Supporting Information

Supplemental Figure 1. Correlation between stomatal density in cotyledons and *IDD16* transcripts level.

(A) Expression level of *IDD16* in transgenic plants. qRT-PCR was performed on total RNA from 4-DAG wild-type and *IDD16*-OE plants. The expression level in wild-type was normalized as 1. (B) Stomatal density in cotyledons of 8-DAG *IDD16*-overexpression plants. Values are means \pm SE from three biological replicates. Asterisks indicate statistical significance based on Student's t test; ** P < 0.01, * P < 0.05.

Supplemental Figure 2 Analysis of the expression of the genes related to stomatal development.

qRT-PCR was performed on total RNA from 4-DAG Wild-type and *IDD16*-OE plants. The expression level in wild-type was normalized as 1. Data represent means \pm SE of three biological replicates.

Supplemental Figure 3 The effect of *IDD16* **overexpression on** *FAMA* **expression.** (**A and B**) Confocal images of *FAMA*:GFP abaxial cotyledons in 2-DAG wild-type and *35S:IDD16s* background, respectively. (**C and D**) show the images of *FAMA*:GFP on adaxial epidermis of cotyledons. Epidermal cell periphery is highlighted by propidium iodide (red) staining. Scale bars: 50 μm.

Supplemental Figure 4 The expression pattern of IDD16 protein.

The expression of IDD16 protein was visualized in *IDD16pro:IDD16-GFP* transgenic lines under confocal microscopy. (A) The expression pattern of *IDD16* protein in adaxial epidermis of 2-DAG seedling cotyledons, GFP signal was absent in meristemoid cells and young guard cells. (B-E) The expression is strong in trichome of young leaves of 7 DAG seedlings (B), but almost undetectable in mesophyll cells of cotyledons (C), root elongation zone (D) and root tip (E) of 1-DAG seedlings. Cell periphery is highlighted by propidium iodide (red) staining.

Stomatal densities in abaxial epidermis of the cotyledons from 11-day-old *tmm* (A) and *sdd1* (B) seedlings containing *35Spro:IDD16* were analyzed. Values are means \pm SE from three biological replicates. Asterisks indicate statistical significance from the background (*tmm* or *sdd1*) based on Student's t test; ** P < 0.01.

Supplemental Figure 6 The expression of *IDD14* and *IDD15* were not affected in *IDD16*-RNAi lines.

The expression levels of *IDD14* and *IDD15* in 4-DAG wild-type and *IDD16*-RNAi seedlings were determined by qRT-PCR. Values are means \pm SE from three biological replicates. Primers are listed in Supplementary Table S1.

Supplemental Figure 7 The expression of genes related to stomatal development was enhanced in *IDD16*-RNAi seedlings.

qRT-PCR was performed on total RNA from 4-DAG wild-type and *IDD16*-RNAi seedlings. Values are means \pm SE from three biological replicates. Asterisks indicate statistical significance based on Student's t test; ** P < 0.01.

Supplemental Figure 8 The core binding sites of IDD proteins in promoter of *SPCH*-like genes from angiosperms.

The angiosperm genomes were searched through Phytozome v12 (https://phytozome.jgi.doe.gov/pz/portal.html#) by similarity search with the *SPCH* of *Arabidopsis*. 3-kb promoter region upstream of the initiation codon and the first exon were analyzed. Red bar represents the core binding sites (TTTGTC or GACAAA) of IDD proteins.

(A) Comparison of stomatal aperture in response to ABA treatment. (B) Stomatal aperture. Values are means \pm SE from three biological replicates, and each replication with 30 stomata from leaves of three different plants.

Supplemental Figure 10 Growth and carbon assimilation of 35S:*IDD16m* plants were not affected under normal growth condition.

(A) Shoot dry weight was measured at the completion of the WUE experiment. Values are means \pm SE from four biological replicates. The data are from three replicates, with each replicate include more than 20 plantlets. (B) Net CO₂ assimilation and (C) internal CO₂ concentration(Ci) were determined on individual leaves of 5-week-old wild-type (Col-0) and 35S:*IDD16m* plants using a Li-Cor 6400 gas exchange system, values are the Mean \pm SE (n = 4). Asterisks indicate statistical significance from the WT based on Student's t test; ** P < 0.01, * P < 0.05.

