Supporting Information

Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition–resistant triple-negative breast cancer cells

Larissa Menezes dos Reis^{1,2}[†], Douglas Adamoski^{1,2}[†], Rodolpho Ornitz Oliveira Souza³, Carolline Fernanda Rodrigues Ascenção^{1,2}, Krishina Ratna Sousa de Oliveira^{1,2}, Felipe Corrêa da Silva^{2,4}, Fábio Malta de Sá Patroni^{1,2}, Marília Meira Dias¹, Sílvio Roberto Consonni⁵, Pedro Manoel Mendes de Moraes Vieira⁴, Ariel Mariano Silber³, Sandra Martha Gomes Dias^{1*}

[†]These authors contributed equally to the work.

From the ¹Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil. ²Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas- UNICAMP, Campinas, SP, Brazil. ³Department of Parasitology, Laboratory of Biochemistry of Tryps (LaBTryps), Institute of Biomedical Science, University of São Paulo - USP, 05508-000, São Paulo, SP, Brazil. ⁴Department of Genetics, Evolution, and Bioagents, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, 13083-970, Campinas, SP, Brazil. ⁵Department of Biochemistry and Tissue Biology, Laboratory of Citochemistry and Immunocitochemistry, Institute of Biology, University of Campinas- UNICAMP, Campinas, SP, Brazil.

Running Title: CPT1 compensates GLS inhibition in TN breast cancer

Fig. S1. TNBC cell lines have heterogenous glutamine-withdraw sensitivity and BPTES IC50 over cell growth. *A*, Growth response of 12 TNBC cell lines incubated with glutamine-deprived RPMI medium for 4 days. B, Growth response of 6 TNBC incubated with increasing amounts of BPTES, another glutaminase inhibitor, for 2 days. IC50 value and 95% confidence interval (CI) is presented as an inset. Graphics in *A-B* represent the mean \pm standard deviation (SD) of n = 4.

Fig. S2. Resistant cell lines respond to GLS attenuation by increasing beta-oxidation. *A*, *GLS* knockdown efficiency in 11 TNBC cell lines as shown by western blot (except MDA-MB-453). *B*, Beta-oxidation was directly measured by quantifying ¹⁴CO₂ released from uniformly labeled (¹⁴C)-palmitic acid. The resistant cell lines BT549 and HCC1937 released more ¹⁴CO₂ when treated with CB-839 compared to DMSO. *C*, CPT1 activity increase in the resistant BT549 and HCC70 cell lines after CB-839 incubation compared to DMSO. *D*, CPT1 activity increased in the resistant BT549 cell line after *GLS* knockdown. Graphics in *B-D* represent the mean \pm SD of n = 3. Student t-test was applied; p < 0.05 (*), p < 0.01 (**).

Fig. S3. Etomoxir and CB-839 combined treatment promoted a further decrease in the migration of resistant cell lines. Combined CB-839 + etomoxir treatment further decreased cell migration in the resistant BT549 (*A*) and HCC70 (*B*) cell lines compared to individual treatments. Graphics in *A*-*B* represent the mean \pm SD of n = 4. Student t-test was applied; p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), n.s., non-significant. Whenever not indicated comparison was made against DMSO control.

Fig. S4. MDA-MB-231 cell line responds to *GLS* **knockdown by increasing FA intake and lipid droplets mobilization to lysosomes.** *A*, MDA-MB-231 responded to *GLS* knockdown by capturing more C1-BODIPY 500/510 C12 fatty acid (Bodipy) from the medium. Fluorescence microscopy images on the right depicting a higher signal in cells with knocked down *GLS*. *B*, *GLS* knockdown drove cells to a higher mobilization of neutral lipid droplets (as identified by the specific marker Lipidtox) to lysosomes (stained by Lisotracker), implying lipophagy in these cells. Confocal fluorescence microscopy maximum projection images depicting lysosome and neutral lipid droplet co-staining (in yellow) in cells with *GLS* knocked down; Nuclei were stained with DAPI. *C*, On the left, transmission electron micrographs (TEM) of shGFP and shGLS cells showing a visual enrichment on lipid droplets (red arrowheads) on cells with *GLS* knocked down. N = nucleus. On the right, TEM displaying fusion between lipid droplets (red arrowheads) and autophagosomes (green arrowheads) found on shGLS cells.

Table S1. List of genes DE between resistant and sensitive cell lines and enriched pathways which are related to lipid metabolism (log 2 FC \ge + 1 or log2 FC \le -1, padj \le 0.05).

