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Supplementary Information 

 

Main Text 

Results and Discussion  

  

Structural modeling of mutated FGR proteins. We have used structural 

modeling to help determine the pathogenicity of gene mutations (1-3), and did so for 

the FGR mutants. Crystal structures for SRC, both in its active and inactive form, have 

been solved (4). We generated three-dimensional models of FGR using these structures 

as templates (SI Appendix, Fig. S4 and S6). 

  The de novo Arg118Trp mutation removes a positive charge near the distal loop of 

the SH3 domain, a domain involved in mediating peptide bonding and protein-protein 

interactions (5) (SI Appendix, Fig. S4A). We ran all-atom molecular dynamics 

simulations of the wild-type and p.Arg188Trp SH3 domains using the AMBER14 force 

field for 100-ns each (SI Appendix, Fig. S5). Superimposition of the final structures 



obtained during this 100-ns simulation showed that the p.Arg118Trp disrupts a 

hydrogen bonding interaction with the neighboring Thr125 residue (SI Appendix, Fig. 

S4C). In the SRC inactive state the SH3-SH2 domain forms a hinge that is in the closed 

conformation (4). During activation, the SH3 and SH2 domain unlatch from the C-

terminal portion of the protein, making Tyr416 open for phosphorylation (SI Appendix, 

Fig. S4A). Disruption of this interaction may destabilize the protein, either enhancing 

autophosphorylation or preventing C-terminal phosphorylation by Csk.  

   The Pro525Ser mutation is located on the C-terminal tail of the FGR structure. The 

C-terminal tail is a critical regulatory region of the protein, and thus, its composition is 

highly conserved (SI Appendix, Fig. S6B). Phosphorylation of Tyr523 by Csk inactivates 

the enzyme by keeping it in its closed conformation. This prevents ulterior 

phosphorylation of Tyr412, which is important to form its open active confirmation (4). 

In the closed conformation, the C-terminal region binds to two hydrophobic pockets of 

the SH2 domain (6). Phosphorylated Tyr523 binds to the N-terminal hydrophobic 

pocket specifically, and the following three amino acid residues are important for this 

binding (6). The surface of the pocket is neutral in charge by hydrophobic residues 



positioned in SH2. Thus, it is expected that the Pro525Ser mutation prevent the 

hydrophobic interactions within the pocket, leading to instability to form the closed 

confirmation (SI Appendix, Fig. S6A). Thus, it is suggested that the Pro525Ser 

mutation causes abnormal activation–inactivation cycles of FGR protein. This could 

lead to constitutive activation of FGR as observed in the Ali18 mouse. 

 

  



Methods 

Whole genome sequencing (WGS) by next generation sequencer (NGS). 

Genomic DNA for WGS was extracted from Ali18/+ and wild type kidney using 

QIAGEN genome tip by manufactures protocol. Briefly, the frozen kidneys were 

crushed by Cryo-Press (MICROTEC CO., LTD, Chiba, Japan), and then crushed powder 

was used for column separation. The quality of genomic DNA was assessed by Victor 3 

fluorometry and gel electrophoresis, and the library construction and HiSeq NGS were 

ordered to Macrogen Japan (http://www.macrogen-japan.co.jp/). The sequence data 

were analyzed by IGV (http://software.broadinstitute.org). 

 

Genotyping of Ali18 mice. The MIT microsatellite markers used for genetic 

mapping are described previously (7, 8). The D4Neu12 and D4Neu6 markers were 

originally made using microsatellite sequences detected in the critical region of Mouse 

Genome sequence database; D4Neu12-L, 5’-CTGGGTCTTCAGAGCTACGTC; D4Neu12-



R, 5’-GATCTGAGGACTGTGGGGAT; D4Neu6-L, 5’-CTCCTGATTCCATTGCAGTG; 

D4Neu6-R, 5’-CTATGTAGTCAGAGCTGTCCTGG.   

