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A Joint Model for KCCQ-OS and Survival

Here we describe a joint model for KCCQ-OS and survival. We use a Gaussian model for KCCQ-OS with
mean estimated as a piecewise linear function of time and a Weibull model for survival with scale determined
as a product of baseline hazard, treatment specific hazard, and random effect hazards.

Specifically, let i ∈ {1, ..., N} indexes subjects and j ∈ {0, 1, 6, 12} index time points. Yij gives the
KCCQ-OS score at time j for subject i. Ti is treatment for subject i, which does not depend on time. Si is
survival time for subject i and is possibly right censored. I(j = k) is an indicator function which evaluates
to 1 if j = k (i.e. at time k) and 0 otherwise. The model is:

Yij = (µθ0 + θ0i) · I(j = 0)+ (1)

(µθ1 + γ1Ti + θ1i) · I(j ≥ 1)+ (2)

(µθ2 + γ2Ti + θ2i) ·max(0, j − 1) + εij (3)

Si ∼Weibull{α, exp(−(β0 + βT · Ti + βθ1 · θ1i + βθ2 · θ2i))} (4)

The shared random effects appear in blue to highlight their presence in both the KCCQ-OS and survival
models. Line (1) describes baseline KCCQ-OS: µθ0 is the baseline mean across patients and θ0i is a zero-
centered random effect for patient i giving there deviation from baseline. Line (2) describes 1-month KCCQ-
OS: µθ1 is the 1-month intercept for control subjects, γ1 is the 1-month treatment effect, and θ1i is the
1-month random effect for patient i. Finally, line (3) models a post 1-month KCCQ-OS slope: µθ2 is the
average slope in the control group, γ2 is a treatment specific slope, and θ2i is a random slope for patient i.
All three treatment effect estimates (γ1, γ2, and βT ) condition on the person-level random effects. That is,
the quality of life treatment effects are conditional on having similar values of the underlying latent variables
and the hazard of death treatment effect is conditional on the same. Other forms of joint modeling assume
conditioning on observed values, for example observed survival in the longitudinal model or observed quality
of life in the survival model. The shared parameter approach is more flexible because it defines a joint
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distribution on the two outcomes, rather than requiring us to choose one or the other as the “outcome” and
relegating the other to a “conditioning variable”. The causal effects are conditional effects among people
with similar underlying, time-varying joint parameters (reflecting both hazard of death and health status).

Specifying priors completes the model setup:

[µθ0 , µθ1 , µθ2 ] ∼ N (0, 1) (5)

[γ1, γ2] ∼ N (0, 1) (6)

εij ∼ N (0, σ2) (7)

θ0i ∼ N (0, σ2
θ0) (8)

θ1i ∼ N (0, σ2
θ1) (9)

θ2i ∼ N (0, σ2
θ2) (10)

α ∼ N+(0, 10) (11)

[β0, βT , βθ1 , βθ2 ] ∼ N (0, 10) (12)

[σ, σθ0 , σθ1 , σθ2 ] ∼ t+3 (0, 1) (13)

Lines (5) and (6) specify priors for the intercept and slope parameters in the longitudinal model. Recall
that Yij is approximately distributed as a standard normal after transformation such that most observations
fall within [-2,2]. The N (0, 1) priors on the intercept terms (µθ0 , µθ1 , and γ1) place 95% prior mass on
the interval [-2,2] and so are weakly informative. The N (0, 1) priors are even less informative for the slope
parameters since the time range (from 0 to 12) means that a slope of magnitude |µθ2 | ≥ 1 (or |γ2| ≥ 1)
is extremely unlikely. Similarly, the half-t prior on σ is also weakly informative because the range of Yij
seriously constrains the range of plausible values.

The priors on the random effects θ0i, θ1i, and θ2i are specified hierarchically, such that their variances σθ0 ,
σθ1 , σθ2 are estimated from the data. Again considering the scale of Yij , the half-t priors on the hierarchical
variances are weakly informative.

In the survival model, the prior on the shape parameter α covers a large range of possible shapes. The
priors on the linear coefficients in the hazard model provide a soft bound by placing 95% prior mass between
[-20, 20]. If we were to exponentiate these to compute hazard ratios the range would be huge. Therefore the
priors for the coefficients on the binary terms β0 and βT are essentially non-informative.

The coefficients βθ1 and βθ2 control the degree of association between the health status and survival
submodels. Because σθ1 and σθ2 , the scales of θ1i and θ2i, are not known in advance, priors for βθ1 and βθ2
are trickier to specify. For example, if σθ1 is small but θ1i has a significant impact on survival then βθ1 may
be very large. One solution is to use a completely non-informative prior, but this can lead to an unstable
posterior. We chose to use the N (0, 10) prior, which allows a very large range for the hazards of βθ1 and
βθ2 . However, we recommend examining the posteriors for the βθ1 and βθ2 to ensure that the prior is not in
conflict with the data. This is apparent if these coefficients end up being outside of the central mass of the
prior, e.g. if the posterior mean for βθ1 is -25. If this happens it may be a good idea to transform the data,
for example by rescaling the time to years instead of months, which can help put θ2i on a larger range.

B Transformed KCCQ-OS Data

Figure S1 displays the sample quantiles of the KCCQ-OS data before and after transformation. If the data
were perfectly normally distributed, the points would fall along the black line drawn in each plot. The
trimming and probit transformation brings the data much closer to normality compared with the original
data bounded between 0 and 1. There are still some deviations from normality in the tails and all KCCQ-OS
scores of 100 are mapped to about 2.5 after transformation, leading to the “ledge” apparent in the right
panel. There is no straightforward way to deal with the large number health status measurements exactly
equal to 1, which is an artifact of the original measurement scale of the health status data.
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Figure S1: Plot of observed sample quantiles against theoretical normal quantiles.