GO pathway term	padj	DE genes			
Lipid metabolic process GO:0006629	0.00008	ABCG1, ACOT1, ACSS2, ALDH1A2, ANKRD1, APOBR, CHKB-CPT1B, CISH, CLN3, CPT1B, CRAT, CYP26A1, CYP26B1, CYP27B1, DGKG, EFR3B, FGF21, GGPS1, GPC2, INPP5A, ISYNA1, OSBPL5, PAFAH2,CK2, PDSS1, PIK3C2B, PIK3R1, PLA2G3, PLA2G4B, PLA2G6, PRLR, SERINC4, SESN2, SLC16A11, SLC44A4, STARD10, SULT1E1, TBXAS1, TM7SF2, TMEM150A, TMEM86A, TRIB3, TTC39B, XBP1			
Lipid biosynthetic process GO:0008610	0.00120	ABCG1, ACSS2, ADGRF5, ALDH1A2, CYP27B1, GGPS1, ISYNA1, PDSS1, PIK3C2B, PIK3R1, PLA2G6, PRLR, SERINC4, TBXAS1, TM7SF2, TRIB3, XBP1			
Cellular lipid metabolic process GO:00044255	0.00131	ABCG1, ACSS2, ACOT1, ADGRF5, ALDH1A2, APOBR, CLN3, CPT1B, CRAT, CYP26A1, CYP26B1, EFR3B, GGPS1, GHR, GPC2, HELZ2, INPP5A, ISYNA1, PDSS1, PDPN, PIK3C2B, PIK3R1, PLA2G3, PLA2G4B, PLA2G6, SERINC4, SESN2, TBXAS1, TMEM150A, TRIB3, XBP1			
Phospholipid biosynthetic process GO:0008654	0.00400	ADGRF5, GGPS1, ISYNA1, PIK3C2B, PIK3R1, PLA2G6, SERINC4, XBP1			
Phospholipid metabolic process GO:0006644	0.00691	ADGRF5, CLN3, EFR3B, INPP5A, ISYNA1, GGPS1, PIK3C2B, PIK3R1, PLA2G3, PLA2G4B, PLA2G6, SERINC4, TMEM150A, XBP1			
Fatty acid derivative metabolic process GO:1901568	0.00808	ACSS3, GGTA1P, PLA2G3, PLA2G4B, TBXAS1			
Phospholipid transport GO:0015914	0.01141	ABCG1, ATP10A, OSBPL5			
Positive regulation of phospholipid biosynthetic process GO:0071073	0.01384	ADGRF5, XBP1			
Fatty acid metabolic process GO:0006631	0.02225	ACOT1, ACSS2, CPT1B, CRAT, GHR, PDPN, PLA2G3, PLA2G4B, SESN2, TBXAS1, TRIB3, XBP1			
Acyl carnitine transport GO:0006844	0.02472	CPT1B, CRAT			
Acyl carnitine transmembrane transport GO:1902616	0.02472	CPT1B, CRAT			

Cholesterol biosynthetic process GO:0045540	0.03002	ABCG1			
Regulation of phospholipid biosynthetic process GO:0071071	0.03731	ADGRF5, XBP1			
Carnitine metabolic process GO:0009437	0.03967	CPT1B, CRAT			
Unsaturated fatty acid metabolic process GO:0033559	0.04735	PDPN, PLA2G4B, TBXAS1			
Lipid transport GO:0006869	0.04841	ABCG1, APOBR, ATP10A, CPT1B, DISP3, OSBPL5, PLA2G6, SLCO2A1, STARD10, FZD4			

Gene	log2(FC)	padj	Gene	log2(FC)	padj
	(Resistant/Sensitive)			(Resistant/Sensitive)	
ATP10A	-5.14	3.3E-12	TM7SF2	2.24	0.010333
IGFBP1	-4.32	0.001869	ISYNA1	2.28	0.012792
PDPN	-4.03	0.005988	EFR3B	2.28	0.023631
ANKRD1	-3.84	0.004141	PLA2G6	2.28	0.007354
ADGRF5	-3.72	0.009985	SERINC4	2.39	0.033476
DGKG	-3.45	0.018184	CHKB-CPT1B	2.39	0.009758
CYP26A1	-3.01	0.035812	GPC2	2.40	0.004141
ACSS3	-2.95	0.031423	APOBR	2.40	0.035456
TBXAS1	-2.25	0.005988	CYP27B1	2.40	0.017153
CYP26B1	-2.05	0.028926	CRAT	2.46	0.026845
PDSS1	-1.46	0.002857	OSBPL5	2.47	0.0052
INPP5A	-1.40	0.004229	SLC16A11	2.57	0.040341
PAFAH2	1.02	0.003687	TMEM86A	2.59	0.022815
ACSS2	1.13	0.044733	PRLR	2.62	0.013213
GGPS1	1.24	0.025419	STARD10	2.71	0.004409
ACOT1	1.40	0.031423	GNA14	2.78	0.045759
CLN3	1.51	0.014323	FGF21	2.85	0.045759
TMEM150A	1.56	0.030933	CISH	2.86	0.003657
FZD4	1.58	0.033288	XBP1	2.86	0.000323
SESN2	1.60	0.026989	CREB3L4	3.02	0.000323
CPT1B	1.68	0.049406	SLCO2A1	3.06	0.008565
PIK3C2B	1.73	0.046818	ABCG1	3.25	0.010536
HELZ2	1.82	0.04533	GHR	3.30	0.028926
TTC39B	1.89	0.043085	DISP3	3.37	0.00075
TRIB3	1.95	0.013852	PLA2G3	3.90	0.003395
PIK3R1	1.95	0.003009	SULT1E1	3.92	0.002022
PLA2G4B	2.02	0.047481	ALDH1A2	3.98	0.00103
РСК2	2.18	0.000678	SLC44A4	4.40	0.000433

