## **SUPPORTING INFORMATION**

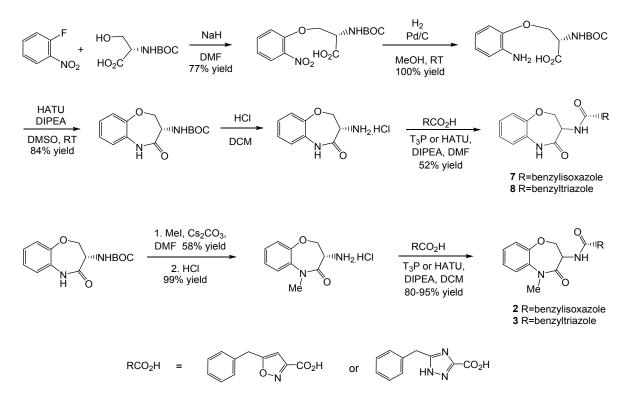
# Identification of a RIP1 Kinase Inhibitor Clinical Candidate (GSK3145095) for the Treatment of Pancreatic Cancer

Philip A. Harris,<sup>\*†</sup> Jill M. Marinis,<sup>†</sup> John D. Lich,<sup>†</sup> Scott B. Berger,<sup>†</sup> Anirudh Chirala,<sup>#</sup> Julie A. Cox,<sup>‡</sup> Patrick M. Eidam,<sup>†</sup> Joshua N. Finger,<sup>†</sup> Peter J. Gough,<sup>†</sup> Jae U. Jeong,<sup>†</sup> James Kang,<sup>†</sup> Viera Kasparcova,<sup>†</sup> Lara K. Leister,<sup>†</sup> Mukesh K. Mahajan,<sup>†</sup> George Miller,<sup>#§</sup> Rakesh Nagilla,<sup>†</sup> Michael T. Ouellette,<sup>‡</sup> Michael A. Reilly,<sup>†</sup> Alan R. Rendina,<sup>‡</sup> Elizabeth J. Rivera,<sup>†</sup> Helen H. Sun,<sup>†</sup> James H. Thorpe,<sup>§</sup> Rachel D. Totoritis,<sup>‡</sup> Wei Wang,<sup>#</sup> Dongling Wu,<sup>#</sup> Daohua Zhang,<sup>†</sup> John Bertin<sup>†</sup> and Robert W. Marquis<sup>†</sup>

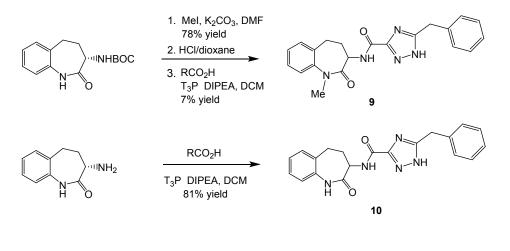
<sup>†</sup>Pattern Recognition Receptor DPU and <sup>‡</sup>Platform Technology & Science, GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, USA

<sup>§</sup> Platform Technology & Science, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK

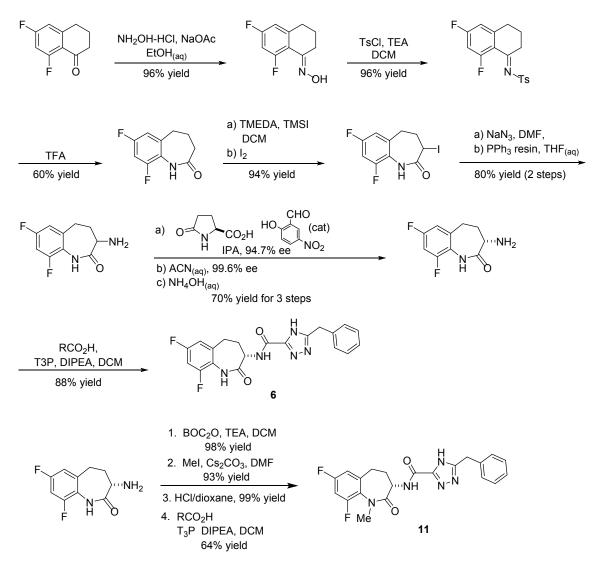
<sup>#</sup>S. Arthur Localio Laboratory, <sup>§</sup>Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA


#### CONTENTS

- 1. Preparation of Compounds 2, 3, 6-11
- 2. Enzyme preparation
- 3. In vitro assays
- 4. Mode of inhibition of Compound 6
- 5. Compound 6 enzyme kinetics
- 6. Compound 6 kinase selectivity and RIP1 species selectivity profiles
- 7. Compound 6 RIP1 co-crystallization
- 8. Compound 6: rat tissue distribution, permeability and P-gp substrate evaluation, hepataocyte turnover and human PK/PD predictions
- 9. Additional PDOTS evaluation
- 10. References


#### 1. Preparation of Compounds 2, 3, 6-11

The route to prepare benzoxazepinones 2, 3, 7 and 8 has been described previously starting from BOC-L-serine and is detailed in Scheme 1.<sup>22</sup> The unsubstituted (S)-3-amino-benzazepin-2-one is commercially available and can be converted to inhibitors 9 and 10 as shown in Scheme 2. The inhibitors 6 and 11 were obtained via 7,9-difluoro-benzoazepin-2-one prepared starting from 6,8-difluoro-tetralone, conversion to the tosylate oxime and Beckmann rearrangement as outlined in Scheme 3. Conversion to the  $\alpha$ -iodolactam, followed by displacement with azide and subsequent Staudinger reduction yielded the 3-amino-7,9-difluoro-benzoazepin-2-one. The stereochemistry is set via a dynamic kinetic resolution using D-pyroglutamic acid and 3,5-dichlorosalicylaldehyde as catalyst. Coupling with 5-benzyl-triazole-3-carboxylic acid before or after methylation of the lactam nitrogen yielded 6 and 11.


Scheme 1.



Scheme 2.



Scheme 3.



#### EXPERIMENTAL

General Methods. Unless otherwise noted, starting materials and reagents were purchased from commercial sources and used without further purification. Air or moisture sensitive reactions were carried out under a nitrogen atmosphere. Anhydrous solvents were obtained from Sigma-Aldrich. -Silica gel chromatography was performed using under standard techniques or using silica gel cartridges (RediSep normal phase disposable flash columns) on an Isco CombiFlash. Reverse phase HPLC purification was conducted on a Gilson HPLC (monitoring at a wavelength of 214 or 254 nm) with a YMC ODS-A C18 column (5  $\mu$ m, 75 mm 30 mm), eluting with 5-90% CH<sub>3</sub>CN in H<sub>2</sub>0 with 0.1% TFA unless otherwise noted. <sup>1</sup>H NMR spectra were recorded on a Bruker Advance or Varian Unity 400 MHz spectrometer as solutions in DMSO-d<sub>6</sub> (unless otherwise stated). Chemical shifts ( $\delta$ ) are reported in ppm relative to an internal solvent reference. Apparent peak multiplicities are described as s (singlet), br s (broad singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), or m (multiplet). Coupling constants (J) are reported in hertz (Hz) after the integration.

Sciex LCMS analysis was performed on a PE Sciex Single Quadrupole 150EX, using a Thermo Hypersil Gold (C18, 20 x 2.1 mm, 1.9 u particle diam.), 4-95% CH<sub>3</sub>CN:H<sub>2</sub>O (with 0.02% TFA) over 2 min., flow rate = 1.4 mL/min. at 55 °C. Waters LCMS was performed using the same column and conditions as for Sciex except using a Waters Acquity SQD UPLC/MS system. All tested compounds were determined to be  $\geq$ 95% purity by LCMS.

The following compounds were prepared as described previously: (*S*)-5-benzyl-*N*-(5-methyl-4-oxo-2,3,4,5-tetrahydrobenzo[b]-[1,4]oxazepin-3-yl)isoxazole-3-carboxamide (**2**), (*S*)-5-benzyl-*N*-(5-methyl-4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-3-yl)-4H-1,2,4-triazole-3-carboxamide (**3**) and (*S*)-5-benzyl-*N*-(4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]-oxazepin-3-yl)isoxazole-3-carboxamide (**7**).<sup>22</sup>

The following intermediates were prepared as described previously: *(S)*-tert-butyl (4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-3-yl)carbamate, (S)-3-amino-2,3-dihydrobenzo[b][1,4]oxazepin-4(5H)-one hydrochloride, and 5-benzyl-4H-1,2,4-triazole-3-carboxylic acid.<sup>22</sup>

The following intermediates are commercially available: (S)-3-amino-1,3,4,5-tetrahydro-2Hbenzo[b]azepin-2-one, tert-butyl (S)-(2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3yl)carbamate and 5-benzyl-3-isoxazolecarboxylic acid.

#### (S)-5-Benzyl-N-(7,9-difluoro-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)-4H-

**1,2,4-triazole-3-carboxamide (6).** To a solution of 6,8-difluoro-3,4-dihydronaphthalen-1(2H)-one (50 g, 274 mmol) in EtOH (500 mL) and water (167 mL) was added sodium acetate (33.8 g, 412 mmol) and hydroxylamine hydrochloride (28.6 g, 412 mmol). The reaction turned from a light pink to light yellow after hydroxylamine hydrochloride was added and a precipitate formed after 5 min. The reaction was stirred at rt for 150 min., after which water (500 mL) was added and the solids were filtered off and rinsed with water. The solid was dried to give (E)-6,8-difluoro-3,4-dihydronaphthalen-1(2H)-one oxime as an off-white solid (51.2 g). On sitting for 18 h, a small amount of additional product had precipitated from the filtrate. This was also filtered, washed with water and dried to give additional product (0.95 g). Total yield 52.15 g (96% yield). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 1.71 (quin, *J*=6.38 Hz, 2 H), 2.60 - 2.84 (m, 4 H), 6.90 - 7.04 (m, 1 H), 7.09 (ddd, *J*=11.75, 9.35, 2.65 Hz, 1 H), 11.33 (s, 1 H). LCMS C<sub>10</sub>H<sub>9</sub>F<sub>2</sub>NO (m/z): 198 (M+H<sup>+</sup>), >99% purity.

To a suspension of (E)-6,8-difluoro-3,4-dihydronaphthalen-1(2H)-one oxime (52.2 g, 265 mmol) in DCM (600 mL) was added TEA (55.3 mL, 397 mmol). The reaction was cooled in an ice water bath and p-toluenesulfonyl chloride (53 g, 278 mmol) added. The ice bath was

removed and the reaction stirred at rt for 22 h. The reaction solution was then washed with water (2 x 350 mL), 5% citric acid and brine. Concentration of the DCM solution resulted in an orange-tan solid which was dried to give (E)-6,8-difluoro-3,4-dihydronaphthalen-1(2H)-one O-tosyl oxime (92.1 g, 96% yield). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 1.71 (quin, *J*=6.32 Hz, 2 H), 2.42 (s, 3 H), 2.75 (t, *J*=6.06 Hz, 2 H), 2.82 (t, *J*=6.57 Hz, 2 H), 7.05 - 7.13 (m, 1 H), 7.19 (ddd, *J*=11.49, 9.22, 2.53 Hz, 1 H), 7.48 (d, *J*=8.08 Hz, 2 H), 7.86 (d, *J*=8.34 Hz, 2 H). LCMS C<sub>17</sub>H<sub>15</sub>F<sub>2</sub>NO<sub>3</sub>S (m/z): 352 (M+H<sup>+</sup>), 98% purity.

Trifluoroacetic acid (220 mL) was added to (E)-6,8-difluoro-3,4-dihydronaphthalen-1(2H)one O-tosyl oxime (92.1 g, 262 mmol) and the reaction mixture was stirred at 50 °C for 10 min. After 10 min the reaction was cooled in an ice/water bath and then quenched with cold water (1000 mL) over 5 min. The reaction mixture was stirred vigorously for 30 min in the ice bath and the resulting precipitate filtered off and washed with water. The crude product was stirred in 9:1 hexanes/Et<sub>2</sub>O (500 mL), filtered off and resuspended in 3:1 hexanes/Et<sub>2</sub>O (500 mL), filtered off and resuspended in Et<sub>2</sub>O (250 mL). The resulting solid was filtered off, and dried in vacuum oven to give 7,9-difluoro-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one (33.9 g, 60 % yield) as a light brown solid. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 2.03 - 2.23 (m, 4 H), 2.73 (t, *J*=6.82 Hz, 2 H), 6.99 - 7.11 (m, 1 H), 7.20 (ddd, *J*=10.29, 9.16, 2.78 Hz, 1 H), 9.40 (s, 1 H). LCMS C<sub>10</sub>H<sub>9</sub>F<sub>2</sub>NO (m/z): 198 (M+H<sup>+</sup>), 94% purity.

To a mixture of 7,9-difluoro-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one (33.9 g, 172 mmol) in DCM (400 mL) cooled in an ice/water bath was added TMEDA (51.9 mL, 344 mmol), followed by TMSI (46.8 mL, 344 mmol) dropwise over 25 min. The light brown solution was stirred in the ice-bath for 60 min, and then iodine (65.4 g, 258 mmol) was added and mixture was stirred in the ice-bath for another 60 min. The reaction was quenched with aq. sodium thiosulfate, and stirred for 15 min. The resulting solid was filtered off, washed with water and DCM, and then dried in vacuum to give 7,9-difluoro-3-iodo-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one (37.6 g, 66% yield) as a tan solid. The organic layer from the filtrate was separated and combined with DCM washes and this was washed with water and brine and concentrated. The resulting solid was triturated in 50 mL of ethyl acetate, filtered and dried to give additional product as an off-white solid (15.7 g, 28% yield). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 2.53 - 2.65 (m, 1 H), 2.65 - 2.81 (m, 3 H), 4.61 - 4.76 (m, 1 H), 6.99 - 7.16 (m, 1 H), 7.16 - 7.33 (m, 1 H), 9.85 (s, 1 H). LCMS C<sub>10</sub>H<sub>8</sub>F<sub>2</sub>INO (m/z): 324 (M+H<sup>+</sup>), >99% purity.

To 7.9-difluoro-3-iodo-4.5-dihydro-1H-benzo[b]azepin-2(3H)-one (53.2 g, 165 mmol) in DMF (400 mL) was added sodium azide (12.85 g, 198 mmol) and the mixture stirred at rt for 45 min. To the reaction was added ice-water (300 mL), then further diluted with water (500 mL) resulting in precipittaion of a solid. The reaction was filtered to give 3-azido-7,9-difluoro-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one as a tan solid. This was washed with water and used without further purification or drying. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  ppm 2.03 - 2.21 (m, 1 H) 2.29 - 2.47 (m, 1 H) 2.73 - 2.85 (m, 2 H) 4.01 (dd, J=11.37, 8.08 Hz, 1 H) 7.10 (d, J=8.84 Hz, 1 H) 7.16 - 7.31 (m, 1 H) 9.98 (s, 1 H). LCMS (m/z): 239 (M+H<sup>+</sup>), 99% purity. To a solution of 3-azido-7.9-difluoro-4.5-dihydro-1H-benzo[b]azepin-2(3H)-one (direct from previous step) in THF (400 mL) was added water (2 mL) and PPh<sub>3</sub> resin (66 g, 3 mmol/g loading, 198 mmol)]. The reaction was stirred at rt for 24 h and then filtered through a small celite plug to remove the resin, rinsed with THF and the filtrate concentrated. The solid was triturated in Et<sub>2</sub>O, filtered and dried to give 3-amino-7,9-difluoro-4,5-dihydro-1Hbenzo[b]azepin-2(3H)-one (28.43 g, 80% yield over 2 steps) as an off-white solid. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ ppm 1.76 (dtd, J=17.91, 6.46, 6.46, 2.78 Hz, 1 H), 2.14 - 2.35 (m, 1 H), 2.62 - 2.74 (m, 2 H), 3.15 (dd, J=11.49, 7.96 Hz, 1 H), 6.97 - 7.12 (m, 1 H), 7.20 (ddd, J=10.23, 9.22, 2.78 Hz, 1 H), 9.59 (br. s., 1 H). LCMS C<sub>10</sub>H<sub>10</sub>F<sub>2</sub>N<sub>2</sub>O (m/z): 213 (M+H<sup>+</sup>), >99% purity.