Table S1. Primers used in this study

Primers		Sequence A	Annotation
Primers for tra	ansgenetic plants	5	
IDD16-F CAC		ACCATGATACATTACGAACAAAACA	For the CDs of
IDD16-R TCTC		CTCGCATTCTCCTTCAGT	IDD16.
IDD16i-F GGG		GGGACAAGTTTGTACAAAAAAGCAGG	C DNA fragments for
TC		CACCATCCGGCAACCTCA	IDD16 silencing.
<i>IDD16</i> i-R C T		GGGACCACTTTGTACAAGAAAGCTGG	G
		TGGATAGTTGAAGTTCGAGGC	
IDD16pro-F		ACTGCAGAAAGCAATAACCTAGATGAG	C For the 2,621 bp
IDD16pro-R		ACTAGTTGATGCCAAGAAGAAGAAGATCG	promoter of <i>IDD16</i> .
Primers for qI	PCR		
AT3G13920	<i>eIF4a-</i> F	TGACCACACAGTCTCTGCAA	
	<i>eIF4a</i> -R	ACCAGGGAGACTTGTTGGAC	
AT1G25250	q <i>IDD16-</i> F	CAATGCTTCATCAGCTCCTTTC	
	q <i>IDD16-</i> R	CGTTCGCTCTCTCCTTTGTTA	
AT5G53210	q <i>SPCH-</i> F	ATCATAGGAGGAGTTGTGGAG	
	q <i>SPCH-</i> R	TAGAACAGGCGGTGAAGGAC	
AT3G06120	q <i>MUTE</i> -F	CGATCATCGGAGGAGTGATAGA	
	q <i>MUTE</i> -R	AAGGGAAAGATGGTCGGTTTAG	
AT3G24140	q <i>FAMA</i> -F	GAGCTCGAGCAACTCCTACAAT	
	q <i>FAMA</i> -R	GAAGTCGTTGTCGTTGTCATGT	
AT1G80080	q <i>TMM</i> -F	TCCTTCACCTAGAGGGCAATAA	
	q <i>TMM</i> -R	ACGGTACTGGTCCTGTCAGACT	
AT1G04110	q <i>SDD1-</i> F	AGCGGAATCACTGCTCTTATC	
	q <i>SDD1-</i> R	GCTGGTTTGTTACCATCCTTTATC	
AT2G20875	qEPF1-F	ATGCCGTCTTGTGATGGTTAG	
	qEPF1-R	TCAAGGGACAGGGTAGGACTT	
AT1G34245	qEPF2-F	TTTGGTCGTTAACTCCATTCG	
	qEPF2-R	ATCCGGTAAGCTTGATCCTGT	
At5g60880	q <i>BASL</i> -F	TCCTCTAGACGGAGATGAAGATG	Ĵ
	q <i>BASL</i> -R	TGGTGGGCTTAGGCTGAGTTTC	
At4g31805	qPOLAR-F	TGAGTCACAAAGCAGAGAGTCAC	ХC
	qPOLAR-R	TCCATTTGCATTCGCAGGTTTGTC	
AT3G26744	q <i>ICE1-</i> F	TCTTTGCCTCCAACTTCATC	
	q <i>ICE1</i> -R	CACTGCTCTTCCTTCCCTTA	
AT1G12860	q <i>ICE2-</i> F	GTGTCCATCTTCCTCCTTGC	
	q <i>ICE2</i> -R	ACAGCTAATCACCGCTTGTT	
AT1G63700	q <i>YDA-</i> F	CACCATGAGATCACTGGACATT	
	q <i>YDA-</i> R	GCCATGTTTTAATCCTTTCTGC	
AT4G12970	q <i>STOMAGEN</i>	-F TGTAGTTCAAGCCTCAAGAC	
	qSTOMAGEN	-R TTGATAGGGTCATTTCCTTC	

Table S1. Cont.

	Primers	Sequence A	Annotation	
AT2G26330	q <i>ERECTA-</i> F	GATAATGTCAAAGACGGGGAAC		
	q <i>ERECTA</i> -R	GGAAAACTTTCTTCACCACACC		
At5g62230	q <i>ERL1-</i> F	CGCATAACTTGCGGGAATTTG		
	q <i>ERL1-</i> R	AGTCCTTGTGCAGCTCCAACC		
AT5G07180	q <i>ERL2-F</i>	GCTGTGGATAACGAGGCCAAC		
	q <i>ERL2-R</i>	CATGGTGGGTCTCTCCAAAGG		
AT3G12280	q <i>RBR</i> -F	CAGATGGCTTGACCTACTTTGA		
	q <i>RBR</i> -R	CCTCTCATCAAGTTCGCCTTTA		
AT1G04710	q <i>PKT4-</i> F	ACGAGTTGCTTGCCTCTGTA		
	q <i>PKT4</i> -R	CACTGTCTGTTCACGGTTCTG		
AT3G48750	q <i>CDKA1-</i> F	GCCAAAAGCCCTTATTTCCT		
	q <i>CDKA1-</i> R	GTTACCCCACGCCATGTATC		
AT3G45640	q <i>MPK3-</i> F	TGACGTTTGACCCCAACAGA		
	q <i>MPK3</i> -R	CTGTTCCTCATCCAGAGGCTG		
AT1G51660	q <i>MKK4</i> -F	TCTTCCTCTCCCACCTACTTC		
	q <i>MKK4</i> -R	TGGAGCTGTTAGTGTTCGTTG		
AT1G68130	q <i>IDD14-</i> F	GGGACACCGGATCCGG		
	q <i>IDD14-</i> R	GTCTTGGTGCTCTATGAAACTTTC	С	
AT2G01940	q <i>IDD15-</i> F	CCACAAACACATCCACTCAGA		
	q <i>IDD15-</i> R	TCTGGTCTCTTTGAAACCCTTG		
Primers for ChIP-qPCR				
	P1-F	ACTATGTCCGCTAAATCA	Used for detect the	
	P1-R	ATGAAACATCAGCAATTAGA	enrichment of regions	
	P2-F	TAATTTGGGCTAGAAACAAAGC	1, 2, 3, 4 of the SPCH	
	P2-R	AGAAGATGGAGCCAAGAC	gene.	
	P3-F	ATGCAGGAGATAATACCG		
	P4-F	ATCATAGGAGGAGTTGTGGAG		
	P4-R	TAGAACAGGCGGTGAAGGAC		
At3g18780	ACTIN2-F	CGTTTCGCTTTCCTTAGTGTTAGC	Γ To detect the	
	ACTIN2-R	AGCGAACGGATCTAGAGACTCAC	C enrichment of <i>ACTIN2</i> ,	
		TTG	as internal control.	
AT3G30720	QQS-F	TCTGCAATTATGTAAACATA	Used for detect the	
	QQS-R	ACAAATCAAAGGCCAATATC	enrichment of the	
			fragment of QQS gene,	
			as a positive control.	