After sequence detection of the p.Asp502Gly mutation, we continue to use the PCR 

primer pair of the exon of the Fgr gene for Ali18 genotyping. Genomic PCR was 

performed using the following oligonucleotides spanning exon12 to exon13 of the Fgr 

gene: Fgr_ex10-11L, 5’-TTAATCCAGCAGTTCCCAGG and Fgr_ex10-11R, 5’-

GGGATTGGCAAGAGCAAG. The PCR products were directly digested with the Mbo II 

restriction enzyme (NEB). MboII specifically recognizes wild type (5’-GAAGA-3’) but 

not Ali18 (5’-GAAGG-3’) sequences in the PCR products. 

For genotyping of F0 and F1 mice produced by genome editing, we sequenced PCR 

products of exon 3 of the Fgr gene around the translational initiation site using the 

following oligonucleotides: Fgr_ex1L, 5’-TAGTGGTACACCAGCCAGGG, and Fgr_ex1R, 

5’-CGTTGAGCTAGAGAATAGAGCTG. In addition, PCR-based genotyping of F0 mice 

was performed for the FgrAsp502Gly mutation described above. 



Histology and bone inflammation scoring. Hind paws were sectioned by 

standard histological procedure with formic acid decalcification as described previously 

(9). Bone inflammation was scored for each bone of feet (talus, calcaneus, navicular 

bone, cuneiform bone, metatarsal bone, and phalanx) according to the percentage of 

the bone marrow space containing inflammatory cells; 0 (no inflammation), 1 (< 25%), 

2 (25-75%), and 3 (>75%). The bone inflammation scores were then averaged for each 

F1 animals. 

 

Protein preparation from tissues and transfection. Protein samples were 

prepared from tissues of Ali18/+ and Ali18/Ali18 mice. Tissues were once frozen, and 

then used for making tissue powder by Cryo-Press (MICROTEC CO., LTD, Chiba, 

Japan). Bone marrow was flushed from femur, and put through nylon mesh; the cells 

were centrifuged and used for protein preparation. Protein extract was dissolved with 

buffer containing 1x complete protease inhibitor cocktail (Roche) and 1x phosphatase 

inhibitor cocktail (Nacalai tesque, Japan), and sonicated for 10 minutes. Plasmid DNA 

described in SI Appendix, Methods, was transfected into the NIH3T3 cells using the 



FuGENE reagent (Roche diagnostics). After 72 hours from transfection, cells were 

harvested for protein preparation as described above.  

 

Protein phosphorylation assays. Phosphorylation of Eno1 by Fgr, FGR or their 

mutants was analyzed according to Bagheri-Yarmand et al.�(10) with slight 

modifications.  One and half µg of GST-Eno1 with 4 µl of in vitro 

transcription/translation reaction of Flag-Fgr or its mutant, or 50 ng of GST-FGR or its 

mutants were suspended in 15 µl of kinase buffer [20 mM Hepes, pH 7.6, 10 mM 

MgCl2, 1 mM beta-glycerolphosphate, 2.5 mM NaF, 1 mM Na3VO4, 1 mM DTT] 

containing 20 µM ATP and 5 µCi of [gamma-32P]ATP. After 5 or 20 min at 30°C, the 

reaction was terminated by the addition of 2.5x Laemlli sample buffer, and applied to 

10% SDS-polyacrylamide gel. GST-Eno1 was visualized by CBB staining, and then, the 

gel was subjected to autoradiography. 

Phosphorylation of FgrKD or FGRKD by Csk was analyzed as follows. One µg of GST-

FgrKD or GST-FGRKD alone or with 10 ng of Csk were suspended in 15 µl of kinase buffer 



[20 mM Hepes, pH 7.6, 10 mM MgCl2, 1 mM beta-glycerophosphate, 2.5 mM NaF, 1 

mM Na3VO4, 1 mM DTT] containing 20 µM ATP and 5 µCi of [g-32P]ATP. After 20 min 

at 30°C, the reaction was terminated by the addition of 2.5x Laemlli sample buffer and 

applied to 8.5% SDS-polyacrylamide gel. GST-FgrKD and GST-FGRKD were visualized by 

CBB staining, and then, the gel was subjected to autoradiography. 