To a mechanically stirred solution of 3-amino-7,9-difluoro-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one (28.4 g, 134 mmol) in iPrOH (1.25 L) at 70 °C was added 2-hydroxy-5nitrobenzaldehyde (0.671 g, 4.02 mmol). Within 1 min, a thick precipitate formed. L-Pyroglutamic acid (17.28 g, 134 mmol) was added, the reaction mixture turned bright yellow, and was stirred at 70 °C for 5 days. The reaction was cooled to ~50 °C and the solid filtered off and washed twice with iPrOH. The solid was suspended in hexanes, stirred, filtered and dried to give 37.97 g of (S)-3-amino-7.9-difluoro-4.5-dihydro-1H-benzo[b]azepin-2(3H)-one L-pyroglutamate salt as an off-white solid. Chiral HPLC analysis using a Chiralpak IC analytical column (150 mm, 4.6 mm, 5u) eluting with 60:40 EtOH/hexanes (plus 0.1% diethylamine as modifier) as the mobile phase for 15 min. at 1 mL/min. provided good separation of a racemic standard. The R enantiomer eluted at 5.54 min, and the S enantiomer eluted at 6.32 min. This indicated that the chiral purity of the S enantiomer was 94.7% ee. This was suspended in 9:1 ACN:water (600 mL) and heated at 70 °C for 18 h. The suspension was cooled to  $\sim 40^{\circ}$  C, filtered, washed with CAN and dried to give 35.8 g of the salt as a white solid. Chiral HPLC analysis by the same method indicated that the chiral purity of the S enantiomer was >99% ee, with none of the R enantiomer detected. The salt was stirred vigorously in a mixture of conc. NH<sub>4</sub>OH (15 mL) in water (200 mL) for 7 min. The solid was filtered, resuspended in a mixture of conc. NH<sub>4</sub>OH (15 mL) in water (200 mL) for 7 min and filtered again. The solid was stirred in water (200 mL) for 15 min, filtered and dried to give (S)-3-amino-7,9-difluoro-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one as a white solid (20 g, 70% yield). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  ppm 1.68 - 1.84 (m, 1 H), 2.15 - 2.36 (m, 1 H), 2.57 - 2.81 (m, 2 H), 3.15 (dd, J=11.62, 7.83 Hz, 1 H), 7.07 (dd, J=8.84, 1.52 Hz, 1 H), 7.13 -7.33 (m, 1 H), 9.59 (br. s., 1 H). LCMS  $C_{10}H_{10}F_2N_2O$  (m/z): 213 (M+H<sup>+</sup>), >99% purity. To a mixture of (S)-3-amino-7,9-difluoro-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one (19.1 g, 90 mmol), 5-benzyl-4H-1,2,4-triazole-3-carboxylic acid hydrochloride (22.65 g, 95 mmol) and

DIEA (47.2 mL, 270 mmol) in DCM (650 mL) cooled in an ice/water bath was added 2,4,6tripropyl-1,3,5,2,4,6-trioxatriphosphinane 2,4,6-trioxide (T3P, 50% by wt. in ethyl acetate) (81 mL, 135 mmol) dropwise over 13 min. The reaction was stirred at rt for 45 min becoming homogeneous after 10 min. The reaction was diluted with 0.5M HCl (600 mL) and a solid precipitated from the organic phase. The 2 layers were separated, the organics, including the solid, were treated with satd. NaHCO<sub>3</sub> solution and the 2 phases shaken vigorously. The 2 layers were separated and the solid filtered off and washed with DCM. The solid was stirred in water (600 mL) for 60 min, filtered, and washed with water, and dried in vacuum oven at 50° C to give 33.1 g of product. The solid was resuspended in water (700 mL) and stirred for 2 h. The solid was filtered, washed with water, and dried in vacuum oven at 50° C to give (S)-5-benzyl-N-(7,9-difluoro-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)-4H-1,2,4triazole-3-carboxamide (6) as a white solid (32 g, 88% yield). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ ppm 2.26 (br. s., 1 H), 2.35 - 2.48 (m, 1 H), 2.67 - 2.89 (m, 2 H), 4.12 (br. s., 2 H), 4.34 (dt, J=11.43, 7.93 Hz, 1 H), 7.15 (d, J=8.84 Hz, 1 H), 7.19 - 7.47 (m, 6 H), 8.22 (br. s., 1 H), 9.96 (s, 1 H), 14.31 (br. s., 1 H). LCMS  $C_{20}H_{17}F_2N_5O_2$  (m/z): 313 (M+Na<sup>+</sup>), 398 (M+H<sup>+</sup>), >99% purity. Chiral HPLC analysis using a ChromegaChiral<sup>™</sup> CC4 analytical column (150 mm, 4.6 mm, 5u) eluting with CH<sub>3</sub>CN (plus 0.2% formic acid and 0.1% diethylamine as modifiers) as the mobile phase for 30 min. at 1 mL/min. provided good separation of a racemic standard. The R enantiomer eluted at 4.57 min. and the S enantiomer (6) eluted at 5.96 min. This indicated that the chiral purity of 6 prepared by this method was >99.9% ee, with none of the R enantiomer detected. Anal. Calcd for  $C_{20}H_{17}F_2N_5O_2$  C, 60.43; H, 4.31; N, 17.63. Found: C, 60.33; H, 4.03; N, 17.00.

#### (S)-5-Benzyl-N-(4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-3-yl)-4H-1,2,4-triazole-3-carboxamide (8). To a mixture of (S)-3-amino-2,3-dihydrobenzo[b][1,4]-oxazepin-4(5H)one hydrochloride (1.024 g, 4.77 mmol) and 5-benzyl-4H-1,2,4-triazole-3-carboxylic acid hydrochloride (1.2 g, 5.0 mmol) in DCM (30 mL) was added DIPEA (9.5 mL, 54.6 mmol) and the resulting solution stirred at rt for 1 hour. $T_3P$ solution (50% by wt. in EtOAc, 4.27 mL, 7.16 mmol) was added and the reaction stirred at rt for a further 1 hour Additional $T_3P$ solution (1

mmol) was added and the reaction stirred at rt for a further 1 hour. Additional T<sub>3</sub>P solution (1 mL, 1.68 mmol) and DIEA (1 mL, 5.74 mmol) were added and the reaction stirred at rt for a further 1 hour. The reaction was concentrated on a rotavapor to remove DCM, then redissolved in EtOAc and washed with 1M HCl, satd. NaHCO<sub>3</sub>, water and brine. The organic layer was concentrated to a foam which was redissolved in EtOAc (10 mL) and stirred at rt for 3 days to give a thick paste. Added more EtOAc (15 mL) and stirred vigorously for 10 min. The resulting solid was filtered off and washed with EtOAc. The filtrate was concentrated and purified by silica gel chromatography (24 g silica column; 10-65% EtOAc/hexanes). The filtered solid and the purified fractions from chromatography were combined and dried to give (*S*)-5-benzyl-N-(4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-3-yl)-4H-1,2,4-triazole-3-carboxamide (**8**) as an off-white solid (0.905 g, 52% yield). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 4.05 - 4.20 (m, 2 H), 4.43 (dd, *J*=10.52, 6.46 Hz, 1 H), 4.52 (t, *J*=10.52 Hz, 1 H), 4.80 (dt, *J*=10.65, 7.22 Hz, 1 H), 7.04 - 7.19 (m, 4 H), 7.19 - 7.45 (m, 7 H), 8.55 (br. s., 1 H), 10.12 - 10.25 (m, 1 H). LCMS C<sub>19</sub>H<sub>17</sub>N<sub>5</sub>O<sub>3</sub> (m/z): 364 (M+H<sup>+</sup>), >99% purity.

(S)-5-Benzyl-N-(1-methyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)-4H-1,2,4triazole-3-carboxamide (9). To (S)-tert-butyl (2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)carbamate (300 mg, 1.09 mmol) dissolved in DMF (4 mL) was added MeI (0.081 mL, 1.3 mmol). Potassium carbonate (210 mg, 1.52 mmol) was then added portion wise. After stirring for 2 days at rt, the reaction was quenched with water (20 mL) and stirred for 15 min. The resulting solid was filtered off, washed with water and dried to afford (S)-tert-butyl (1-methyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)carbamate (246 mg, 78 % yield). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  ppm 1.33 (s, 9 H), 1.91 - 2.20 (m, 2 H), 2.57 - 2.72 (m, 2 H), 3.27 (s, 3H), 3.86 (dt, *J*=11.68, 8.31 Hz, 1 H), 7.02 (d, *J*=8.59 Hz, 1 H), 7.15 - 7.25 (m, 1 H), 7.29 (d, *J*=7.07 Hz, 1 H), 7.32 - 7.42 (m, 2 H). LCMS C<sub>16</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub> (m/z): 313 (M+Na<sup>+</sup>), 291 (M+H<sup>+</sup>), >99% purity.

To a solution of (S)-tert-butyl (1-methyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3yl)carbamate (240 mg, 0.83 mmol) in DCM (5 mL) was added 4N HCl in dioxane (0.827 ml, 3.31 mmol) and the reaction stirred at rt for 3h. Additional 4N HCl was added (0.205 mL, 0.83 mmol). And stirring continued for 24h. The reaction was concentrated to afford (S)-3-amino-1-methyl-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one hydrochloride (270 mg, 144 % yield) which was used directly in the next step. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 2.07 - 2.18 (m, 1 H), 2.36 - 2.49 (m, 1 H), 2.64 - 2.85 (m, 2 H), 3.28 - 3.35 (s, 3 H), 3.59 - 3.73 (m, 1 H), 7.21 - 7.32 (m, 1 H), 7.33 - 7.39 (m, 1 H), 7.39 - 7.45 (m, 2 H), 8.28 (br. s., 3 H). LCMS C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>O (m/z): 191 (M+H<sup>+</sup>), 96% purity.

To a solution of (S)-3-amino-1-methyl-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one hydrochloride (270 mg, 1.2 mmol), 5-benzyl-4H-1,2,4-triazole-3-carboxylic acid (290 mg, 1.43 mmol) and DIPEA (0.832 mL, 4.76 mmol) in DCM (6.5 mL) was added T<sub>3</sub>P solution (50% by wt. in EtOAc, 1.2 mL, 2.03 mmol). The reaction was stirred at rt for 90 min. and then quenched with EtOAc and water. The aqueous layer was separated and extracted with further with EtOAc and the combined organic extracts were purified via silica gel chromatography eluting with 5-60% (EtOH/EtOAc 3:1)/heptane. The desired fractions were concentrated to afford (S)-5-benzyl-N-(1-methyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)-4H-1,2,4-triazole-3-carboxamide (9) (33 mg, 7 % yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 1.97

- 2.17 (m, 1 H), 2.57 - 2.82 (m, 2 H), 2.82 - 3.01 (m, 1 H), 3.44 (s, 3 H), 4.21 (s, 2 H), 4.64 (dt, *J*=11.12, 7.58 Hz, 1 H), 7.18 - 7.27 (m, 3 H) 7.30 - 7.38 (m, 6 H), 8.19 (d, *J*=7.83 Hz, 1 H). LCMS C<sub>21</sub>H<sub>21</sub>N<sub>5</sub>O<sub>2</sub> (m/z): 376 (M+H<sup>+</sup>), >99% purity.

(S)-5-Benzyl-N-(2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)-4H-1,2,4-triazole-3carboxamide (10). To a suspension of (S)-3-amino-4,5-dihydro-1H-benzo[b]azepin-2(3H)one (1.0 g, 5.67 mmol) and 5-benzyl-4H-1,2,4-triazole-3-carboxylic acid hydrochloride (1.5 g, 6.24 mmol) in DCM (48.5 mL) at 0 °C was added DIPEA (3.47 mL, 19.9 mmol). After stirring for 30 min at 0 °C, T<sub>3</sub>P solution (50% by wt. in EtOAc, 4.74 mL, 7.94 mmol) was slowly added. After stirring for 20 min at 0 °C, the reaction solution was warmed up to rt. After 5 h, additional DIPEA (0.5 mL) and T<sub>3</sub>P solution (0.5 mL) were added and the reaction stirred overnight at rt. The resultant solid was collected by filtration and washed with DCM and dried to give product (464 mg, 22 % yield) as a white solid. The filtrate was concentrated and stirred in water to precipitate a white solid. The solid was collected and washed with water and Et<sub>2</sub>O and dried to give additional product (1.22 g, 59 % yield). Combining products gave (S)-5benzyl-N-(2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)-4H-1,2,4-triazole-3carboxamide (10) (1.68 g, 81 % yield). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 2.23 (d, *J*=9.09 Hz 1 H) 2 34 - 2 49 (m 1 H) 2 63 - 2 89 (m 2 H) 4 11 (s 2 H) 4 33 (dt. *J*=11 62 7 83 Hz

Hz, 1 H), 2.34 - 2.49 (m, 1 H), 2.63 - 2.89 (m, 2 H), 4.11 (s, 2 H), 4.33 (dt, J=11.62, 7.83 Hz, 1 H), 7.04 (d, J=7.83 Hz, 1 H), 7.09 - 7.20 (m, 1 H), 7.20 - 7.40 (m, 7 H), 8.28 (br. s., 1 H), 10.01 (s, 1 H), 14.41 (br. s., 1 H). LCMS C<sub>20</sub>H<sub>19</sub>N<sub>5</sub>O<sub>2</sub> (m/z): 362 (M+H<sup>+</sup>), >99% purity.

(S)-5-Benzyl-N-(7,9-difluoro-1-methyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-

yl)-4H-1,2,4-triazole-3-carboxamide (11). To a solution of (S)-3-amino-7,9-difluoro-4,5dihydro-1H-benzo[b]azepin-2(3H)-one (1.1 g, 5.18 mmol) and TEA (1.084 mL, 7.78 mmol) in DCM (10 mL) stirred under N<sub>2</sub> at 20 °C was added Boc<sub>2</sub>O (1.32 mL, 5.70 mmol) dropwise over 5 min. The reaction mixture was stirred at rt for 2 h and then diluted with DCM (30mL) and this was washed with water (4 x 10mL), the organic phase was separated and washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated to afford (S)-tert-butyl (S)-tert-butyl (7,9difluoro-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)carbamate (1.6 g, 98 % yield) as a cream colored solid. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 1.35 (s, 9 H), 2.02 - 2.30 (m, 2 H), 2.62 - 2.83 (m, 2 H), 3.83-3.91 (m, 1 H), 7.02-7.07 (m, 2 H), 7.22 - 7.36 (m, 1 H), 9.63 (s, 1 H). LCMS C<sub>19</sub>H<sub>26</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub> (m/z): 213 ([M-BOC]+H<sup>+</sup>), 99% purity.

To a mixture of cesium carbonate (2.337 g, 7.17 mmol) and (S)-tert-butyl (7,9-difluoro-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)carbamate (1.6 g, 5.12 mmol) in DMF (25 mL) was added iodomethane (0.384 mL, 6.15 mmol). The reaction was stirred at room temperature for 25 min. and then quenched with water (25 mL) and stirred vigorously for a further 5 min. The resulting solid was filtered off, rinsed with water and then hexane and dried to give (S)-tert-butyl (7,9-difluoro-1-methyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)carbamate (1.6 g, 93% yield). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  ppm 1.30 (s, 9 H), 1.95 - 2.20 (m, 2 H), 2.60 - 2.80 (m, 2 H), 3.20 (s, 3H), 3.81-3.90 (m, 1 H), 7.13-7.20 (m, 2 H), 7.28 - 7.41 (m, 1 H). LCMS C<sub>16</sub>H<sub>20</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub> (m/z): 227 ([M-BOC]+H<sup>+</sup>), 97% purity.