Table S2. List of genes DE between resistant and sensitive cell lines, which were related to the pathways listed in Table S1. Genes related to beta-oxidation and lipid catabolism are in bold.

log2FC log2FC GeneSymbol padj GeneSymbol padj (low/high) (low/high) 0.42 SLC27A2 2.69 2.88E-31 SCP2 7.24E-07 ACOX2 2.67 2E-36 ADIPOR1 0.42 4.95E-09 PLIN5 2.48 0.39 1.54E-26 ETFDH 1.25E-08 ACSM1 2.14 6.77E-36 ACOT8 0.37 7.11E-06 CRAT 2.10 1.73E-36 AUH 0.34 4.23E-06 ECI1 CPT1B 0.33 1.47 1.1E-45 0.012091 IVD 1.35 2.33E-47 ACAT1 0.33 0.001647 ECI2 1.32 1.01E-27 AKT2 0.33 3.62E-07 1.22 DECR2 2.92E-29 HADH 0.31 0.000157 ACADS 1.18 3.16E-19 HACL1 0.23 0.001316 1.16 1.11E-16 PECR 0.21 CROT 0.035404 ETFB 0.95 1.9E-10 PEX2 0.18 0.008166 PEX7 3.59E-26 *SLC25A17* 0.17 0.86 0.012334 0.17 ECHDC2 0.80 5.19E-14 MLYCD 0.029296 ADIPOR2 0.79 8.96E-13 MTOR -0.19 0.008311 0.76 -0.24 ACOX3 3.97E-16 ACOX1 0.003667 -0.32 AMACR 0.76 8.54E-16 HIBCH 0.000182 **CPT1A** 0.75 2.53E-09 PHYH -0.32 0.006093 PEX13 ECH1 -0.34 0.75 1.23E-15 4.51E-07 -0.35 ECHS1 0.74 1.94E-17 EHHADH 0.003127 HSD17B4 0.74 6.41E-15 PPARD -0.36 1.26E-05 IRS1 0.73 -0.39 5.13E-06 PRKAG2 5.09E-07 ACAA1 0.72 3.6E-18 MAPK14 -0.42 1.59E-12 ALDH3A2 0.71 1.2E-08 ABCD1 -0.42 0.000509 ETFBKMT 0.66 8.34E-14 ACAT2 -0.43 0.000287 TYSND1 0.65 9.82E-16 ACAA2 -0.44 1.81E-05 ABCD3 0.63 6.24E-11 PRKAA1 -0.59 1.59E-08 ACACB 0.60 4.23E-05 ACAD11 -0.70 1.48E-08 APPL2 0.60 1.63E-14 ECHDC1 -0.81 2.78E-13 AKT1 0.58 1.27E-13 ALOX12 -0.88 4.04E-09 ACAD10 0.55 2.31E-17 NR4A3 -1.16 3.17E-11 ACOXL 0.55 0.006364 DGAT2 -1.20 2.09E-13 0.54 ADH7 -1.46 ACADVL 7.56E-10 0.011757 LONP2 0.53 2.13E-09 PPARA -1.62 1.31E-52 CPT2 0.48 1.57E-12 ABCD2 -2.25 2.43E-36 -2.64 **GCDH** 0.48 6.12E-08 PPARGC1A 1.45E-24 SESN2 0.47 1.06E-06 HAO1 -6.64 1.97E-54 MCAT 0.43 8.8E-07

Table S3. List of genes DE between low and high *GLS* breast tumors related to the "fatty acid oxidation process" (intersection between GO #0006631 and GO # 0019395).