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Supplementary methods 
 
EACCD 
 
The EACCD [1] is an unsupervised learning algorithm designed to partition patients according to 
the survival time, censoring status as well as measurements on a sequence of selected categorical 
variables. Development has targeted its application and improvement [2,3,4,5,6,7]. The 
algorithm consists of 3 steps: defining initial dissimilarities (in terms of the difference between 
survival functions) between combinations, computing learned dissimilarities, and performing 
hierarchical clustering of the combinations. Below is one version of the algorithm that utilizes 
the two-phase Partitioning Around Medoids algorithm (PAM) [8].  
 
Given a collection of combinations {𝐶𝐶1,𝐶𝐶2,⋯ ,𝐶𝐶𝑛𝑛} and nonnegative weights 𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤𝑛𝑛 with 
∑ 𝑤𝑤𝑘𝑘
𝑛𝑛
𝑘𝑘=1 = 1. 

1. Define the initial dissimilarity 𝑑𝑑𝑑𝑑𝑑𝑑₀(𝐶𝐶𝑖𝑖,𝐶𝐶𝑗𝑗) for any pair 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗. 
2. For each 𝑘𝑘 with 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛, apply the two-phase PAM and the initial dissimilarities in 

Step 1 to partition combinations into 𝑘𝑘 clusters, and define 𝛿𝛿𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 1 if 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 are 
not assigned into the same cluster and 𝛿𝛿𝑘𝑘(𝑖𝑖, 𝑗𝑗) = 0 otherwise. Compute the learned 
dissimilarity 𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶𝑖𝑖,𝐶𝐶𝑗𝑗) =∑ 𝑤𝑤𝑘𝑘𝛿𝛿𝑘𝑘(𝑖𝑖, 𝑗𝑗)𝑛𝑛

𝑘𝑘=1 . 
3. Perform hierarchical clustering to cluster the combinations by using 𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶𝑖𝑖,𝐶𝐶𝑗𝑗). 

 
In Step 1, the initial dissimilarity can be defined as the value of a test statistic, such as the log-
rank test statistic, Gehan-Wilcoxon test statistic, and Tarone-Ware test statistic. When the sizes 
of combinations are big, better initial dissimilarities can be defined by effect-size based 
measures, such as hazard ratios and Mann-Whitney parameters [5,7].  
 
Step 2 utilizes initial dissimilarities in Step 1 and an ensemble process to compute the learned 
dissimilarities, which are more data driven than the initial dissimilarities. The two-phase PAM is 
used in the ensemble process to partition combinations. The results from PAM are then 
combined to generate the learned dissimilarity, which is simply the weighted percentage of the 
times two combinations are not placed into the same cluster by the PAM algorithm. One simple 
selections of weights is 𝑤𝑤𝑘𝑘 = 1/𝑘𝑘𝑘𝑘 with 𝑤𝑤 = 1/1 + 1/2+. . . +1/𝑛𝑛 for 𝑘𝑘 = 1, 2, . . . ,𝑛𝑛.  In early 
versions of EACCD, learned dissimilarities were obtained by averaging the results from many 
runs of partition methods, which could take a long time to complete if a huge number of runs 
were used. In contrast, Step 2 above only requires to run PAM 𝑛𝑛 times, a number equal to the 
number of combinations. 
 
Step 3 clusters the combinations by the learned dissimilarities from Step 2 and a linkage method. 
Single linkage, average linkage, complete linkage, minimax linkage [9,10], or other 
agglomerative hierarchical clustering methods may be used in this step. The primary output is a 
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dendrogram that provides a graphical summary of patients’ survival based on the levels of 
prognostic factors or variables. 
 
In this paper, the initial dissimilarity in Step 1 is based on the Mann-Whitney parameter 
described below; the weights in Step 2 are chosen to be 𝑤𝑤1 =. . . = 𝑤𝑤𝐾𝐾 = 1/𝑛𝑛; and the complete 
linkage method is used in Step 3. 
 
Mann-Whitney parameter 
 
The Mann-Whitney parameter arises from the widely used Mann-Whitney test [11] that 
examines whether one of two random variables is stochastically larger than the other. Let 𝑇𝑇1 and 
𝑇𝑇2 denote the variables of survival time for patients from population 1 (with survival function 
𝑆𝑆1(𝑡𝑡) ) and population 2 (with survival function 𝑆𝑆2(𝑡𝑡) ), respectively. The Mann-Whitney 
parameter is defined as 𝑃𝑃(𝑇𝑇1 > 𝑇𝑇2 ), the probability that a randomly chosen patient from 
population 1 has a longer survival time than a random chosen patient from population 2.  The 
difference between the Mann-Whitney parameter and 0.5 suggests a difference between 𝑆𝑆1(𝑡𝑡) 
and 𝑆𝑆2(𝑡𝑡). Efron proposed to use 𝐷𝐷� =  −∫ 𝑆̂𝑆1(t) 𝑆̂𝑆2(t) 𝑑𝑑𝑑𝑑∞

0  to estimate the Mann-Whitney 
parameter for censoring data, where 𝑆̂𝑆1(t)  and 𝑆̂𝑆2(t) are Kaplan-Meier estimates of 𝑆𝑆1(𝑡𝑡) and 
𝑆𝑆2(𝑡𝑡), respectively [12]. However, Efron’s estimator requires that both 𝑆̂𝑆1(t) and 𝑆̂𝑆2(𝑡𝑡) drop to 0 
at the maximum study time (the longest following-up time) and is rather unstable when 
censoring occurs due to incomplete follow up [13]. To overcome this problem, Wang et al. 
proposed to 1) use the conditional probability 𝑃𝑃(𝑇𝑇1 > 𝑇𝑇2 |𝑇𝑇1 ≤  𝜏𝜏 𝑜𝑜𝑜𝑜 𝑇𝑇2 ≤  𝜏𝜏) instead of Mann-
Whitney parameter to study the difference between 𝑆𝑆1(𝑡𝑡) and 𝑆𝑆2(𝑡𝑡); and 2) use 𝐷𝐷�𝑐𝑐 =
−∫ 𝑆̂𝑆1(t) 𝑆̂𝑆2(t) 𝑑𝑑𝑑𝑑𝜏𝜏

0
1−𝑆̂𝑆1(𝜏𝜏) 𝑆̂𝑆2(𝜏𝜏)

 to estimate 𝑃𝑃(𝑇𝑇1 > 𝑇𝑇2 |𝑇𝑇1 ≤  𝜏𝜏 𝑜𝑜𝑜𝑜 𝑇𝑇2 ≤  𝜏𝜏) [7]. Note that the estimator 𝐷𝐷�𝑐𝑐 only 

requires the survival information up to a time point 𝜏𝜏.  
 
In this paper, |𝐷𝐷�𝑐𝑐 − 0.5| is used to compute the initial dissimilarity in survival between two 
combinations, with 𝜏𝜏 set to be the maximum possible time by which the Kaplan-Meier estimates 
of the survival of all combinations can be calculated.   
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