To a solution of (S)-tert-butyl (7,9-difluoro-1-methyl-2-oxo-2,3,4,5-tetrahydro-1Hbenzo[b]azepin-3-yl)carbamate (1.6 g, 4.9 mmol) in DCM (5 mL) stirred at 0 °C was added 4M HCl in 1,4-dioxane (2.45 mL, 9.81 mmol) and the reaction stirred at rt for 2h. The reaction mixture was concentrated under the reduced pressure and the solid obtained was triturated in Et<sub>2</sub>O and dried to obtain (S)-3-amino-7,9-difluoro-1-methyl-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one hydrochloride (1.3 g, 99 % yield) as an off white solid. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  ppm 2.02 - 2.20 (m, 1 H), 2.30 - 2.48 (m, 1 H), 2.74 - 2.85 (m, 2 H), 3.24 (s, 3H), 3.81-

3.89 (m, 1 H), 7.18-7.22 (m, 1 H), 7.38-7.42 (m, 1 H), 8.40 (br. s., 3 H). LCMS C<sub>11</sub>H<sub>13</sub>ClF<sub>2</sub>N<sub>2</sub>O (m/z): 227 ([M+H<sup>+</sup>), 98% purity.

A mixture of (S)-3-amino-7,9-difluoro-1-methyl-4,5-dihydro-1H-benzo[b]azepin-2(3H)-one hydrochloride (0.04 g, 0.152 mmol), 5-benzyl-4H-1,2,4-triazole-3-carboxylic acid hydrochloride (0.038 g, 0.16 mmol) and DIPEA (0.093 mL, 0.533 mmol) in DCM (2 mL) was stirred vigorously for 5 min. A solution of  $T_3P$  (50% by wt. in EtOAc, 0.127 mL, 0.213 mmol) was added and the reaction stirred at rt for 10 min. The reaction was diluted with EtOAc and washed with 1M HCl solution, satd. NaHCO<sub>3</sub> followed by brine. The organic phase was concentrated to a give a solid which was suspended in hexanes, filtered and dried to give (S)-5-benzyl-N-(7,9-difluoro-1-methyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-3-yl)-4H-1,2,4-triazole-3-carboxamide (**11**) (41 mg, 64 % yield) as a white solid. <sup>1</sup>H NMR (DMSO-d6)  $\delta$  2.16 - 2.37 (m, 2H), 2.70 - 2.82, (m, 2H), 4.11 (s, 2H), 3.20 (s, 3H), 4.35 (dt, J = 10.9, 8.0 Hz, 1H), 7.14 - 7.42 (m, 7H), 8.33 (br. m., 1H), 14.52 (br. s., 1H). LCMS C<sub>21</sub>H<sub>19</sub>F<sub>2</sub>N<sub>5</sub>O<sub>2</sub> (m/z): 412 (M+H<sup>+</sup>), >99% purity.

#### 2. RIP1 (1-375) preparation

The human RIP1 gene [receptor (TNFRSF)-interacting serine-threonine kinase 1] was cloned from human adrenal gland cDNA. Primers were designed from the reference sequence NM 003804.3 using the 5' Kozak-adapted gene-specific primer and the 3' gene-specific primer. PCR products were cloned into the pENTR/TEV/D-TOPO vector. The Gateway LR reaction was performed with a pDEST8HisGSTTev vector to produce the final clone: pDEST8HisGSTTev human RIPK1 1 375. Baculovirus was generated using the bac to bac system (Invitrogen) according to manufacturer's specifications. pDEST8HisGSTTev human RIPK1 1 375 baculovirus infected insect cells (BIICs) were prepared during baculovirus generation according to [Wasilko and Lee, **2006**]. RIP1 protein was purified by capture on Glutathione Agarose (Pierce) and eluted with 20 mM reduced glutathione. The protein was then run on a size exclusion column (Superdex200, GE Healthcare) to separate the aggregated protein from the active dimeric protein and to exchange the protein into assay compatible buffer (25 mM Tris, pH7.5, 150 mM NaCl, 1 mM DTT, 5% Glycerol). The human RIP1 crystallography construct was Flag.1-294, C34A, C127A, C233A, C240A. Similar protocols were used to generate the the orthologs; mouse RIP 1(1-378), rat RIP1(1-377), rabbit RIP1 (1-371), dog RIP1 (1-373), minipig RIP1 (1-375), and monkey RIP1 (1-379).

#### 3. In vitro assays

**ADP-Glo Activity Assay.** The catalytic activity of RIP1 was quantified utilizing the Promega ADP-Glo kinase kit as previously described (Harris et al, 2016) using either a four-parameter curve fit or a tight binding curve fit for compounds whose potency was less than the detection limit of the assay (~ half the enzyme concentration). Data are presented as the mean IC<sub>50</sub> from at least n=2 determinations.

**U937 and L929 Cell Necroptosis Assays.** The efficacy of RIP1 inhibitors were determined in vitro using human monocytic leukemia U937 cells or mouse L-cells NCTC 929 (L929) cells in a necroptosis assay as previously described (Harris et al, 2016).

**Biological in Vitro Whole Blood Assay.** Compound **6** was evaluated in human and cynomolgus monkey whole blood assays. For the assay, 3 stock solutions each of 200 ng/mL TNF (Cell

Sciences), 400  $\mu$ M QVD-Oph or zVAD.fmk (R&D Systems) and 20  $\mu$ M SMAC mimetic 2',2"'-(2,4-hexadiyne-1,6-diyl)bis[1-[[(2S)-1-(*N*-methyl-L-alanyl-L-threonyl)-2-pyrrolidinyl]methyl]-5-(phenylthio)-1H-tetrazole (RMT 5265, Li et al, 2004) were prepared in phenol red free RPMI 1640 medium supplemented with 1% fetal bovine serum, 100 units/mL penicillin and 100  $\mu$ g/mL streptomycin. In addition, 5-fold dilution series of compound **6** were prepared in the same medium supplemented with 1% DMSO, with top concentrations of 1  $\mu$ M and 5  $\mu$ M for human and monkey assays, respectively. A 5 uL solution of compound **6** at each dilutions was transferred to a 96 well tissue culture treated assay plate and 5 uL of each of the 3 stock solutions was added. Whole blood was collected by venous puncture in heparin tubes (Griener Bio-One). Whole blood (80  $\mu$ L) was added to each well of the assay plate, mixed briefly and incubated for 6 h at 37 °C, 5% CO<sub>2</sub>. Following incubation, PBS (200  $\mu$ L) was added to each well and the assay plate was centrifuged at 1700 rpm for 5 min. Supernatants were frozen at -70° C. Concentrations of MIP-1 $\beta$  (human) and IL-1 $\beta$  (monkey) were determined by sandwich ELISA (Meso Scale Discovery) following the manufacturer's instructions.

**Neutrophil Necroptotic Assay.** Compound **6** was evaluated in human neutrophils isolated from whole blood using standard method involving dextran sedimentation and Ficoll-Hypaque density gradient centrifugation. Necroptotic cell death was induced in freshly isolated neutrophils with 10 ng/ml TNF $\alpha$ , 50 $\mu$ M QVD-Oph and 100 nM SMAC mimetic 2',2'''-(2,4-hexadiyne-1,6-diyl)bis[1-[[(2S)-1-(N-methyl-L-alanyl-L-threonyl)-2-pyrrolidinyl]methyl]-5-(phenylthio)-1H-tetrazole (SMAC mimetic RMT 5265, Li et al, 2004). Induced cell death was evaluated 21 h post stimulation by measuring cellular ATP levels and LDH release into media. Intracellular ATP levels were quantified using CellTiter-Glo Luminescent Cell Viability assay (Promega). Lactate dehydrogenase (LDH) release into media was evaluated using a Cytotoxicity Detection kit [LDH] (Roche Applied Sciences). Concentration of MIP-1 $\beta$  in cell-free supernatants was determined by sandwich ELISA (Meso Scale Discovery) following the manufacturer's instructions.


#### 4. Mode of inhibition of Compound 6

To determine the mode of inhibition of Compound 6 on hRIP1 (1-375), the effect of substrate concentration on the IC<sub>50</sub> was determined using an ADP-Glo assay measuring the activity of RIP1 by quantifying the conversion of ATP to ADP due to both enzyme catalyzed autophosphorylation and ATPase activities. Test compound was prepared in assay buffer (50 mM Hepes pH 7.5, 50 mM NaCl, 30 mM MgCl<sub>2</sub>, 1 mM DTT, 0.02% CHAPS, 0.5 mg/mL BSA) and serially diluted 1:1.5 in a 22 point titration (high final concentration 3 µM) and added to a 384 white low volume Greiner plate. 3.5 µL of each inhibitor concentration and 3.5 µL of 25 nM enzyme (final) in assay buffer were added to the plate. Following these additions, 3.5 µL of ATP (15.6 µM to 875 µM final) in assay buffer was added to the plate to initiate the reaction. The reaction progressed for 5h at room temperature. Following this reaction 5 µL of Promega ADP-Glo Reagent with 0.02% CHAPS was added to each well and incubated for 1h at room temperature. This quenched the kinase reaction and depleted any remaining ATP. 5 µL of Promega ADP-Glo Detection solution with 0.02% CHAPS was then added to each well and incubated at room temperature for 30 min. This converted ADP to ATP and introduced luciferase and luciferin to detect ATP, allowing for the quantification of the ADP produced by RIP1. The luminescence was then measured on a Perkin Elmer ViewLux. Luminescence data was normalized to the high and low controls for each ATP concentration and expressed as fractional activity remaining. The IC<sub>50</sub> at each ATP concentration was determined using the Morrison tight binding equation (eq 1).  $IC_{50}$  values were then plotted as a function of substrate concentration (S) using the competitive inhibition equation (eq 2) where  $K_i$  is the inhibition constant and K<sub>m</sub> is the Michaelis constant for S [Williams and Morrison, 1979].

$$\frac{v_i}{v_o} = \frac{-([I] - [E] + appK_i) + \sqrt{([I] - [E] + appK_i)^2 + 4[E]^* appK_i}}{2[E]}$$
(1)

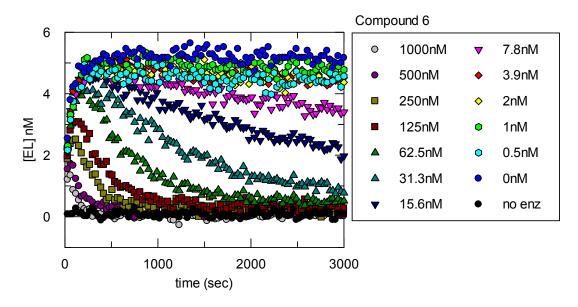
Figure S1. Compound 6 demonstrates characteristics of a tight binding ATP competitive inhibitor of human RIP1 with a  $K_i$  of 1.5 nM. The correlation between  $IC_{50}$  and ATP concentrations fits a mutually competitive model with  $IC_{50}$  values increasing linearly with increasing substrate concentrations. Due to the potency of the compound and limitations on ATP concentrations tolerated by the detection system, small changes in  $IC_{50}$  were expected. Data points are shown as the average of n=2 to n=4 determinations with error bars from the standard deviations. The fitted line is from eq 2 with  $K_i = 1.5 \pm 0.5$  nM and  $K_m = 140 \pm 54$  µM. The  $K_i$  agrees well with the  $IC_{50}$  value reported in the main text.

(2)



#### 5. Compound 6 binding kinetics

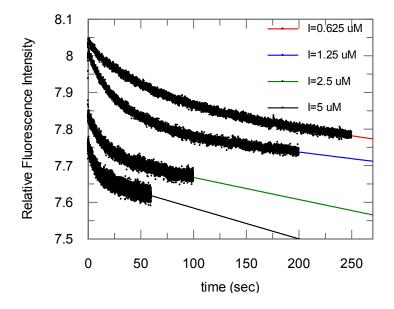
 $IC_{50} = K_i * (1 + (S/K_m))$ 

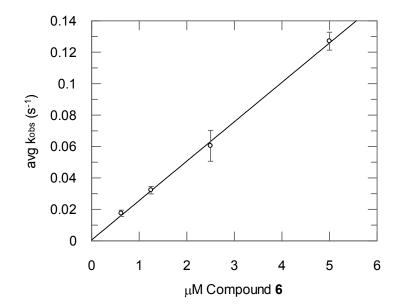

To determine the off rate constant for Compound 6, a fluorescence polarization (FP) competitive binding assay was used. This assay utilizes a reversible fluorescent ligand ((14-(2-{[3-({2-{[4-(cyanomethyl)phenyl]amino}-6-[(5-cyclopropyl-1H-pyrazol-3-yl)amino]-4pyrimidinylaminopropylamino - 2-oxoethyl)-16,16,18,18-tetramethyl-6,7,7a,8a,9,10,16,18octahydrobenzo[2",3"]indolizino[8",7":5',6']pyrano[3',2':3,4]pyrido-[1,2-a]indol-5-ium-2sulfonate) that is competitive with ATP. In a typical experiment,  $3.5 \mu L$  of titrated inhibitor in buffer (50 mM Hepes pH7.5, 10 mM NaCl, 50 mM MgCl<sub>2</sub>, 0.5 mM DTT, and 0.02% CHAPS) and 3.5 µL of ligand in buffer were added to a 384 black low volume Greiner plate. Then 3.5 µL of enzyme was added to the plate to initiate the reaction and the plate was immediately monitored kinetically for 50 minutes using an Analyst GT plate reader (excitation 530 nm; emission 580 nm; 561 nm dichroic), with the shortest time interval possible between reads to maximize data density. The final concentrations of enzyme and fluorescent ligand were 10 nM and 5 nM, respectively. The FP data was converted to the concentration of enzyme-ligand complex (EL) formed (eq 3) and measuring controls for the polarization of free ( $P_f$ ) and bound ( $P_b$ ) ligand, where P = observedpolarization and g = g factor [Jameson and Mocz, 2005]. The resulting individual binding curves obtained at each inhibitor concentration were fitted globally using KinTek Explorer to a competitive model which describes both ligand binding and inhibitor binding equilibria (E + L  $\Leftrightarrow$  EL and E + I  $\Leftrightarrow$  EI), where E = enzyme, L = ligand, EL = enzyme ligand complex, I = inhibitor, EI = enzyme inhibitor complex, k<sub>1</sub> = association rate of ligand, k<sub>2</sub> = dissociation rate of ligand, k<sub>3</sub> = association rate of inhibitor, and k<sub>4</sub> = dissociation rate of inhibitor. Multiple iterations of fitting were utilized until rates converged on a global minimum.

$$[EL] = L * (3-P_b)(P-P_f)$$
(3)  

$$E + L \xrightarrow{k_1} EL$$
  

$$E + I \xrightarrow{k_3} EI$$


Figure S2. Compound 6 is a slowly dissociating inhibitor of hRIP1 ( $k_{off} = 0.000117$  sec<sup>-1</sup>), demonstrating distinctive biphasic kinetics in an FP competitive binding assay. The other parameters from the average of n=2 global fits were  $k_1 = 0.0526$  nM<sup>-1</sup>s<sup>-1</sup>,  $k_2 = 0.00265$  s<sup>-1</sup>, and  $k_3 = 0.00210$  nM<sup>-1</sup>s<sup>-1</sup>.  $k_3$  for Compound 6 is poorly defined in this experiment due to insufficient data density for accurate measurement of rapid inhibitor association. Stopped-flow tryptophan fluorescence was used for accurate measurement of  $k_{on}$  as described below.




To determine the on rate constant of Compound **6** accurately, changes in the intrinsic tryptophan fluorescence of hRIP1 were measured upon inhibitor binding. Compound **6** was titrated (0.625 to 5  $\mu$ M final) at 2x in buffer (50 mM Hepes pH 7.5, 10 mM NaCl, 50 mM MgCl<sub>2</sub>, 0.5 mM DTT, 0.02% CHAPS) with 1% DMSO. 250 nM (final) hRIP1 (1-375) was prepared in buffer at 2x. Inhibitor and enzyme were rapidly mixed using an Applied Photophysics SX20 stopped-flow spectrometer (fluorescence mode, 10 mm pathlength flow cell orientation, excitation 285 nm, emission >320 nm, bandpass filter). PM voltage was set to approximately 80% of auto PM determined after mixing equal volumes of RIP1 and buffer. After determining this baseline, enzyme and inhibitor were rapidly mixed and 10,000 data time points were collected for up to 200 seconds for each inhibitor concentration, starting with the lowest inhibitor concentration.

