315416 PROKR2 0.002196 9.98E-04 dd012, dd015, dd018, 

dd136 

Kallman syndrome N/A (dd012, 

dd015), 

MD (dd018, 

d136) 

rs150880478 TTC8 0.005035 0.007188 dd112 Bardet-Biedl syndrome N/A 

rs35947132 PRF1 
 

0.02916 0.013179 dd174, dd176, dd177, 

dd178, dd180*, dd182, 

dd187, dd188*, dd191, 

dd193* 

Familial hemophagocytic 

lymphohistiocytosis 

TD 

rs118049905 UNC13D 
 

0.00001335 0.001797 dd182, dd185, dd194, 

dd196*, dd197 

Familial hemophagocytic 

lymphohistiocytosis 

TD 

rs138382758 MFN2  
 

0.002177 0.001997 dd152 Charcot-Marie-Tooth disease MD 

rs117761837 STXBP2 0.01057 0.004593 dd188*, dd190 Familial hemophagocytic 

lymphohistiocytosis 

TD 

rs532361142 BBS2 0.00003893 0.00003893 dd083 Bardet-Biedl syndrome TD 

rs145125791 NPHS1 
 

0.005974 0.003994 dd132 Familial idiopathic steroid-resistant 

nephrotic syndrome 

N/A 

rs201763096 NEXN 0.004068 0.003195 dd217 Familial isolated hypertrophic 

cardiomyopathy 

N/A 

rs540150447 STX11 
 

0.0007816 0.003594 dd198 Familial hemophagocytic 

lymphohistiocytosis 

TD  

rs117106081 PROKR2 0.005727 0.012181 dd203* Kallman syndrome N/A 

rs386598428 EDNRB 0.01011 0.005 dd022** Hirschsprung disease TD 

rs41263993 CCDC28B 
 

0.01112 0.006 dd084, dd085, dd204 Bardet-Biedl syndrome MD (dd084, 

dd085), TD 
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Table S3. Information on individuals of the 1KGP carrying DIDA bi-locus combinations. 

 

1KGP 

individual 

Population 

(Continent)  

DIDA 

combination ID 

Associated disease PMID 

  HG02375 CDX (East Asia) dd203 Kallmann syndrome 20022991 

HG04042 STU (South Asia) dd220 MODY 25041077 

HG00123 GBR (Europe) dd193 Familial hemophagocytic 

lymphohistiocytosis 

24916509 

NA12842 CEU (Europe) dd180 Familial hemophagocytic 

lymphohistiocytosis 

24916509 

NA12812 CEU (Europe) dd196 Familial hemophagocytic 

lymphohistiocytosis 

24916509 

NA12342 

 

CEU (Europe) 

 

dd193 Familial hemophagocytic 

lymphohistiocytosis 

24916509 

dd188 Familial hemophagocytic 

lymphohistiocytosis 

24916509 

HG03388 MSL (Africa) dd202 Kallmann syndrome 20022991 

NA19225 YRI (Africa) dd202 Kallmann syndrome 20022991 

NA20807 TSI (Europe) dd188 Familial hemophagocytic 

lymphohistiocytosis 

24916509 

HG03410 MSL (Africa) dd202 Kallmann syndrome 20022991 

HG01670 IBS (Europe) dd193 Familial hemophagocytic 

lymphohistiocytosis 

24916509 

HG03713 ITU (South Asia) dd220 MODY 25041077 

NA19031 LWK (Africa) dd202 Kallmann syndrome 20022991 

HG00112 GBR (Europe) dd188 Familial hemophagocytic 

lymphohistiocytosis 

24916509 
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Table S4. Features used to annotate the 1KGP and DIDA data sets. Those that 

remained after the feature selection procedure are marked with (*). 

 

 