�

Plasmids. For overexpression experiments in cultured cells, the constructs were made 

in house. Briefly, bone and bone marrow cDNA were synthesized using RNA from 

whole femur of wild-type C3HeB/FeJ and Ali18/Ali18 mice, and full coding Fgr cDNA 

was amplified using a pair of PCR primers (Fgr_rt2L, 5'-GTCTGTGGGGGCATCTGG 

and Fgr_rt2R, 5'-GGGATTGGCTGATGCCCAGT). The PCR products were cloned into 

the pTARGET vector (Promega). The insert Fgr coding sequences of wild type (w21) 

and p.Asp502Gly (A14R5) were confirmed by Sanger sequencing. 

   For construction of the expression plasmids of mouse Csk, Fgr (wt) and Fgr (mut, 

p.Asp502Gly), the corresponding entire coding regions were amplified by PCR using 

the following oligonucleotide: CSK-SpeIATG_L1, 5’-



TTCAACTAGTATGTCFGGCAATACAGGCCG; Csk-TGAHindIII, 5’-

TTAAAGCTTTCACAGGTGCAGCTCATGGGT; Fgr_SpeI-L1, 5’-

TTCAACTAGTAGGGCTGTGTGTTCTGCA; FgrTGA_HindII-R2, 5’-

TTAAAGCTTCTATGTCTGGTCTCCAGGCTG. PCR products were digested with Spe I 

and Hind III, and then cloned into the corresponding sites of pET49b (Novagen) using 

the TAKARA Ligation Kit. The insert Fgr sequence with no undesired (Ftw) and 

p.Asp502Gly mutations (FTA) and the Csk with no undesired mutations (2-2-2) were 

confirmed by Sanger sequencing. To repress autophosphorylation of Fgr, a 

p.Lys279Met (K279M) mutation was introduced using the following oligonucleotides: 

Fgr-K279M_L1, 5’-CAGTGATGACGCTGAAGCCGGGCA; Fgr-K279M_R1, 5’-

CAGCGTCATCACTGCCACCTTTGTGC. The insert sequence with the desired mutation 

was confirmed by Sanger sequencing (Ftw_KM1 and FTA_KM4). 

   For kinase assays using human FGR mutations, the ORF clone (OHu28536D) was 

purchased from Genscript Japan. The coding region of FGR was cloned into pGEX4T2 

(GE Healthcare). The p.P525S and p.R118W mutations were introduced using the 

following oligonucleotides: hFGR3’-XhoI_R2-, 5’-



GCCGCTCGAGTCTATGTCTGATCCCCGGACTGG; FGR_R118W_L1, 5’-

GGAGGCTTGGTCTCTCAGCTC; FGR_R118W_R1, 5’-TGACCACCCTCCGAACCAGAGA. 

For phosphorylation by Csk, a kinase dead mutation was introduced into above 

constructs using the following oligonucleotides: FGR_K291M_L1, 5’-

GGTGATGACGCTGAAGCCGGGCA and FGR_K291M_R1, 5’-

GTGATTCCACCGCACTACTGCGAC.  

For construction of the expression plasmid for mouse enolase 1 from amino acid 3 

to 92, PCR product of the corresponding region was cloned into the EcoRI and XhoI 

sites of pGEX-4T-2 using the following oligonucleotides: mEno1-147FE (EcoRI), 5’-

ATTCGCCATGTGAATTCTCAGGAT-3’; mEno1-447RX (XhoI), 5’-

GTCCATCTCGAGCATCAGCTTGT-3’. 