Decreased fluorescence upon compound **6** binding was observed. Progress curves were averaged (n=3 to n=4) and fitted to a single exponential plus a slope to determine the  $k_{obs}$  at each inhibitor concentration.  $k_{obs}$  was then plotted as a function of inhibitor concentration and increased linearly with increasing inhibitor concentrations suggesting simple one-step binding mechanisms in the concentration range studied. The slope of the linear fit is equal to the on rate constant for Compound **6**.

Figure S3. Compound 6 quenches intrinsic Trp fluorescence in the stopped-flow spectrometer consistent with a single step binding mechanism with an on rate constant of 0.025  $\mu$ M<sup>-1</sup>s<sup>-1</sup>. The top figure below shows representative stopped-flow time courses for different concentrations of compound 6 with hRIP1. Data were fitted to a single exponential decay with a linear slope (solid lines): Y = A\*(exp(-k<sub>obs</sub>\*t) + b\*t + C. The slope portion of the fit is due to photobleaching of the enzyme and is also observed in control experiments in the absence of inhibitor. The average k<sub>obs</sub> values and their standard errors from 3 to 4 determinations are replotted versus inhibitor concentration in the lower figure to obtain the on rate constant from the slope (0.025 ± 0.007  $\mu$ M<sup>-1</sup>s<sup>-1</sup>) of the linear fit (correlation coefficient = 0.9992). Intercepts of the replot (k<sub>off</sub>) are poorly defined (0.00053 ± 0.0020 s<sup>-1</sup>) due to extreme extrapolation from the K<sub>i</sub> (~3,000 \* K<sub>i</sub> at 5  $\mu$ M). Therefore, k<sub>off</sub> was measured using the FP competition assay (see above). The calculated K<sub>i</sub> from the measured k<sub>off</sub> and k<sub>on</sub> values (K<sub>i</sub> = k<sub>off</sub>/k<sub>on</sub>) is 4.7 nM, which is good agreement with the K<sub>i</sub> from the ATP substrate competition experiment.





#### 6. Compound 6 kinase selectivity and species selectivity profiles

#### Percent Enzyme Inhibition against Reaction Biology Corporation (RBC) kinase Panel

Compound **6** was tested at 10  $\mu$ M in duplicate against 359 kinases in the Reaction Biology Corporation (RBC) kinase panel. Control compound was tested in 10-dose IC<sub>50</sub> mode with 3-fold serial dilution starting at 20  $\mu$ M . Reactions were carried out at 10  $\mu$ M ATP. Full protocol details are available at <u>http://www.reactionbiology.com</u>. Data is reported as % enzyme activity (relative to DMSO controls) in Table S1. Activity <50% (average of n =2) was observed for ABL1, ABL2/ARG, BLK, c-Src, DDR2, EPHA5, EPHB2, FGR, FRK/PTK5, FYN, LYN, LYN B, PEAK1 and YES/YES1. However full curve analysis for these 14 kinases against compound **6** at a top concentration of 30  $\mu$ M (see Table S2) found no inhibition indicating the initial single concentration findings were false positives. The kinase panel did not include RIP1.

| RBC Kinase: | Cpd 6<br>% enzyme<br>activity | <b>Cpd 6</b><br>% enzyme<br>activity | Cpd 6<br>Average %<br>enzyme<br>activity | IC <sub>50</sub> (M)<br>Staurosporine | IC <sub>50</sub> (M)<br>Alternate<br>Control<br>cpd | Alternate<br>compound ID |
|-------------|-------------------------------|--------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------------------|--------------------------|
| ABL1        | 6.77                          | 6.20                                 | 6.49                                     | 5.20E-08                              |                                                     |                          |
| ABL2/ARG    | 2.66                          | 1.98                                 | 2.32                                     | 1.70E-08                              |                                                     |                          |
| ACK1        | 91.64                         | 90.81                                | 91.23                                    | 3.44E-08                              |                                                     |                          |
| AKT1        | 87.09                         | 87.06                                | 87.08                                    | 3.97E-09                              |                                                     |                          |
| AKT2        | 80.42                         | 78.39                                | 79.40                                    | 1.40E-08                              |                                                     |                          |
| AKT3        | 115.12                        | 110.12                               | 112.62                                   | 3.92E-09                              |                                                     |                          |
| ALK         | 96.74                         | 96.03                                | 96.39                                    | 1.91E-09                              |                                                     |                          |
| ALK1/ACVRL1 | 79.12                         | 77.54                                | 78.33                                    | ND                                    | 7.30E-09                                            | LDN193189                |
| ALK2/ACVR1  | 101.76                        | 97.57                                | 99.67                                    | ND                                    | 1.06E-07                                            | LDN193189                |
| ALK3/BMPR1A | 95.61                         | 95.25                                | 95.43                                    | ND                                    | 1.80E-08                                            | LDN193189                |
| ALK4/ACVR1B | 104.11                        | 102.81                               | 103.46                                   | ND                                    | 3.95E-07                                            | LDN193189                |
| ALK5/TGFBR1 | 97.00                         | 96.12                                | 96.56                                    | ND                                    | 3.73E-07                                            | LDN193189                |
| ALK6/BMPR1B | 97.00                         | 96.84                                | 96.92                                    | ND                                    | 8.73E-09                                            | LDN193189                |
| ARAF        | 93.91                         | 91.18                                | 92.55                                    | ND                                    | 1.74E-08                                            | GW5074                   |
| ARK5/NUAK1  | 84.06                         | 82.84                                | 83.45                                    | 1.03E-09                              |                                                     |                          |
| ASK1/MAP3K5 | 99.55                         | 98.59                                | 99.07                                    | 1.52E-08                              |                                                     |                          |
| Aurora A    | 96.25                         | 90.41                                | 93.33                                    | 1.23E-09                              |                                                     |                          |
| Aurora B    | 90.54                         | 89.44                                | 89.99                                    | 8.43E-09                              |                                                     |                          |
| Aurora C    | 103.29                        | 100.76                               | 102.02                                   | 2.59E-09                              |                                                     |                          |
| AXL         | 101.33                        | 97.94                                | 99.64                                    | 1.45E-08                              |                                                     |                          |
| BLK         | 37.56                         | 36.30                                | 36.93                                    | 1.76E-09                              |                                                     |                          |
| BMPR2       | 114.18                        | 110.70                               | 112.44                                   | 3.82E-07                              |                                                     |                          |
| BMX/ETK     | 91.08                         | 89.97                                | 90.52                                    | 9.60E-09                              |                                                     |                          |
| BRAF        | 96.93                         | 96.90                                | 96.91                                    | ND                                    | 2.40E-08                                            | GW5074                   |
| BRK         | 95.77                         | 95.33                                | 95.55                                    | 3.92E-07                              |                                                     |                          |
| BRSK1       | 99.91                         | 99.08                                | 99.50                                    | 1.16E-09                              |                                                     |                          |
| BRSK2       | 96.20                         | 96.18                                | 96.19                                    | 3.09E-09                              |                                                     |                          |
| BTK         | 58.55                         | 58.53                                | 58.54                                    | 1.48E-08                              |                                                     |                          |
| c-Kit       | 87.39                         | 82.06                                | 84.72                                    | 9.13E-08                              |                                                     |                          |
| c-MER       | 94.84                         | 93.66                                | 94.25                                    | 1.03E-08                              |                                                     |                          |
| c-MET       | 87.14                         | 86.23                                | 86.69                                    | 1.49E-07                              |                                                     |                          |
| c-Src       | 2.15                          | 1.91                                 | 2.03                                     | 2.71E-09                              |                                                     |                          |
| CAMK1a      | 94.63                         | 93.64                                | 94.13                                    | 2.04E-09                              |                                                     |                          |

Table S1. RBC kinase panel for compound 6.

| CAMK1b                   | 93.25  | 88.96  | 91.10  | 4.36E-09  |          |            |
|--------------------------|--------|--------|--------|-----------|----------|------------|
| CAMK1d                   | 95.85  | 95.23  | 95.54  | 3.25E-10  |          |            |
| CAMK1g                   | 96.61  | 95.87  | 96.24  | 8.92E-09  |          |            |
| CAMK2a                   | 97.99  | 97.43  | 97.71  | <7.63E-11 |          |            |
| CAMK2b                   | 96.32  | 95.35  | 95.84  | 1.09E-10  |          |            |
| CAMK2d                   | 103.56 | 102.81 | 103.18 | <7.63E-11 |          |            |
| CAMK2g                   | 97.11  | 95.46  | 96.29  | 4.50E-10  |          |            |
| CAMK4                    | 95.72  | 94.55  | 95.14  | 2.17E-07  |          |            |
| CAMKK1                   | 102.26 | 99.14  | 100.70 | 5.12E-08  |          |            |
| CAMKK2                   | 87.11  | 87.10  | 87.10  | 7.94E-08  |          |            |
| CDC7/DBF4                | 105.23 | 104.87 | 105.05 | 1.75E-08  |          |            |
| CDK1/cyclin A            | 96.06  | 95.11  | 95.59  | 3.25E-09  |          |            |
| CDK1/cyclin B            | 93.94  | 92.83  | 93.38  | 2.40E-09  |          |            |
| CDK1/cyclin E            | 95.96  | 95.50  | 95.73  | 3.90E-09  |          |            |
| CDK16/cyclin Y (PCTAIRE) | 96.33  | 95.36  | 95.85  | 1.21E-08  |          |            |
| CDK2/cyclin A            | 77.94  | 77.79  | 77.86  | 8.69E-10  |          |            |
| CDK2/Cyclin A1           | 90.13  | 89.11  | 89.62  | 2.03E-09  |          |            |
| CDK2/cyclin E            | 88.79  | 88.75  | 88.77  | 1.97E-09  |          |            |
| CDK3/cyclin E            | 87.06  | 86.34  | 86.70  | 1.56E-08  |          |            |
| CDK4/cyclin D1           | 97.97  | 97.88  | 97.92  | 1.92E-08  |          |            |
| CDK4/cyclin D3           | 91.73  | 89.31  | 90.52  | 3.46E-08  |          |            |
| CDK5/p25                 | 72.38  | 70.42  | 71.40  | 3.32E-09  |          |            |
| CDK5/p35                 | 71.11  | 70.78  | 70.95  | 1.87E-09  |          |            |
| CDK6/cyclin D1           | 96.81  | 95.26  | 96.04  | 5.51E-09  |          |            |
| CDK6/cyclin D3           | 99.65  | 99.02  | 99.33  | 6.39E-08  |          |            |
| CDK7/cyclin H            | 109.10 | 108.38 | 108.74 | 2.95E-06  |          |            |
| CDK9/cyclin K            | 99.55  | 97.49  | 98.52  | 1.51E-07  |          |            |
| CDK9/cyclin T1           | 98.66  | 98.54  | 98.60  | 1.32E-08  |          |            |
| CHK1                     | 96.75  | 96.12  | 96.43  | 1.33E-10  |          |            |
| CHK2                     | 102.74 | 101.65 | 102.19 | 8.90E-09  |          |            |
| CK1a1                    | 92.67  | 92.43  | 92.55  | 4.05E-06  |          |            |
| CK1d                     | 86.78  | 86.25  | 86.51  | ND        | 1.81E-07 | D4476      |
| CK1epsilon               | 103.81 | 103.81 | 103.81 | ND        | 2.51E-07 | D4476      |
| CK1g1                    | 88.16  | 87.30  | 87.73  | 5.20E-06  |          |            |
| CK1g2                    | 102.21 | 101.26 | 101.74 | 1.45E-06  |          |            |
| CK1g3                    | 104.51 | 103.19 | 103.85 | 2.92E-06  |          |            |
| CK2a                     | 120.74 | 118.67 | 119.71 | ND        | 9.19E-08 | GW5074     |
| CK2a2                    | 70.76  | 67.19  | 68.98  | 3.78E-07  |          |            |
| CLK1                     | 97.07  | 96.74  | 96.90  | 1.42E-08  |          |            |
| CLK2                     | 76.32  | 72.29  | 74.31  | 5.21E-09  |          |            |
| CLK3                     | 97.80  | 97.10  | 97.45  | 2.24E-06  |          |            |
| CLK4                     | 91.83  | 87.35  | 89.59  | 5.38E-08  |          |            |
| COT1/MAP3K8              | 98.66  | 97.48  | 98.07  | ND        | 8.25E-06 | Ro-31-8220 |
| CSK                      | 66.48  | 66.39  | 66.43  | 1.67E-08  |          |            |
| CTK/MATK                 | 97.58  | 97.08  | 97.33  | 7.64E-07  |          |            |
| DAPK1                    | 101.95 | 100.21 | 101.08 | 8.80E-09  |          |            |
| DAPK2                    | 98.98  | 98.74  | 98.86  | 8.33E-09  |          |            |
| DCAMKL1                  | 93.82  | 93.65  | 93.74  | 5.02E-07  | ļ        |            |
| DCAMKL2                  | 95.15  | 95.03  | 95.09  | 7.96E-08  | <b> </b> |            |
| DDR1                     | 97.18  | 96.12  | 96.65  | 4.66E-09  | 1        |            |
| DDR2                     | 42.56  | 39.43  | 40.99  | 2.97E-10  |          |            |
| DLK/MAP3K12              | 86.36  | 85.32  | 85.84  | 1.08E-08  |          |            |
| DMPK                     | 109.01 | 108.60 | 108.81 | 1.08E-07  |          |            |
| DMPK2                    | 97.32  | 96.19  | 96.75  | 9.99E-10  |          |            |
| DRAK1/STK17A             | 94.60  | 94.47  | 94.53  | 1.52E-08  |          |            |