Feature  Feature 

Abbreviations 

Description PMID 

CADD raw score  CADD1* 

CADD2* 

CADD3* 

CADD4* 

First variant allele of gene A 

Second variant allele of gene A 

First variant allele of gene B 

Second variant allele of gene B 

24487276 

Pfam protein 

domain 

Pfam1 

Pfam2 

Pfam3 

Pfam4 

First variant allele of gene A 

Second variant allele of gene A 

First variant allele of gene B 

Second variant allele of gene B 

26673716 

Amino acid 

hydrophobicity 

difference  

Hydr1* 

Hydr2 

Hydr3 

Hydr4 

First variant allele of gene A 

Second variant allele of gene A 

First variant allele of gene B 

Second variant allele of gene B 

8836100 

Amino acid 

flexibility 

difference  

Flex1* 

Flex2 

Flex3 

Flex4 

First variant allele of gene A 

Second variant allele of gene A 

First variant allele of gene B 

Second variant allele of gene B 

- 

Bhaskaran & 

Ponnuswamy1

988  

Haploinsufficiency 

probability 

HI_A* 

HI_B* 

Haploinsufficiency probability for gene 

A 

Haploinsufficiency probability for gene 

B  

20976243 

Recessiveness 

probability 

RecA* 

RecB* 

Recessiveness probability for gene A 

Recessiveness probability for gene B 

22344438 

Biological distance Biol_Dist* Biological relatedness between gene A 

and gene B 

24694260 
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Table S5. Computer readable representation of values for the features presented in 

Table S4. 

 

 

Variant features Type Values Representation in 

the vector 

Explanation 

CADD raw score 

(alleles 1 – 4) 

Numerical Raw score  

NaN 

Wild-type 

[raw score] 

[CADD median]* 

[-3] 

* Median value of 

the CADD score of 

the same type of 

variants for either 

DIDA or 1KGP. 

Amino acid 

flexibility 

difference 

(alleles 1 – 4) 

Numerical Protein variant 

Intronic/splicing 

variant 

NaN 

(frameshift/loss 

of stop 

mutation) 

Wild-type 

[difference value] 

[0.0] 

  

[median value]* 

  

 

  

[0.0] 

* Median value of 

either DIDA (0.012) 

or 1KGP (0.0). 

  

Amino acid 

hydrophobicity 

difference 

(alleles 1 – 4) 

Numerical Protein variant 

Intronic/splicing 

variant 

NaN 

(frameshift/loss 

of stop 

mutation) 

Wild-type 

[difference value] 

[0.0] 

  

[median value]* 

  

 

 

[0.0] 

*Median value of 

either DIDA (-0.1) 

or 1KGP (-0.01).  

Pfam region 

(alleles 1 – 4) 

Categorical Yes 

No 

NaN 

Wild-type 

[1] 

[0] 

[0] 

[same value as the 

first allele of the 

variant] 

  

Haploinsufficiency 

probability 

(geneA/B) 

Numerical Known 

probability 

NaN 

[value] 

 

[median = 0.19898] 

  

Recessiveness 

probability 

(geneA/B) 

Numerical Known 

probability 

NaN 

[value] 

 

[median = 0.12788] 

  

Biological distance Numerical Known distance 

NaN 

[distance] 

[median]* 

*Median for gene 

pairs with “NaN” 

pathway for DIDA 

(4.72) and 1KGP 

(18.16). 
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Table S6. Mean performance and standard deviation (sd) statistics among all 500 RFs 

of the ensemble predictor during cross-validation and using the final selection of 11 

features. 

 

 

Number of balanced 

sets 

Accuracy Precision Sensitivity MCC 

Mean Sd Mean Sd Mean Sd Mean Sd 

10 0.884 0.014 0.892 0.017 0.876 0.014 0.77 0.022 

50 0.874 0.013 0.884 0.014 0.863 0.015 0.750 0.024 

100 0.875 0.016 0.883 0.019 0.865 0.016 0.751 0.031 

500 0.878 0.014 0.886 0.016 0.868 0.015 0.757 0.026 

500* 0.877 0.014 0.880 0.016 0.874 0.015 0.756 0.027 

1000 0.878 0.014 0.886 0.016 0.867 0.015 0.756 0.026 

1500 0.876 0.014 0.884 0.016 0.867 0.015 0.754 0.026 

2000 0.877 0.014 0.885 0.016 0.867 0.015 0.755 0.026 

3500 0.877 0.014 0.885 0.016 0.867 0.015 0.755 0.027 

* adjusted probability threshold of 0.489 
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Table S7. Validation set of 23 new disease-causing bi-locus combinations. For details 

about the variants and the feature annotation of these combinations, see SI Appendix, 

Dataset S1. 