C Stan Code for Joint Model

//analysis of longitudinal data

data{

// kccqos data

int<lower=0> N; //number of total observations

int<lower=0> I; //number of subjects

vector[N] KCCQ; //quality of life for each patient at each time

vector[N] Timepoint; //timepoints

vector[I] Treatment; //treatment indicators

int<lower = 1, upper = I> Subjects[N]; //indicator for subjects

// survival data

vector<lower=0>[I] Y; //survival time

int Cen[I]; //censoring indicator

}

transformed data{

// variables derived from Timepoint to make a piecewise linear function

int<lower=0,upper=1> Time_0[N]; //intercept for baseline

int<lower=0,upper=1> Time_1[N]; //value at 1-month and beyond

vector[N] LaterTime; //(continuous) months beyond month 1
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for(n in 1:N){

Time_0[n] = Timepoint[n] == 0;

Time_1[n] = Timepoint[n] >= 1;

LaterTime[n] = fmax(0, Timepoint[n] - 1);

}

}

parameters{

//qol parameters

real mu_theta_0; //baseline qol

real mu_theta_1; //1-month qol

real mu_theta_2; //qol slope after 1-month

real<lower = 0> sigma_theta_0; //standard deviation for baseline

real<lower = 0> sigma_theta_1; //standard deviation for 1-month

real<lower = 0> sigma_theta_2; //standard deviation for slopes-

//real<lower = 0> sigma_theta_2; //standard deviation for slopes

vector[I] theta_0_raw; //patient specific baseline

vector[I] theta_1_raw; //patient specific 1-month

vector[I] theta_2_raw; //patient specific post 1-month slope

real gamma_1; //population level 1-month treatment effect

real gamma_2; //population level treatment slope

real<lower = 0> sigma_kccq; //standard deviation for kccq score

//survival parameters

real<lower=0> alpha; //shape parameter

real beta_0; //intercept

real beta_t; //treatment coefficient

real beta_theta_1; //parameter to scale month 1 random intercepts

real beta_theta_2;

}

transformed parameters{

vector[N] linear_predictor; //fitted values

vector[I] theta_0;

vector[I] theta_1;

vector[I] theta_2;

theta_0 = theta_0_raw * sigma_theta_0; //theta_0 is scaled by sigma_theta_0 (its variance)

theta_1 = theta_1_raw * sigma_theta_1; //theta_1 is scaled by sigma_theta_1 (its variance)

theta_2 = theta_2_raw * sigma_theta_2;

for(n in 1:N){

linear_predictor[n] =

(mu_theta_0 + theta_0[Subjects[n]]) * Time_0[n] +

(mu_theta_1 + gamma_1 * Treatment[Subjects[n]] + theta_1[Subjects[n]]) * Time_1[n] +

(mu_theta_2 + gamma_2 * Treatment[Subjects[n]] + theta_2[Subjects[n]]) * LaterTime[n];

}

}
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model{

//longitudinal model priors

theta_0_raw ~ normal(0, 1);

theta_1_raw ~ normal(0, 1);

theta_2_raw ~ normal(0, 1);

sigma_theta_0 ~ student_t(3, 0, 1);

sigma_theta_1 ~ student_t(3, 0, 1);

sigma_theta_2 ~ student_t(3, 0, 1);

sigma_kccq ~ student_t(3, 0, 1);

mu_theta_0 ~ normal(0, 1);

mu_theta_1 ~ normal(0, 1);

mu_theta_2 ~ normal(0, 1);

gamma_1 ~ normal(0, 1);

gamma_2 ~ normal(0, 1);

//survival model priors

alpha ~ normal(0, 10);

beta_0 ~ normal(0, 10);

beta_t ~ normal(0, 10);

beta_theta_1 ~ normal(0, 10);

beta_theta_2 ~ normal(0, 10);

//longitudinal model

KCCQ ~ normal(linear_predictor, sigma_kccq);

//survival model

for(i in 1:I){

if(Cen[i] == 0){

Y[i] ~ weibull(alpha, exp(-(beta_0 + Treatment[i] * beta_t +

beta_theta_1 * theta_1[i] + beta_theta_2 * theta_2[i]) / alpha));

} else {

target += weibull_lccdf(Y[i] | alpha, exp(-(beta_0 + Treatment[i] * beta_t +

beta_theta_1 * theta_1[i] + beta_theta_2 * theta_2[i]) / alpha));

}

}

}

generated quantities{

vector[N] bounded_predictor; //predictor on the original bounded scale

bounded_predictor = Phi(linear_predictor);

}

D Joint Parameters

Here we present results for joint parameter estimates from our joint model using 30-months of survival data.
For the 30-month joint model, the hazard ratio of the 25th compared to the 75th percentile of random
1-month intercepts was 0.58 (95% CrI: 0.43, 0.76) and for the random slopes was 0.59 (95% CrI: 0.35, 0.91).
In other words, a patient at the 75th percentile of the 1-month intercepts (which corresponds to a 1-month
KCCQ-OS of 61 in the standard care group), is estimated to have about half the mortality risk as a patient
at the 25th percentile (which corresponds to a 1-month KCCQ-OS of 36 in the standard care group). This
implies that both the health status of patients at 1-month (after treatment) as well as the linear health
status trajectories of patients after 1-month were linked to survival. We conclude that both random effects
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had a significant effect on survival as well as KCCQ-OS, and the model reflects the linkage between health
status and survival.
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