| DYRK1/DYRK1A | 95.83  | 95.53  | 95.68  | 3.88E-09 |          |            |
|--------------|--------|--------|--------|----------|----------|------------|
| DYRK1B       | 94.25  | 92.81  | 93.53  | 9.89E-10 |          |            |
| DYRK2        | 113.90 | 102.05 | 107.98 | 2.29E-07 |          |            |
| DYRK3        | 104.84 | 103.52 | 104.18 | 3.22E-08 |          |            |
| DYRK4        | 94.55  | 93.07  | 93.81  | ND       | 2.41E-06 | GW5074     |
| EGFR         | 103.89 | 101.58 | 102.74 | 1.31E-07 |          |            |
| EPHA1        | 95.74  | 95.49  | 95.62  | 1.59E-07 |          |            |
| EPHA2        | 88.30  | 85.42  | 86.86  | 4.94E-08 |          |            |
| EPHA3        | 96.98  | 95.60  | 96.29  | 4.47E-08 |          |            |
| EPHA4        | 78.45  | 77.84  | 78.15  | 1.94E-08 |          |            |
| EPHA5        | 34.25  | 34.19  | 34.22  | 2.14E-08 |          |            |
| EPHA6        | 93.79  | 92.47  | 93.13  | 1.80E-08 |          |            |
| EPHA7        | 102.02 | 99.67  | 100.85 | 4.22E-08 |          |            |
| EPHA8        | 97.87  | 94.67  | 96.27  | 1.21E-07 |          |            |
| EPHB1        | 57.22  | 57.17  | 57.20  | 3.67E-08 |          |            |
| EPHB2        | 29.79  | 29.04  | 29.42  | 1.13E-07 |          |            |
| EPHB3        | 84.00  | 82.17  | 83.09  | 1.26E-06 |          |            |
| EPHB4        | 83.35  | 82.60  | 82.98  | 2.15E-07 |          |            |
| ERBB2/HER2   | 96.84  | 96.54  | 96.69  | 1.67E-07 |          |            |
| ERBB4/HER4   | 94.38  | 93.16  | 93.77  | 2.48E-07 |          |            |
| ERK1         | 98.69  | 98.08  | 98.39  | 2.22E-05 |          |            |
| ERK2/MAPK1   | 93.84  | 92.41  | 93.12  | 1.40E-05 |          |            |
| ERK5/MAPK7   | 98.97  | 97.08  | 98.02  | 1.64E-05 |          |            |
| ERK7/MAPK15  | 102.85 | 97.48  | 100.16 | 1.04E-08 |          |            |
| FAK/PTK2     | 91.46  | 91.22  | 91.34  | 1.42E-08 |          |            |
| FER          | 87.13  | 84.85  | 85.99  | 3.83E-10 |          |            |
| FES/FPS      | 93.66  | 92.20  | 92.93  | 2.57E-09 |          |            |
| FGFR1        | 97.67  | 95.89  | 96.78  | 7.63E-09 |          |            |
| FGFR2        | 95.53  | 93.73  | 94.63  | 2.40E-09 |          |            |
| FGFR3        | 100.72 | 97.77  | 99.24  | 1.94E-08 |          |            |
| FGFR4        | 90.19  | 89.43  | 89.81  | 1.88E-07 |          |            |
| FGR          | 6.11   | 5.54   | 5.83   | 1.07E-09 |          |            |
| FLT1/VEGFR1  | 96.55  | 95.29  | 95.92  | 9.77E-09 |          |            |
| FLT3         | 92.34  | 91.87  | 92.10  | 1.75E-09 |          |            |
| FLT4/VEGFR3  | 94.76  | 93.61  | 94.19  | 3.34E-09 |          |            |
| FMS          | 96.86  | 95.35  | 96.10  | 2.76E-09 |          |            |
| FRK/PTK5     | 46.41  | 46.19  | 46.30  | 1.90E-08 |          |            |
| FYN          | 5.09   | 4.18   | 4.63   | 1.64E-09 |          |            |
| GCK/MAP4K2   | 96.08  | 95.50  | 95.79  | 5.30E-10 |          |            |
| GLK/MAP4K3   | 93.85  | 92.56  | 93.20  | 1.68E-10 |          |            |
| GRK1         | 105.64 | 105.37 | 105.50 | 6.88E-08 |          |            |
| GRK2         | 101.50 | 100.40 | 100.95 | 1.41E-06 |          |            |
| GRK3         | 98.05  | 97.68  | 97.86  | 9.75E-07 |          |            |
| GRK4         | 100.83 | 98.85  | 99.84  | 9.74E-08 |          |            |
| GRK5         | 104.05 | 103.32 | 103.69 | 8.90E-08 |          |            |
| GRK6         | 97.75  | 91.33  | 94.54  | 4.32E-08 |          |            |
| GRK7         | 101.47 | 99.04  | 100.26 | 5.51E-09 |          |            |
| GSK3a        | 99.34  | 97.33  | 98.33  | 6.54E-09 |          |            |
| GSK3b        | 102.29 | 100.84 | 101.57 | 5.14E-09 |          |            |
| Haspin       | 98.69  | 95.61  | 97.15  | 2.58E-08 |          |            |
| HCK          | 84.35  | 83.94  | 84.15  | 2.06E-09 |          |            |
| HGK/MAP4K4   | 93.86  | 92.82  | 93.34  | 5.58E-10 |          |            |
| HIPK1        | 110.64 | 107.89 | 109.27 | ND       | 2.36E-07 | Ro-31-8220 |
| HIPK2        | 96.52  | 95.26  | 95.89  | 5.95E-07 | ļ        | ļ          |
| HIPK3        | 102.38 | 102.11 | 102.25 | 1.08E-06 |          |            |

| HIPK4          | 98.85  | 98.04  | 98.45  | 3.93E-07 |          |            |
|----------------|--------|--------|--------|----------|----------|------------|
| HPK1/MAP4K1    | 94.41  | 94.05  | 94.23  | ND       | 2.42E-08 | Ro-31-8220 |
| IGF1R          | 96.54  | 96.38  | 96.46  | 5.76E-08 |          |            |
| IKKa/CHUK      | 109.12 | 107.50 | 108.31 | 1.30E-07 |          |            |
| IKKb/IKBKB     | 106.03 | 103.84 | 104.93 | 5.45E-07 |          |            |
| IKKe/IKBKE     | 99.79  | 99.08  | 99.43  | 3.50E-10 |          |            |
| IR             | 91.43  | 90.38  | 90.91  | 1.60E-08 |          |            |
| IRAK1          | 114.99 | 114.14 | 114.57 | 5.41E-08 |          |            |
| IRAK4          | 94.01  | 92.76  | 93.39  | 3.84E-09 |          |            |
| IRR/INSRR      | 94.69  | 94.54  | 94.62  | 1.64E-08 |          |            |
| ITK            | 101.59 | 101.46 | 101.53 | 1.29E-08 |          |            |
| JAK1           | 87.31  | 86.98  | 87.15  | 3.89E-10 |          |            |
| JAK2           | 74.70  | 73.98  | 74.34  | 3.94E-10 |          |            |
| JAK3           | 107.13 | 103.55 | 105.34 | 1.04E-10 |          |            |
| JNK1           | 98.67  | 95.39  | 97.03  | 8.29E-07 |          |            |
| JNK2           | 102.91 | 101.90 | 102.40 | 2.53E-06 |          |            |
| JNK3           | 97.84  | 97.07  | 97.45  | ND       | 3.06E-07 | JNKi VIII  |
| KDR/VEGFR2     | 96.26  | 95.64  | 95.95  | 1.12E-08 |          |            |
| KHS/MAP4K5     | 93.05  | 92.03  | 92.54  | 2.41E-10 |          |            |
| LATS1          | 99.84  | 98.07  | 98.96  | 9.89E-09 |          |            |
| LATS2          | 93.09  | 91.19  | 92.14  | 5.78E-09 |          |            |
| LCK            | 72.09  | 71.93  | 72.01  | 1.76E-09 |          |            |
| LCK2/ICK       | 92.03  | 89.55  | 90.79  | 4.29E-08 |          |            |
| LIMK1          | 92.18  | 89.27  | 90.73  | 2.91E-09 |          |            |
| LIMK2          | 73.30  | 71.69  | 72.50  | 1.30E-07 |          |            |
| LKB1           | 96.36  | 96.34  | 96.35  | 8.20E-08 |          |            |
| LOK/STK10      | 93.17  | 91.56  | 92.36  | 1.19E-08 |          |            |
| LRRK2          | 92.09  | 90.68  | 91.38  | 9.37E-09 |          |            |
| LYN            | 6.05   | 5.84   | 5.95   | 8.68E-10 |          |            |
| LYN B          | 4.87   | 3.79   | 4.33   | 4.34E-09 |          |            |
| MAPKAPK2       | 96.32  | 94.01  | 95.16  | 1.35E-07 |          |            |
| МАРКАРК3       | 102.78 | 102.56 | 102.67 | 5.27E-06 |          |            |
| MAPKAPK5/PRAK  | 96.99  | 96.47  | 96.73  | 3.41E-07 |          |            |
| MARK1          | 91.66  | 89.71  | 90.68  | 2.15E-10 |          |            |
| MARK2/PAR-1Ba  | 95.01  | 94.69  | 94.85  | 1.13E-10 |          |            |
| MARK3          | 103.83 | 101.56 | 102.69 | 2.93E-10 |          |            |
| MARK4          | 100.61 | 98.61  | 99.61  | 1.21E-10 |          |            |
| MEK1           | 108.30 | 103.84 | 106.07 | 3.12E-08 |          |            |
| MEK2           | 99.21  | 96.54  | 97.88  | 4.35E-08 |          |            |
| MEK3           | 99.86  | 99.42  | 99.64  | 2.32E-08 |          |            |
| MEKK1          | 102.71 | 101.55 | 102.13 | 5.69E-07 |          |            |
| MEKK2          | 87.97  | 86.69  | 87.33  | 1.33E-08 |          |            |
| MEKK3          | 115.34 | 112.06 | 113.70 | 4.63E-08 |          |            |
| MELK           | 109.87 | 106.01 | 107.94 | 6.89E-10 |          |            |
| MINK/MINK1     | 100.20 | 100.15 | 100.18 | 7.34E-10 |          |            |
| MKK4           | 100.45 | 98.92  | 99.69  | 1.64E-06 |          |            |
| MKK6           | 104.87 | 103.90 | 104.38 | 5.99E-09 |          |            |
| MLCK/MYLK      | 97.72  | 96.93  | 97.32  | 8.77E-08 |          |            |
| MLCK2/MYLK2    | 98.81  | 97.10  | 97.95  | 1.61E-08 |          |            |
| MLK1/MAP3K9    | 98.49  | 98.16  | 98.33  | 1.55E-09 |          |            |
| MLK2/MAP3K10   | 98.73  | 97.91  | 98.32  | 2.69E-09 |          |            |
| MLK3/MAP3K11   | 96.99  | 96.30  | 96.64  | 3.65E-09 |          |            |
| MNK1           | 98.24  | 95.68  | 96.96  | 5.58E-08 |          |            |
| MNK2           | 100.00 | 99.65  | 99.83  | 2.04E-08 |          |            |
| MRCKa/CDC42BPA | 98.42  | 98.09  | 98.26  | 6.71E-09 |          |            |

| MRCKb/CDC42BPB                 | 92.25  | 90.15  | 91.20  | 3.59E-09  | 1        | I             |
|--------------------------------|--------|--------|--------|-----------|----------|---------------|
| MKCK0/CDC42BPB<br>MSK1/RPS6KA5 | 108.19 | 102.06 | 105.13 | 6.90E-10  |          |               |
|                                | 85.22  | 80.69  | 82.96  | 1.83E-09  |          |               |
| MSK2/RPS6KA4                   |        |        |        |           |          |               |
| MSSK1/STK23                    | 94.21  | 93.52  | 93.86  | 1.62E-06  |          |               |
| MST1/STK4                      | 92.18  | 91.01  | 91.60  | 1.78E-09  |          |               |
| MST2/STK3                      | 101.32 | 101.13 | 101.23 | 3.32E-09  |          |               |
| MST3/STK24                     | 98.06  | 96.35  | 97.21  | 2.62E-09  |          |               |
| MST4                           | 97.08  | 96.58  | 96.83  | 3.34E-09  |          |               |
| MUSK                           | 90.73  | 84.02  | 87.38  | 1.21E-07  |          |               |
| MYLK3                          | 99.90  | 98.98  | 99.44  | 1.82E-07  |          |               |
| MYO3b                          | 98.51  | 98.32  | 98.42  | 5.17E-09  |          |               |
| NEK1                           | 94.87  | 94.75  | 94.81  | 1.73E-08  |          |               |
| NEK11                          | 104.83 | 103.72 | 104.28 | 1.31E-06  |          |               |
| NEK2                           | 98.70  | 98.07  | 98.38  | 5.07E-07  |          |               |
| NEK3                           | 106.32 | 106.18 | 106.25 | >2.00E-05 |          |               |
| NEK4                           | 104.65 | 101.59 | 103.12 | 6.81E-08  |          |               |
| NEK5                           | 91.76  | 91.50  | 91.63  | 5.93E-08  |          |               |
| NEK6                           | 93.92  | 91.10  | 92.51  | ND        | 8.34E-06 | PKR Inhibitor |
| NEK7                           | 94.45  | 91.32  | 92.88  | ND        | 2.19E-06 | PKR Inhibitor |
| NEK9                           | 96.89  | 96.87  | 96.88  | 1.04E-07  |          |               |
| NLK                            | 96.33  | 95.12  | 95.73  | 5.84E-08  |          |               |
| OSR1/OXSR1                     | 98.34  | 97.62  | 97.98  | 6.87E-08  |          |               |
| P38a/MAPK14                    | 104.67 | 100.89 | 102.78 | ND        | 2.04E-08 | SB202190      |
| P38b/MAPK11                    | 99.09  | 96.41  | 97.75  | ND        | 2.64E-08 | SB202190      |
| P38d/MAPK13                    | 97.05  | 95.83  | 96.44  | 1.21E-07  |          |               |
| P38g                           | 99.70  | 98.20  | 98.95  | 2.18E-07  | 1        |               |
| p70S6K/RPS6KB1                 | 99.96  | 98.35  | 99.16  | 5.69E-10  |          |               |
| p70S6Kb/RPS6KB2                | 99.73  | 94.93  | 97.33  | 2.67E-09  |          |               |
| PAK1                           | 100.66 | 100.28 | 100.47 | 5.07E-10  |          |               |
| PAK2                           | 99.49  | 99.36  | 99.43  | 2.96E-09  |          |               |
| PAK3                           | 102.06 | 99.30  | 100.69 | 4.12E-10  | 1        |               |
| PAK4                           | 94.18  | 99.32  | 93.82  | 2.26E-08  |          |               |
| PAK5                           | 102.54 | 102.43 | 102.48 | 3.25E-08  |          |               |
|                                |        |        |        |           |          |               |
| PAK6                           | 99.31  | 98.98  | 99.15  | 6.22E-08  |          |               |
| PASK                           | 94.22  | 91.31  | 92.77  | 1.56E-08  |          |               |
| PBK/TOPK                       | 109.73 | 105.61 | 107.67 | 9.35E-08  |          |               |
| PDGFRa                         | 80.16  | 78.21  | 79.19  | 8.16E-10  |          |               |
| PDGFRb                         | 90.17  | 89.87  | 90.02  | 3.17E-09  |          |               |
| PDK1/PDPK1                     | 105.07 | 104.15 | 104.61 | 4.64E-10  |          |               |
| PHKg1                          | 100.03 | 99.30  | 99.67  | 2.53E-09  |          |               |
| PHKg2                          | 95.49  | 94.40  | 94.95  | 1.03E-09  |          |               |
| PIM1                           | 98.98  | 98.46  | 98.72  | 5.11E-09  |          |               |
| PIM2                           | 103.09 | 100.81 | 101.95 | 4.07E-08  |          |               |
| PIM3                           | 94.43  | 94.10  | 94.27  | 1.34E-10  |          |               |
| РКА                            | 95.32  | 92.90  | 94.11  | 9.30E-10  |          |               |
| PKAcb                          | 107.21 | 105.48 | 106.35 | 1.52E-09  |          |               |
| PKAcg                          | 105.86 | 103.91 | 104.89 | 5.93E-09  |          |               |
| РКСа                           | 98.43  | 97.92  | 98.18  | 3.55E-10  |          |               |
| PKCb1                          | 100.11 | 98.20  | 99.16  | 1.44E-08  |          |               |
| PKCb2                          | 90.98  | 90.22  | 90.60  | 1.93E-09  |          |               |
| PKCd                           | 120.04 | 104.26 | 112.15 | 1.83E-10  |          |               |
| PKCepsilon                     | 96.07  | 96.02  | 96.05  | 2.23E-10  |          |               |
| PKCeta                         | 93.92  | 93.02  | 93.47  | 1.06E-09  | 1        |               |
| PKCg                           | 94.74  | 92.05  | 93.40  | 1.38E-09  | 1        |               |
| 11205                          | 74.74  | 12.05  | 75.40  | 2.31E-09  |          | 1             |