   In genome editing of Ali18 mice, to introduce various mutations around exon 3 of 

the Fgr gene in Ali18 mice, we used the CRISPR/Cas9 system using the pX330-U6-

Chimeric_BB-CBh-hSPCas9 vector(11)(https:adgene.org/42230). Two guided RNA 

sequences, f-gRNA1 (f-gRNA1_L: 5'-CACCGTTCTTCAGCCGTTTGGCTC and f-

gRNA1_R: 5’- AAACGAGCCAAACGGCTGAAGAAC) and f-gRNA2 (f-gRNA2_L: 5'-



CACCTGCATCAGGGCATCTGGAAT, and f-gRNA2_R: 

AAACATTCCAGATGCCCTGATGCA), were cloned into the Bbs I site of the pX330 

vector according to the Addgene’s CRISPR guide 

(https://www.addgene.org/crispr/guide/). 

�

Structural modeling and molecular dynamics simulations. The three-

dimensional structure of the active FGR (residues 77-529) was modeled off the crystal 

structure of the human tyrosine kinase c-SRC (PDB:1FMK (12); 74% sequence identity) 

using MODELLER 9.14 (13). The resultant model superimposed well with the template 

and had an RSMD of 0.2 A over 410 Ca atoms. The inactive FGR structure was modeled 

using the inactive c-SRC (PDB:1Y57) (4) structure as a template. The resultant model 

had an RSMD of 0.2A over 358 Ca atoms. In silico mutagenesis was performed in 

PyMOL (Schrödinger Corporation). Charges and hydrogen atoms were added to the 

wild-type and mutant FGR model using PDB2PQR (14). Electrostatic potentials were 

calculated using APBS (15). Protein and solvent dielectric constants were set to 2.0 and 

78.0, respectively. PyMOL generated all structural figures (Schrödinger Corporation). 



We performed all-atom molecular dynamics (MD) simulations of wild-type and 

p.Arg118Trp FGR SH3 domain models using YASARA 15.7.25 software package (16). 

The system was then subjected to 250 ps restrained equilibration simulation in the 

NVT ensemble. Temperature was set to 298K and the system was solvated in water 

with 0.9% NaCl and a pH of 7.4. The AMBER14 (17) all-atom force field was then run 

for 100 ns with trajectory conformations saved every 250 ps. Analysis were performed 

using the YASARA macros md analyze.mcr and md analyzers.mcr. 
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Fig. S2 CRISPR/Cas9-mediated genome editing of the Fgr locus. 
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Fig. S5  Molecular dynamics simulations of the wild-type and p.Arg118Trp FGR 

SH3 domain. (A) Both wild-type and p.Arg118Trp SH3 domain models were analyzed 

using all-atom molecular dynamics (MD) simulations (100-ns each). Root mean square 

deviation (RMSD) values of the FGR SH3 domain backbone atoms were calculated 

relative to the initial minimized structure throughout the simulation. Both the wild-type 

and p.Arg118Trp FGR reached equilibrium at around 30-ns of simulation. (B) Further 

analysis of root mean square fluctuation (RMSF) versus the protein residue for the 

wild-type and p.Arg118Trp FGR SH3 domains is illustrated. Both the wild-type and 

mutant SH3 domains possess the similar RMSF distributions.
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Table S1  Genetic mapping of the Ali18 critical region using in house microsattelite markers 
ID tag D4Mit12 D4Mit203 D4Neu12 D4Neu6 D4Mit204 D4Mit71 D4Mit339 D4Neu9 D4Mit134 D4Mit54 D4Mit68 

10128572 9 B/B B/B C/C C/C C/C C/C C/C C/C C/C C/C C/C 

10135632 69 B/B B/B B/B C/B C/B C/B C/B C/B C/B C/B C/B 

10138700 24 C/B C/B C/B C/B C/B C/B C/B C/B B/B B/B B/B 

B/B: Homozygous for C57BL/6J; C/C: Homozygous for C3HeB/FeJ; C/B: Heterozugous of C3HeB/FeJ and C57BL/6J 
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