 
 

Combination ID Gene pair* Type Associated disease PMID 

testpos_1  TRIM54 - TRIM63 triallelic Protein aggregate myopathy 25801283 

testpos_2 PSMA3 - PSMB8 diallelic CANDLE syndrome 26524591 

testpos_3 PSMA3 - PSMB8 diallelic CANDLE syndrome 26524591 

testpos_4 PSMB4 - PSMB9 diallelic CANDLE syndrome 26524591 

testpos_5 PSMB4 - PSMB8 diallelic CANDLE syndrome 26524591 

testpos_6 CDK5RAP2 - CEP152 diallelic Seckel syndrome 26436113 

testpos_7 COL4A4 - COL4A3 diallelic Alport sydrome 25575550 

testpos_8 COL4A4 - COL4A3 diallelic Alport sydrome 25575550 

testpos_9 COL4A4 - COL4A3 diallelic Alport sydrome 25575550 

testpos_10 COL4A4 - COL4A3 diallelic Alport sydrome 25575550 

testpos_11 COL4A4 - COL4A3 diallelic Alport sydrome 25575550 

testpos_12 COL4A5 - COL4A4 diallelic Alport sydrome 25575550 

testpos_13 COL4A5 - COL4A4 diallelic Alport sydrome 25575550 

testpos_14 COL4A5 - COL4A4 diallelic Alport sydrome 25575550 

testpos_15 COL4A5 - COL4A4 triallelic Alport sydrome 25575550 

testpos_16 SEC23A - MAN1B1 tetrallelic Overgrowth syndrome 27148587 

testpos_17 RP1L1 - C2orf71 triallelic Syndromic retinitis pigmentosa 29295593 

testpos_18 SHH - DISP1 diallelic Holoprosencephaly 26748417 

testpos_19 MITF - GJB2 diallelic Deafness 27057829 

testpos_20 AHI1 - CEP290 triallelic Leber congenital amaurosis 20683928 

testpos_21 RPE65 - CEP290 triallelic Leber congenital amaurosis 20683928 

testpos_22 CRB1 - CEP290 triallelic Leber congenital amaurosis 20683928 

testpos_23 AHI1 - CEP290 triallelic Joubert syndrome 20683928 

*Gene order for each combination is based on the Gene Damage Index (GDI). 
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Table S8. Statistics on the performance of VarCoPP using random test sets of 100, 1000 

and 10000 neutral bi-locus combinations derived from the 1KGP (TNs=True Negatives, 

FPs=False Positives, SS = Support Score, CS = Classification Score). 

 

 

  number of 1KGP test combinations 

100 1000 10000 

definitive TNs (SS=0) 67.0% 72.1% 72% 

FPs (SS>50) 7.0% 7.7% 7.2% 

min. 95%-zone SS 80.6 74.8 74.8 

min. 95%-zone CS 0.57 0.55 0.55 

min. 99%-zone SS 100.0 100.0 100.0 

min. 99%-zone CS 0.74 0.749 0.72 
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Table S9. Statistics on recall on the training data and on the validation set of 23 

independent disease-causing bi-locus variant combinations, when applying the 95% and 

99% confidence zones. 

 

 

 Overall recall 95% confidence zone 

recall 

99% confidence zone 

recall 

Training set  

(cross-validation) 

0.87 

 

0.84 

 

0.60 

 

Validation set  0.87 0.87 0.60 
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Table S10. Average performance and standard deviation (sd) statistics among all 500 

RFs of VarCoPP during cross-validation, using each time 1KGP individuals from one 

particular continent as the control training set against DIDA. 

 

 

1KGP continent Accuracy Precision Sensitivity MCC 

Average Sd Average Sd Average Sd Average Sd 

Africa 0.89 0.01 0.89 0.01 0.89 0.01 0.78 0.02 

America 0.87 0.01 0.84 0.02 0.91 0.01 0.74 0.04 

East Asia 0.86 0.01 0.83 0.02 0.91 0.01 0.73 0.04 

Europe 0.86 0.01 0.83 0.02 0.91 0.01 0.73 0.03 

South Asia 0.87 0.01 0.84 0.02 0.90 0.01 0.74 0.04 
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Additional Dataset S1 (separate Excel file) 

Variant information, annotated features and VarCoPP prediction scores for the 23 bi-locus 

combinations of the disease-causing validation set.  

 

Additional Dataset S2 (separate Excel file) 

Variant information, annotated features and VarCoPP prediction scores for the 100 random 

bi-locus combinations extracted from 1KGP.  

 

Additional Dataset S3 (separate Excel file) 

Variant information, annotated features and VarCoPP prediction scores for the 1000 random 

bi-locus combinations extracted from 1KGP.  

 

Additional Dataset S4 (separate Excel file) 

Variant information, annotated features and VarCoPP prediction scores for the 10000 random 

bi-locus combinations extracted from 1KGP.  

 

Additional Dataset S5 (separate Excel file) 

Variant information, annotated features and VarCoPP prediction scores for the 76 Dual 

Molecular Diagnosis bi-locus combinations extracted from the paper of Posey et al.(39) 
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