| PKCmu/PRKD1   | 92.08  | 91.08  | 91.58  | 1.48E-09             | 1        |        |
|---------------|--------|--------|--------|----------------------|----------|--------|
| PKCnu/PRKD3   | 96.95  | 95.64  | 96.30  | 9.09E-10             |          |        |
| PKCtheta      | 119.64 | 118.21 | 118.92 | 9.09E-10<br>9.29E-10 |          |        |
| PKCzeta       | 102.04 | 99.30  | 110.67 | 7.08E-08             |          |        |
| PKD2/PRKD2    | 92.68  | 99.30  | 91.92  | 1.39E-09             |          |        |
| PKG1a         | 97.71  | 96.74  | 97.23  | 3.69E-09             |          |        |
| PKG1b         | 82.34  | 80.94  | 81.64  | 3.64E-09             |          |        |
| PKG2/PRKG2    | 85.23  | 83.94  | 84.59  | 1.48E-08             |          |        |
| PKN1/PRK1     | 120.19 | 112.74 | 116.46 | 4.98E-09             |          |        |
| PKN2/PRK2     | 112.91 | 103.99 | 108.45 | 3.31E-09             |          |        |
| PKN3/PRK3     | 104.94 | 103.99 | 104.43 | 1.09E-08             |          |        |
| PLK1          | 104.21 | 103.78 | 104.45 | 2.53E-07             |          |        |
| PLK2          | 97.07  | 96.93  | 97.00  | 2.53E-07<br>2.53E-07 |          |        |
| PLK3          | 106.53 | 106.30 | 106.42 | 2.01E-07             |          |        |
| PLK4/SAK      | 96.09  | 94.23  | 95.16  | 8.67E-09             |          |        |
| PRKX          | 111.62 | 110.34 | 110.98 | 2.48E-09             |          |        |
| PYK2          | 96.91  | 96.69  | 96.80  | 9.12E-09             |          |        |
| RAF1          | 95.81  | 95.72  | 95.76  | ND                   | 1.05E-08 | GW5074 |
| RET           | 94.38  | 92.20  | 93.29  | 2.32E-09             | 1.05E-08 | 0.00/4 |
| RIPK2         | 82.99  | 82.97  | 82.98  | 4.35E-07             |          |        |
| RIPK3         | 96.14  | 95.74  | 95.94  | ND                   | 2.31E-06 | GW5074 |
| RIPK5         | 89.60  | 86.62  | 88.11  | 4.98E-08             | 2.511-00 | 0,00/4 |
| ROCK1         | 106.95 | 104.53 | 105.74 | 7.65E-10             |          |        |
| ROCK2         | 99.31  | 98.41  | 98.86  | 6.52E-10             |          |        |
| RON/MST1R     | 97.13  | 95.42  | 96.28  | 2.10E-07             |          |        |
| ROS/ROS1      | 93.73  | 93.10  | 93.42  | 1.74E-10             |          |        |
| RSK1          | 101.49 | 99.55  | 100.52 | 1.72E-10             |          |        |
| RSK2          | 94.19  | 91.17  | 92.68  | 1.23E-10             |          |        |
| RSK3          | 100.51 | 99.79  | 100.15 | 2.69E-10             |          |        |
| RSK4          | 87.08  | 86.68  | 86.88  | 1.29E-10             |          |        |
| SGK1          | 81.36  | 81.15  | 81.26  | 8.66E-09             |          |        |
| SGK1<br>SGK2  | 97.02  | 96.25  | 96.64  | 1.27E-08             |          |        |
| SGK3/SGKL     | 102.96 | 102.15 | 102.55 | 1.76E-07             |          |        |
| SIK1          | 72.05  | 71.52  | 71.78  | 6.22E-10             |          |        |
| SIK2          | 67.31  | 66.61  | 66.96  | 3.14E-10             |          |        |
| SIK3          | 90.94  | 89.92  | 90.43  | 5.21E-10             |          |        |
| SLK/STK2      | 105.12 | 100.76 | 102.94 | 1.70E-08             |          |        |
| SNARK/NUAK2   | 105.01 | 104.88 | 102.94 | 3.12E-08             |          |        |
| SRMS          | 93.70  | 93.47  | 93.58  | 8.92E-06             |          |        |
| SRPK1         | 93.37  | 89.31  | 91.34  | 2.85E-08             |          |        |
| SRPK2         | 108.84 | 106.63 | 107.73 | 2.80E-07             |          |        |
| SSTK/TSSK6    | 100.55 | 100.03 | 107.75 | 1.46E-07             |          |        |
| STK16         | 100.64 | 99.37  | 100.01 | 2.47E-07             |          |        |
| STK22D/TSSK1  | 85.75  | 83.51  | 84.63  | <7.63E-11            |          |        |
| STK25/YSK1    | 105.35 | 103.12 | 104.24 | 2.00E-09             |          |        |
| STK32B/YANK2  | 104.24 | 99.86  | 102.05 | 1.57E-07             |          |        |
| STK32C/YANK3  | 101.00 | 99.55  | 100.27 | 3.83E-07             |          |        |
| STK32C/TRICKS | 81.99  | 80.40  | 81.20  | 3.78E-08             | 1        |        |
| STK38/NDR1    | 93.73  | 90.14  | 91.94  | 1.15E-08             | 1        |        |
| STK38L/NDR2   | 94.69  | 94.19  | 94.44  | 1.28E-09             | 1        |        |
| STK39/STLK3   | 94.61  | 93.13  | 93.87  | 2.62E-08             | 1        |        |
| SYK           | 98.07  | 97.76  | 97.91  | 4.63E-10             | 1        |        |
| TAK1          | 101.50 | 101.43 | 101.47 | 5.07E-08             | 1        |        |
| TAOK1         | 97.98  | 95.83  | 96.91  | 1.22E-09             | 1        |        |
| TAOK2/TAO1    | 100.70 | 100.63 | 100.66 | 7.44E-09             | 1        |        |

| TAOK3/JIK              | 93.92          | 92.17  | 93.05  | 2.02E-09 |           |               |
|------------------------|----------------|--------|--------|----------|-----------|---------------|
| TBK1                   | 99.74          | 96.45  | 98.09  | 3.03E-09 |           |               |
| TEC                    | 98.65          | 97.03  | 97.84  | 5.74E-08 |           |               |
| TESK1                  | 102.49         | 100.97 | 101.73 | 6.26E-07 |           |               |
| TGFBR2                 | 102.81         | 100.94 | 101.87 | ND       | 8.99E-08  | LDN193189     |
| TIE2/TEK               | 98.54          | 97.93  | 98.23  | 8.30E-08 |           |               |
| TLK1                   | 106.35         | 104.34 | 105.34 | 2.16E-08 |           |               |
| TLK2                   | 103.67         | 102.60 | 103.13 | 3.10E-09 |           |               |
| TNIK                   | 94.42          | 93.91  | 94.17  | 4.84E-10 |           |               |
| TNK1                   | 94.72          | 93.86  | 94.29  | 2.26E-09 |           |               |
| TRKA                   | 91.21          | 89.91  | 90.56  | 1.53E-09 |           |               |
| TRKB                   | 97.13          | 96.67  | 96.90  | 9.34E-11 |           |               |
| TRKC                   | 84.82          | 84.44  | 84.63  | 2.84E-10 |           |               |
| TSSK2                  | 100.89         | 100.69 | 100.79 | 6.02E-09 |           |               |
| TSSK3/STK22C           | 109.54         | 107.61 | 108.58 | 5.33E-09 |           |               |
| TTBK1                  | 100.31         | 99.10  | 99.71  | ND       | >2.00E-05 | SB202190      |
| ТТВК2                  | 121.19         | 116.68 | 118.93 | ND       | 7.51E-06  | SB202190      |
| ТХК                    | 86.65          | 84.62  | 85.63  | 3.60E-08 |           |               |
| TYK1/LTK               | 98.59          | 97.10  | 97.84  | 2.97E-08 |           |               |
| ТҮК2                   | 95.80          | 95.18  | 95.49  | 2.44E-10 |           |               |
| TYRO3/SKY              | 98.80          | 98.45  | 98.62  | 3.55E-09 |           |               |
| ULK1                   | 98.97          | 97.19  | 98.08  | 7.58E-09 |           |               |
| ULK2                   | 104.09         | 98.50  | 101.29 | 2.01E-09 |           |               |
| ULK3                   | 93.04          | 91.84  | 92.44  | 6.61E-09 |           |               |
| VRK1                   | 120.44         | 115.26 | 117.85 | ND       | 9.85E-07  | Ro-31-8220    |
| VRK2                   | 86.70          | 82.46  | 84.58  | ND       | 2.80E-05  | Ro-31-8220    |
| WEE1                   | 109.20         | 105.61 | 107.41 | ND       | 6.66E-07  | Wee-1 Inhibit |
| WNK1                   | 91.91          | 94.67  | 93.29  | 1.26E-05 | 0.002 07  |               |
| WNK2                   | 96.75          | 94.80  | 95.78  | 1.15E-06 |           |               |
| WNK3                   | 97.09          | 95.89  | 96.49  | ND       | 2.51E-06  | Wee-1 Inhibit |
| YES/YES1               | 34.10          | 32.74  | 33.42  | 2.78E-09 | 2.511 00  |               |
| ZAK/MLTK               | 100.02         | 96.37  | 98.20  | ND       | 1.32E-06  | GW5074        |
| ZAP70                  | 100.02         | 101.00 | 101.54 | 1.05E-08 | 1.521 00  | 0.00071       |
| ZIPK/DAPK3             | 102.00         | 101.00 | 101.54 | 2.69E-09 |           |               |
| CDK14/cyclin Y (PFTK1) | 98.67          | 98.02  | 98.35  | 4.76E-08 |           |               |
| CDK17/cyclin Y (PCTK2) | 92.57          | 92.40  | 92.49  | 1.19E-08 |           |               |
| CDK18/cyclin Y (PCTK3) | 101.88         | 99.59  | 100.73 | 2.20E-08 |           |               |
| CDK16/cyclin O         | 83.78          | 81.25  | 82.51  | 1.67E-09 |           |               |
| CK1a1L                 | 99.76          | 94.67  | 97.22  | 1.85E-06 |           |               |
| ERN2/IRE2              | 89.64          | 89.47  | 89.55  | 3.68E-08 |           |               |
| KSR1                   | 102.47         | 102.08 | 102.28 | 7.88E-06 |           |               |
| KSR1<br>KSR2           | 102.47         | 102.08 | 102.28 | 4.44E-06 |           |               |
| MAK                    | 98.27          | 97.98  | 98.12  | 2.40E-08 |           |               |
| MAK<br>MEKK6           | 96.98          | 96.26  | 96.62  | 6.06E-07 |           |               |
| MKK7                   | 90.98          | 90.20  | 98.17  | 6.13E-07 |           |               |
| MKK7<br>MLK4           | 98.63          | 97.72  | 98.17  | 6.94E-07 | +         |               |
|                        | 97.17<br>99.87 | 94.42  |        |          |           |               |
| MYO3A                  |                |        | 98.41  | 2.11E-08 |           |               |
| NIM1                   | 103.86         | 103.47 | 103.67 | 1.38E-07 |           |               |
| PEAK1                  | 0.03           | -0.19  | -0.08  | 2.87E-09 |           |               |
| STK21/CIT              | 100.89         | 100.35 | 100.62 | 5.81E-07 | 1         |               |

**Table S2**. Selected RBC kinase  $IC_{50}$ 's for compound **6**.

| BL             | <b>—</b>        |                        |                 |
|----------------|-----------------|------------------------|-----------------|
| Cpd 6 conc.(M) | Enzyme activity | Staurosporine Conc.(M) | Enzyme activity |
| 3.00E-05       | 98.33           | 2.00E-05               | 2.74            |
| 1.00E-05       | 92.94           | 5.00E-06               | 7.07            |
| 3.33E-06       | 97.16           | 1.25E-06               | 7.05            |
| 1.11E-06       | 94.95           | 3.13E-07               | 19.95           |
| 3.70E-07       | 107.79          | 7.81E-08               | 50.45           |
| 1.23E-07       | 96.59           | 1.95E-08               | 81.15           |
| 4.12E-08       | 97.49           | 4.88E-09               | 89.98           |
| 1.37E-08       | 93.19           | 1.22E-09               | 93.89           |
| 4.57E-09       | 90.31           | 3.05E-10               | 97.84           |
| 1.52E-09       | 97.70           | 7.63E-11               | 97.27           |
| DMSO           | 97.58           | DMSO                   | 102.42          |
| BL2/ARG        |                 |                        |                 |
| Cpd 6 conc.(M) | Enzyme activity | Staurosporine Conc.(M) | Enzyme activity |
| 3.00E-05       | 104.12          | 2.00E-05               | 0.61            |
| 1.00E-05       | 100.40          | 5.00E-06               | 4.26            |
| 3.33E-06       | 102.36          | 1.25E-06               | -1.38           |
| 1.11E-06       | 95.38           | 3.13E-07               | 7.51            |
| 3.70E-07       | 107.27          | 7.81E-08               | 24.18           |
| 1.23E-07       | 100.95          | 1.95E-08               | 56.54           |
| 4.12E-08       | 93.52           | 4.88E-09               | 81.06           |
| 1.37E-08       | 103.77          | 1.22E-09               | 95.09           |
| 4.57E-09       | 99.09           | 3.05E-10               | 101.43          |
| 1.52E-09       | 104.61          | 7.63E-11               | 105.90          |
| DMSO           | 102.74          | DMSO                   | 97.26           |
| LK             |                 |                        |                 |
| Cpd 6 conc.(M) | Enzyme activity | Staurosporine Conc.(M) | Enzyme activity |
| 3.00E-05       | 105.18          | 2.00E-05               | 0.80            |
| 1.00E-05       | 114.05          | 5.00E-06               | 0.08            |
| 3.33E-06       | 115.89          | 1.25E-06               | 0.00            |
| 1.11E-06       | 109.10          | 3.13E-07               | 1.44            |
| 3.70E-07       | 111.82          | 7.81E-08               | 0.75            |
| 1.23E-07       | 104.12          | 1.95E-08               | 7.82            |
| 4.12E-08       | 92.30           | 4.88E-09               | 22.55           |
| 1.37E-08       | 104.06          | 1.22E-09               | 53.54           |
| 4.57E-09       | 107.30          | 3.05E-10               | 85.52           |
| 1.52E-09       | 102.44          | 7.63E-11               | 98.94           |
| DMSO           | 102.34          | DMSO                   | 97.66           |
| Src            |                 |                        |                 |
| Cpd 6 conc.(M) | Enzyme activity | Staurosporine Conc.(M) | Enzyme activity |
|                |                 |                        |                 |

| 1.00E-05                                                                                                | 105.26                                                                                                              | 5.00E-06                                                                                               | 0.20                                                                           |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 3.33E-06                                                                                                | 106.77                                                                                                              | 1.25E-06                                                                                               | 0.93                                                                           |
| 1.11E-06                                                                                                | 106.08                                                                                                              | 3.13E-07                                                                                               | 0.59                                                                           |
| 3.70E-07                                                                                                | 110.78                                                                                                              | 7.81E-08                                                                                               | 4.41                                                                           |
| 1.23E-07                                                                                                | 103.01                                                                                                              | 1.95E-08                                                                                               | 15.49                                                                          |
| 4.12E-08                                                                                                | 102.80                                                                                                              | 4.88E-09                                                                                               | 43.50                                                                          |
| 1.37E-08                                                                                                | 107.86                                                                                                              | 1.22E-09                                                                                               | 76.88                                                                          |
| 4.57E-09                                                                                                | 105.08                                                                                                              | 3.05E-10                                                                                               | 95.14                                                                          |
| 1.52E-09                                                                                                | 102.59                                                                                                              | 7.63E-11                                                                                               | 101.02                                                                         |
| DMSO                                                                                                    | 100.72                                                                                                              | DMSO                                                                                                   | 99.28                                                                          |
| DDR2                                                                                                    |                                                                                                                     |                                                                                                        |                                                                                |
| Cpd 6 conc.(M)                                                                                          | Enzyme activity                                                                                                     | Staurosporine Conc.(M)                                                                                 | Enzyme activity                                                                |
| 3.00E-05                                                                                                | 96.47                                                                                                               | 2.00E-05                                                                                               | 5.82                                                                           |
| 1.00E-05                                                                                                | 112.30                                                                                                              | 5.00E-06                                                                                               | 5.55                                                                           |
| 3.33E-06                                                                                                | 103.48                                                                                                              | 1.25E-06                                                                                               | 6.04                                                                           |
| 1.11E-06                                                                                                | 100.72                                                                                                              | 3.13E-07                                                                                               | 2.66                                                                           |
| 3.70E-07                                                                                                | 107.16                                                                                                              | 7.81E-08                                                                                               | 7.44                                                                           |
| 1.23E-07                                                                                                | 106.72                                                                                                              | 1.95E-08                                                                                               | 0.98                                                                           |
| 4.12E-08                                                                                                | 99.08                                                                                                               | 4.88E-09                                                                                               | 6.55                                                                           |
| 1.37E-08                                                                                                | 100.39                                                                                                              | 1.22E-09                                                                                               | 8.95                                                                           |
| 4.57E-09                                                                                                | 102.20                                                                                                              | 3.05E-10                                                                                               | 27.48                                                                          |
| 1.52E-09                                                                                                | 94.46                                                                                                               | 7.63E-11                                                                                               | 66.47                                                                          |
| DMSO                                                                                                    | 100.33                                                                                                              | DMSO                                                                                                   | 99.67                                                                          |
| ЕРНА5                                                                                                   |                                                                                                                     |                                                                                                        | I                                                                              |
| Cpd 6 conc.(M)                                                                                          | Enzyme activity                                                                                                     | Staurosporine Conc.(M)                                                                                 | Enzyme activity                                                                |
| 3.00E-05                                                                                                | 100.32                                                                                                              | 2.00E-05                                                                                               | 3.30                                                                           |
| 1.00E-05                                                                                                | 98.01                                                                                                               | 5.00E-06                                                                                               | 0.12                                                                           |
| 3.33E-06                                                                                                | 100.04                                                                                                              | 1.25E-06                                                                                               | 3.46                                                                           |
| 1.11E-06                                                                                                | 101.68                                                                                                              | 3.13E-07                                                                                               | 13.03                                                                          |
| 3.70E-07                                                                                                |                                                                                                                     |                                                                                                        |                                                                                |
| J./UE-0/                                                                                                | 104.14                                                                                                              | 7.81E-08                                                                                               | 33.81                                                                          |
| 1.23E-07                                                                                                | 104.14<br>98.64                                                                                                     | 7.81E-08<br>1.95E-08                                                                                   | 33.81<br>63.75                                                                 |
|                                                                                                         |                                                                                                                     |                                                                                                        |                                                                                |
| 1.23E-07                                                                                                | 98.64                                                                                                               | 1.95E-08                                                                                               | 63.75                                                                          |
| 1.23E-07<br>4.12E-08                                                                                    | 98.64<br>103.74                                                                                                     | 1.95E-08<br>4.88E-09                                                                                   | 63.75<br>85.84                                                                 |
| 1.23E-07<br>4.12E-08<br>1.37E-08                                                                        | 98.64<br>103.74<br>101.31                                                                                           | 1.95E-08<br>4.88E-09<br>1.22E-09                                                                       | 63.75<br>85.84<br>98.24                                                        |
| 1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09                                                            | 98.64<br>103.74<br>101.31<br>96.20                                                                                  | 1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10                                                           | 63.75<br>85.84<br>98.24<br>97.83                                               |
| 1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09                                                | 98.64<br>103.74<br>101.31<br>96.20<br>96.21                                                                         | 1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11                                               | 63.75<br>85.84<br>98.24<br>97.83<br>99.51                                      |
| 1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO                                        | 98.64<br>103.74<br>101.31<br>96.20<br>96.21                                                                         | 1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11                                               | 63.75<br>85.84<br>98.24<br>97.83<br>99.51                                      |
| 1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO<br>EPHB2                               | 98.64<br>103.74<br>101.31<br>96.20<br>96.21<br>97.41                                                                | 1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO                                       | 63.75<br>85.84<br>98.24<br>97.83<br>99.51<br>102.59                            |
| 1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO<br>EPHB2<br>Cpd 6 conc.(M)             | 98.64<br>103.74<br>101.31<br>96.20<br>96.21<br>97.41<br>Enzyme activity                                             | 1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO<br>Staurosporine Conc.(M)             | 63.75<br>85.84<br>98.24<br>97.83<br>99.51<br>102.59<br>Enzyme activity         |
| 1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO<br>EPHB2<br>Cpd 6 conc.(M)<br>3.00E-05 | 98.64         103.74         101.31         96.20         96.21         97.41         Enzyme activity         98.88 | 1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO<br>Staurosporine Conc.(M)<br>2.00E-05 | 63.75<br>85.84<br>98.24<br>97.83<br>99.51<br>102.59<br>Enzyme activity<br>2.53 |

| 3.70E-07                                                                                                                                                                 | 105.13                                                                                                                                                                                           | 7.81E-08                                                                                                                                                                  | 79.40                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.23E-07                                                                                                                                                                 | 98.81                                                                                                                                                                                            | 1.95E-08                                                                                                                                                                  | 94.41                                                                                                                                                     |
| 4.12E-08                                                                                                                                                                 | 100.11                                                                                                                                                                                           | 4.88E-09                                                                                                                                                                  | 96.73                                                                                                                                                     |
| 1.37E-08                                                                                                                                                                 | 99.74                                                                                                                                                                                            | 1.22E-09                                                                                                                                                                  | 98.77                                                                                                                                                     |
| 4.57E-09                                                                                                                                                                 | 102.04                                                                                                                                                                                           | 3.05E-10                                                                                                                                                                  | 102.23                                                                                                                                                    |
| 1.52E-09                                                                                                                                                                 | 98.77                                                                                                                                                                                            | 7.63E-11                                                                                                                                                                  | 104.62                                                                                                                                                    |
| DMSO                                                                                                                                                                     | 96.32                                                                                                                                                                                            | DMSO                                                                                                                                                                      | 103.68                                                                                                                                                    |
| FGR                                                                                                                                                                      |                                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                                                           |
| Cpd 6 conc.(M)                                                                                                                                                           | Enzyme activity                                                                                                                                                                                  | Staurosporine Conc.(M)                                                                                                                                                    | Enzyme activity                                                                                                                                           |
| 3.00E-05                                                                                                                                                                 | 96.37                                                                                                                                                                                            | 2.00E-05                                                                                                                                                                  | 0.91                                                                                                                                                      |
| 1.00E-05                                                                                                                                                                 | 100.80                                                                                                                                                                                           | 5.00E-06                                                                                                                                                                  | 2.33                                                                                                                                                      |
| 3.33E-06                                                                                                                                                                 | 97.69                                                                                                                                                                                            | 1.25E-06                                                                                                                                                                  | 0.81                                                                                                                                                      |
| 1.11E-06                                                                                                                                                                 | 97.44                                                                                                                                                                                            | 3.13E-07                                                                                                                                                                  | 2.49                                                                                                                                                      |
| 3.70E-07                                                                                                                                                                 | 102.69                                                                                                                                                                                           | 7.81E-08                                                                                                                                                                  | 2.96                                                                                                                                                      |
| 1.23E-07                                                                                                                                                                 | 100.61                                                                                                                                                                                           | 1.95E-08                                                                                                                                                                  | 9.31                                                                                                                                                      |
| 4.12E-08                                                                                                                                                                 | 98.83                                                                                                                                                                                            | 4.88E-09                                                                                                                                                                  | 26.92                                                                                                                                                     |
| 1.37E-08                                                                                                                                                                 | 101.46                                                                                                                                                                                           | 1.22E-09                                                                                                                                                                  | 60.64                                                                                                                                                     |
| 4.57E-09                                                                                                                                                                 | 102.36                                                                                                                                                                                           | 3.05E-10                                                                                                                                                                  | 85.70                                                                                                                                                     |
| 1.52E-09                                                                                                                                                                 | 94.16                                                                                                                                                                                            | 7.63E-11                                                                                                                                                                  | 100.29                                                                                                                                                    |
| DMSO                                                                                                                                                                     | 100.08                                                                                                                                                                                           | DMSO                                                                                                                                                                      | 99.92                                                                                                                                                     |
| FRK/PTK5                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                                                           |
| Cpd 6 conc.(M)                                                                                                                                                           | Enzyme activity                                                                                                                                                                                  | Staurosporine Conc.(M)                                                                                                                                                    | Enzyme activity                                                                                                                                           |
| 3.00E-05                                                                                                                                                                 | 96.26                                                                                                                                                                                            | 2.00E-05                                                                                                                                                                  | 2.80                                                                                                                                                      |
| 1.00E-05                                                                                                                                                                 | 99.42                                                                                                                                                                                            | 5.00E-06                                                                                                                                                                  | 2.66                                                                                                                                                      |
| 2.225.06                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                                                                                           | 6.60                                                                                                                                                      |
| 3.33E-06                                                                                                                                                                 | 99.23                                                                                                                                                                                            | 1.25E-06                                                                                                                                                                  | 6.60                                                                                                                                                      |
| 3.33E-06<br>1.11E-06                                                                                                                                                     | 99.23<br>100.58                                                                                                                                                                                  | 3.13E-07                                                                                                                                                                  | 6.60                                                                                                                                                      |
|                                                                                                                                                                          |                                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                                                           |
| 1.11E-06                                                                                                                                                                 | 100.58                                                                                                                                                                                           | 3.13E-07                                                                                                                                                                  | 15.18                                                                                                                                                     |
| 1.11E-06<br>3.70E-07                                                                                                                                                     | 100.58<br>105.20                                                                                                                                                                                 | 3.13E-07<br>7.81E-08                                                                                                                                                      | 15.18<br>40.82                                                                                                                                            |
| 1.11E-06<br>3.70E-07<br>1.23E-07                                                                                                                                         | 100.58<br>105.20<br>101.95                                                                                                                                                                       | 3.13E-07<br>7.81E-08<br>1.95E-08                                                                                                                                          | 15.18<br>40.82<br>73.53                                                                                                                                   |
| 1.11E-06<br>3.70E-07<br>1.23E-07<br>4.12E-08                                                                                                                             | 100.58           105.20           101.95           97.18                                                                                                                                         | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09                                                                                                                              | 15.18<br>40.82<br>73.53<br>90.91                                                                                                                          |
| 1.11E-06         3.70E-07         1.23E-07         4.12E-08         1.37E-08                                                                                             | 100.58           105.20           101.95           97.18           99.10                                                                                                                         | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09                                                                                                                  | 15.18<br>40.82<br>73.53<br>90.91<br>99.50                                                                                                                 |
| 1.11E-06         3.70E-07         1.23E-07         4.12E-08         1.37E-08         4.57E-09                                                                            | 100.58           105.20           101.95           97.18           99.10           102.00                                                                                                        | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10                                                                                                      | 15.18<br>40.82<br>73.53<br>90.91<br>99.50<br>97.41                                                                                                        |
| 1.11E-06         3.70E-07         1.23E-07         4.12E-08         1.37E-08         4.57E-09         1.52E-09                                                           | 100.58           105.20           101.95           97.18           99.10           102.00           97.05                                                                                        | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11                                                                                          | 15.18         40.82         73.53         90.91         99.50         97.41         99.46                                                                 |
| 1.11E-06         3.70E-07         1.23E-07         4.12E-08         1.37E-08         4.57E-09         1.52E-09         DMSO                                              | 100.58           105.20           101.95           97.18           99.10           102.00           97.05                                                                                        | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11                                                                                          | 15.18         40.82         73.53         90.91         99.50         97.41         99.46                                                                 |
| 1.11E-06<br>3.70E-07<br>1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO<br>FYN                                                                          | 100.58           105.20           101.95           97.18           99.10           102.00           97.05           101.41                                                                       | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO                                                                                  | 15.18<br>40.82<br>73.53<br>90.91<br>99.50<br>97.41<br>99.46<br>98.59                                                                                      |
| 1.11E-06<br>3.70E-07<br>1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO<br>FYN<br>Cpd 6 conc.(M)                                                        | 100.58         105.20         101.95         97.18         99.10         102.00         97.05         101.41                                                                                     | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO<br>Staurosporine Conc.(M)                                                        | 15.18<br>40.82<br>73.53<br>90.91<br>99.50<br>97.41<br>99.46<br>98.59<br>Enzyme activity                                                                   |
| 1.11E-06<br>3.70E-07<br>1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO<br>FYN<br>Cpd 6 conc.(M)<br>3.00E-05                                            | 100.58         105.20         101.95         97.18         99.10         102.00         97.05         101.41                                                                                     | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO<br>Staurosporine Conc.(M)<br>2.00E-05                                            | 15.18         40.82         73.53         90.91         99.50         97.41         99.46         98.59    Enzyme activity                                |
| 1.11E-06<br>3.70E-07<br>1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO<br><b>FYN</b><br>Cpd 6 conc.(M)<br>3.00E-05<br>1.00E-05                         | 100.58         105.20         101.95         97.18         99.10         102.00         97.05         101.41                                                                                     | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO<br><b>Staurosporine Conc.(M)</b><br>2.00E-05<br>5.00E-06                         | 15.18         40.82         73.53         90.91         99.50         97.41         99.46         98.59         Enzyme activity         1.53         1.32 |
| 1.11E-06<br>3.70E-07<br>1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>0MSO<br>FYN<br>Cpd 6 conc.(M)<br>3.00E-05<br>1.00E-05<br>3.33E-06                    | 100.58         105.20         101.95         97.18         99.10         102.00         97.05         101.41         Enzyme activity         104.38         105.58         103.91                | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO<br><b>Staurosporine Conc.(M)</b><br>2.00E-05<br>5.00E-06<br>1.25E-06             | 15.18<br>40.82<br>73.53<br>90.91<br>99.50<br>97.41<br>99.46<br>98.59<br><b>Enzyme activity</b><br>1.53<br>1.32<br>-0.20                                   |
| 1.11E-06<br>3.70E-07<br>1.23E-07<br>4.12E-08<br>1.37E-08<br>4.57E-09<br>1.52E-09<br>DMSO<br><b>FYN</b><br>Cpd 6 conc.(M)<br>3.00E-05<br>1.00E-05<br>3.33E-06<br>1.11E-06 | 100.58         105.20         101.95         97.18         99.10         102.00         97.05         101.41         Enzyme activity         104.38         105.58         103.91         106.37 | 3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09<br>1.22E-09<br>3.05E-10<br>7.63E-11<br>DMSO<br><b>Staurosporine Conc.(M)</b><br>2.00E-05<br>5.00E-06<br>1.25E-06<br>3.13E-07 | 15.18<br>40.82<br>73.53<br>90.91<br>99.50<br>97.41<br>99.46<br>98.59<br><b>Enzyme activity</b><br>1.53<br>1.32<br>-0.20<br>3.03                           |

| 1.37E-08                                                    | 102.69                                                                   | 1.22E-09                                                 | 67.94                                  |
|-------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|
| 4.57E-09                                                    | 105.18                                                                   | 3.05E-10                                                 | 94.32                                  |
| 1.52E-09                                                    | 105.12                                                                   | 7.63E-11                                                 | 103.12                                 |
| DMSO                                                        | 101.35                                                                   | DMSO                                                     | 98.65                                  |
| LYN                                                         |                                                                          |                                                          |                                        |
| Cpd 6 conc.(M)                                              | Enzyme activity                                                          | Staurosporine Conc.(M)                                   | Enzyme activity                        |
| 3.00E-05                                                    | 99.76                                                                    | 2.00E-05                                                 | -0.25                                  |
| 1.00E-05                                                    | 105.03                                                                   | 5.00E-06                                                 | 0.46                                   |
| 3.33E-06                                                    | 103.88                                                                   | 1.25E-06                                                 | 0.07                                   |
| 1.11E-06                                                    | 104.13                                                                   | 3.13E-07                                                 | 0.71                                   |
| 3.70E-07                                                    | 108.88                                                                   | 7.81E-08                                                 | 2.43                                   |
| 1.23E-07                                                    | 105.71                                                                   | 1.95E-08                                                 | 6.77                                   |
| 4.12E-08                                                    | 111.22                                                                   | 4.88E-09                                                 | 16.61                                  |
| 1.37E-08                                                    | 109.72                                                                   | 1.22E-09                                                 | 45.84                                  |
| 4.57E-09                                                    | 107.08                                                                   | 3.05E-10                                                 | 78.56                                  |
| 1.52E-09                                                    | 101.33                                                                   | 7.63E-11                                                 | 97.56                                  |
| DMSO                                                        | 98.94                                                                    | DMSO                                                     | 101.06                                 |
| LYN B                                                       |                                                                          |                                                          |                                        |
| Cpd 6 conc.(M)                                              | Enzyme activity                                                          | Staurosporine Conc.(M)                                   | Enzyme activity                        |
| 3.00E-05                                                    | 104.27                                                                   | 2.00E-05                                                 | 1.14                                   |
| 1.00E-05                                                    | 99.43                                                                    | 5.00E-06                                                 | -1.81                                  |
| 3.33E-06                                                    | 103.19                                                                   | 1.25E-06                                                 | 0.78                                   |
| 1.11E-06                                                    | 103.57                                                                   | 3.13E-07                                                 | 5.95                                   |
| 3.70E-07                                                    | 104.45                                                                   | 7.81E-08                                                 | 12.51                                  |
| 1.23E-07                                                    | 108.95                                                                   | 1.95E-08                                                 | 27.74                                  |
| 4.12E-08                                                    | 108.18                                                                   | 4.88E-09                                                 | 58.22                                  |
| 1.37E-08                                                    | 104.23                                                                   | 1.22E-09                                                 | 95.35                                  |
| 4.57E-09                                                    | 106.29                                                                   | 3.05E-10                                                 | 98.96                                  |
| 1.52E-09                                                    | 103.48                                                                   | 7.63E-11                                                 | 100.07                                 |
| DMSO                                                        | 99.73                                                                    | DMSO                                                     | 100.27                                 |
| PEAK1                                                       |                                                                          | -                                                        | -                                      |
| Cpd 6 conc.(M)                                              | Enzyme activity                                                          | Staurosporine Conc.(M)                                   | Enzyme activity                        |
| 3.00E-05                                                    | 97.38                                                                    | 2.00E-05                                                 | -0.03                                  |
| 1.00E-05                                                    | 99.90                                                                    | 5.00E-06                                                 | 0.20                                   |
|                                                             | 77.70                                                                    |                                                          |                                        |
| 3.33E-06                                                    | 99.50                                                                    | 1.25E-06                                                 | 2.21                                   |
| 3.33E-06<br>1.11E-06                                        |                                                                          |                                                          |                                        |
|                                                             | 99.50                                                                    | 1.25E-06                                                 | 2.21                                   |
| 1.11E-06                                                    | 99.50<br>99.77                                                           | 1.25E-06<br>3.13E-07                                     | 2.21<br>0.96                           |
| 1.11E-06<br>3.70E-07                                        | 99.50<br>99.77<br>109.05                                                 | 1.25E-06<br>3.13E-07<br>7.81E-08                         | 2.21<br>0.96<br>5.86                   |
| 1.11E-06<br>3.70E-07<br>1.23E-07                            | 99.50           99.77           109.05           104.60                  | 1.25E-06<br>3.13E-07<br>7.81E-08<br>1.95E-08             | 2.21<br>0.96<br>5.86<br>13.85          |
| 1.11E-06         3.70E-07         1.23E-07         4.12E-08 | 99.50           99.77           109.05           104.60           102.15 | 1.25E-06<br>3.13E-07<br>7.81E-08<br>1.95E-08<br>4.88E-09 | 2.21<br>0.96<br>5.86<br>13.85<br>39.71 |

| DMSO           | 97.95           | DMSO                   | 102.05          |
|----------------|-----------------|------------------------|-----------------|
| YES/YES1       |                 |                        |                 |
| Cpd 6 conc.(M) | Enzyme activity | Staurosporine Conc.(M) | Enzyme activity |
| 3.00E-05       | 98.37           | 2.00E-05               | 0.44            |
| 1.00E-05       | 101.54          | 5.00E-06               | 0.36            |
| 3.33E-06       | 92.69           | 1.25E-06               | 1.15            |
| 1.11E-06       | 95.73           | 3.13E-07               | 1.44            |
| 3.70E-07       | 97.90           | 7.81E-08               | 4.49            |
| 1.23E-07       | 98.77           | 1.95E-08               | 13.93           |
| 4.12E-08       | 96.71           | 4.88E-09               | 35.62           |
| 1.37E-08       | 99.98           | 1.22E-09               | 68.42           |
| 4.57E-09       | 99.46           | 3.05E-10               | 90.41           |
| 1.52E-09       | 99.86           | 7.63E-11               | 95.15           |
| DMSO           | 99.71           | DMSO                   | 100.29          |

#### Percent enzyme inhibition against DiscoveRx KINOMEscan<sup>™</sup> profiling service

Compound **6** was tested at 10  $\mu$ M in duplicate against 456 kinases (395 non-mutant kinases) in the DiscoveRx KINOMEscan<sup>®</sup> kinase profile panel [Fabian, 2005] as shown in Table S3. ATP was not used in the KINOMEscan<sup>®</sup> competition binding assay platform (http://www.discoverx.com).

Table S3. DiscoveRx kinase panel for compound 6.

 $\diamond$ 

| Kinase                        | % Enzyme Activity | Molar Conc (µM) |
|-------------------------------|-------------------|-----------------|
| ABL1(E255K)-phosphorylated    | 87                | 10000           |
| ABL1(F317I)-nonphosphorylated | 90                | 10000           |
| ABL1(F317I)-phosphorylated    | 82                | 10000           |
| ABL1(F317L)-nonphosphorylated | 87                | 10000           |
| ABL1(F317L)-phosphorylated    | 85                | 10000           |
| ABL1(H396P)-nonphosphorylated | 97                | 10000           |
| ABL1(H396P)-phosphorylated    | 90                | 10000           |
| ABL1(M351T)-phosphorylated    | 90                | 10000           |
| ABL1(Q252H)-nonphosphorylated | 96                | 10000           |
| ABL1(Q252H)-phosphorylated    | 89                | 10000           |
| ABL1(T315I)-nonphosphorylated | 91                | 10000           |
| ABL1(T315I)-phosphorylated    | 72                | 10000           |
| ABL1(Y253F)-phosphorylated    | 77                | 10000           |
| ABL1-nonphosphorylated        | 91                | 10000           |
| ABL1-phosphorylated           | 78                | 10000           |
| ABL2                          | 94                | 10000           |
| ACVR1                         | 90                | 10000           |
| ACVR1B                        | 97                | 10000           |
| ACVR2A                        | 94                | 10000           |

| ACVR2B      | 92  | 10000 |
|-------------|-----|-------|
| ACVRL1      | 99  | 10000 |
| ADCK3       | 100 | 10000 |
| ADCK4       | 100 | 10000 |
| AKT1        | 82  | 10000 |
| AKT2        | 89  | 10000 |
| АКТ3        | 89  | 10000 |
| ALK         | 100 | 10000 |
| ALK(C1156Y) | 84  | 10000 |
| ALK(L1196M) | 96  | 10000 |
| AMPK-alpha1 | 86  | 10000 |
| AMPK-alpha2 | 93  | 10000 |
| ANKK1       | 88  | 10000 |
| ARK5        | 100 | 10000 |
| ASK1        | 100 | 10000 |
| ASK2        | 77  | 10000 |
| AURKA       | 84  | 10000 |
| AURKB       | 89  | 10000 |
| AURKC       | 82  | 10000 |
| AXL         | 92  | 10000 |
| BIKE        | 94  | 10000 |
| BLK         | 93  | 10000 |
| BMPR1A      | 84  | 10000 |
| BMPR1B      | 81  | 10000 |
| BMPR2       | 83  | 10000 |
| BMX         | 95  | 10000 |
| BRAF        | 87  | 10000 |
| BRAF(V600E) | 93  | 10000 |
| BRK         | 100 | 10000 |
| BRSK1       | 100 | 10000 |
| BRSK2       | 100 | 10000 |
| BTK         | 100 | 10000 |
| BUB1        | 100 | 10000 |
| CAMK1       | 52  | 10000 |
| CAMK1D      | 58  | 10000 |
| CAMK1G      | 97  | 10000 |
| CAMK2A      | 100 | 10000 |
| CAMK2B      | 100 | 10000 |
| CAMK2D      | 97  | 10000 |
| CAMK2G      | 90  | 10000 |
| CAMK4       | 79  | 10000 |
| CAMKK1      | 95  | 10000 |

| CAMKK2              | 95  | 10000 |
|---------------------|-----|-------|
| CASK                | 87  | 10000 |
| CDC2L1              | 100 | 10000 |
| CDC2L2              | 94  | 10000 |
| CDC2L5              | 63  | 10000 |
| CDK11               | 83  | 10000 |
| CDK2                | 98  | 10000 |
| CDK3                | 100 | 10000 |
| CDK4-cyclinD1       | 100 | 10000 |
| CDK4-cyclinD3       | 81  | 10000 |
| CDK5                | 91  | 10000 |
| CDK7                | 79  | 10000 |
| CDK8                | 100 | 10000 |
| CDK9                | 96  | 10000 |
| CDKL1               | 97  | 10000 |
| CDKL2               | 100 | 10000 |
| CDKL3               | 82  | 10000 |
| CDKL5               | 83  | 10000 |
| CHEK1               | 99  | 10000 |
| CHEK2               | 98  | 10000 |
| CIT                 | 96  | 10000 |
| CLK1                | 80  | 10000 |
| CLK2                | 100 | 10000 |
| CLK3                | 88  | 10000 |
| CLK4                | 93  | 10000 |
| CSF1R               | 83  | 10000 |
| CSF1R-autoinhibited | 94  | 10000 |
| CSK                 | 98  | 10000 |
| CSNK1A1             | 82  | 10000 |
| CSNK1A1L            | 87  | 10000 |
| CSNK1D              | 88  | 10000 |
| CSNK1E              | 86  | 10000 |
| CSNK1G1             | 88  | 10000 |
| CSNK1G2             | 94  | 10000 |
| CSNK1G3             | 97  | 10000 |
| CSNK2A1             | 96  | 10000 |
| CSNK2A2             | 85  | 10000 |
| СТК                 | 88  | 10000 |
| DAPK1               | 76  | 10000 |
| DAPK2               | 81  | 10000 |
| DAPK3               | 83  | 10000 |
| DCAMKL1             | 69  | 10000 |

| DCAMKL2                   | 92  | 10000 |
|---------------------------|-----|-------|
| DCAMKL3                   | 92  | 10000 |
| DDR1                      | 99  | 10000 |
| DDR2                      | 100 | 10000 |
| DLK                       | 100 | 10000 |
| DMPK                      | 88  | 10000 |
| DMPK2                     | 90  | 10000 |
| DRAK1                     | 94  | 10000 |
| DRAK2                     | 91  | 10000 |
| DYRK1A                    | 84  | 10000 |
| DYRK1B                    | 86  | 10000 |
| DYRK2                     | 90  | 10000 |
| EGFR                      | 91  | 10000 |
| EGFR(E746-A750del)        | 94  | 10000 |
| EGFR(G719C)               | 97  | 10000 |
| EGFR(G719S)               | 97  | 10000 |
| EGFR(L747-E749del, A750P) | 91  | 10000 |
| EGFR(L747-S752del, P753S) | 100 | 10000 |
| EGFR(L747-T751del,Sins)   | 89  | 10000 |
| EGFR(L858R)               | 93  | 10000 |
| EGFR(L858R,T790M)         | 90  | 10000 |
| EGFR(L861Q)               | 80  | 10000 |
| EGFR(S752-I759del)        | 98  | 10000 |
| EGFR(T790M)               | 92  | 10000 |
| EIF2AK1                   | 89  | 10000 |
| EPHA1                     | 100 | 10000 |
| EPHA2                     | 94  | 10000 |
| EPHA3                     | 94  | 10000 |
| EPHA4                     | 82  | 10000 |
| EPHA5                     | 93  | 10000 |
| EPHA6                     | 81  | 10000 |
| EPHA7                     | 94  | 10000 |
| EPHA8                     | 96  | 10000 |
| EPHB1                     | 92  | 10000 |
| EPHB2                     | 97  | 10000 |
| EPHB3                     | 91  | 10000 |
| EPHB4                     | 93  | 10000 |
| EPHB6                     | 100 | 10000 |
| ERBB2                     | 100 | 10000 |
| ERBB3                     | 100 | 10000 |
| ERBB4                     | 100 | 10000 |
| ERK1                      | 97  | 10000 |

| ERK2                  | 98  | 10000 |
|-----------------------|-----|-------|
| ERK3                  | 90  | 10000 |
| ERK4                  | 93  | 10000 |
| ERK5                  | 95  | 10000 |
| ERK8                  | 86  | 10000 |
| ERN1                  | 79  | 10000 |
| FAK                   | 96  | 10000 |
| FER                   | 87  | 10000 |
| FES                   | 87  | 10000 |
| FGFR1                 | 96  | 10000 |
| FGFR2                 | 100 | 10000 |
| FGFR3                 | 84  | 10000 |
| FGFR3(G697C)          | 87  | 10000 |
| FGFR4                 | 100 | 10000 |
| FGR                   | 88  | 10000 |
| FLT1                  | 88  | 10000 |
| FLT3                  | 93  | 10000 |
| FLT3(D835H)           | 99  | 10000 |
| FLT3(D835Y)           | 89  | 10000 |
| FLT3(ITD)             | 100 | 10000 |
| FLT3(K663Q)           | 100 | 10000 |
| FLT3(N841I)           | 95  | 10000 |
| FLT3(R834Q)           | 100 | 10000 |
| FLT3-autoinhibited    | 94  | 10000 |
| FLT4                  | 94  | 10000 |
| FRK                   | 100 | 10000 |
| FYN                   | 100 | 10000 |
| GAK                   | 100 | 10000 |
| GCN2(Kin.Dom.2,S808G) | 100 | 10000 |
| GRK1                  | 94  | 10000 |
| GRK4                  | 100 | 10000 |
| GRK7                  | 100 | 10000 |
| GSK3A                 | 96  | 10000 |
| GSK3B                 | 80  | 10000 |
| HASPIN                | 78  | 10000 |
| НСК                   | 91  | 10000 |
| HIPK1                 | 75  | 10000 |
| HIPK2                 | 88  | 10000 |
| HIPK3                 | 86  | 10000 |
| HIPK4                 | 93  | 10000 |
| HPK1                  | 98  | 10000 |
| HUNK                  | 97  | 10000 |

| ICK                          | 81  | 10000 |
|------------------------------|-----|-------|
| IGF1R                        | 99  | 10000 |
| IKK-alpha                    | 99  | 10000 |
| IKK-beta                     | 77  | 10000 |
| IKK-epsilon                  | 86  | 10000 |
| INSR                         | 85  | 10000 |
| INSRR                        | 98  | 10000 |
| IRAK1                        | 82  | 10000 |
| IRAK3                        | 100 | 10000 |
| IRAK4                        | 92  | 10000 |
| ITK                          | 95  | 10000 |
| JAK1(JH1domain-catalytic)    | 100 | 10000 |
| JAK1(JH2domain-pseudokinase) | 69  | 10000 |
| JAK2(JH1domain-catalytic)    | 93  | 10000 |
| JAK3(JH1domain-catalytic)    | 100 | 10000 |
| JNK1                         | 70  | 10000 |
| JNK2                         | 90  | 10000 |
| JNK3                         | 88  | 10000 |
| KIT                          | 92  | 10000 |
| KIT(A829P)                   | 94  | 10000 |
| KIT(D816H)                   | 90  | 10000 |
| KIT(D816V)                   | 92  | 10000 |
| KIT(L576P)                   | 96  | 10000 |
| KIT(V559D)                   | 91  | 10000 |
| KIT(V559D,T670I)             | 86  | 10000 |
| KIT(V559D,V654A)             | 96  | 10000 |
| KIT-autoinhibited            | 71  | 10000 |
| LATS1                        | 95  | 10000 |
| LATS2                        | 91  | 10000 |
| LCK                          | 87  | 10000 |
| LIMK1                        | 77  | 10000 |
| LIMK2                        | 62  | 10000 |
| LKB1                         | 81  | 10000 |
| LOK                          | 96  | 10000 |
| LRRK2                        | 86  | 10000 |
| LRRK2(G2019S)                | 100 | 10000 |
| LTK                          | 90  | 10000 |
| LYN                          | 86  | 10000 |
| LZK                          | 92  | 10000 |
| MAK                          | 98  | 10000 |
| MAP3K1                       | 87  | 10000 |
| MAP3K15                      | 76  | 10000 |

| MAP3K2      | 100 | 10000 |
|-------------|-----|-------|
| MAP3K3      | 73  | 10000 |
| MAP3K4      | 99  | 10000 |
| MAP4K2      | 94  | 10000 |
| MAP4K3      | 100 | 10000 |
| MAP4K4      | 90  | 10000 |
| MAP4K5      | 92  | 10000 |
| МАРКАРК2    | 84  | 10000 |
| MAPKAPK5    | 73  | 10000 |
| MARK1       | 93  | 10000 |
| MARK2       | 66  | 10000 |
| MARK3       | 67  | 10000 |
| MARK4       | 91  | 10000 |
| MAST1       | 87  | 10000 |
| MEK1        | 82  | 10000 |
| MEK2        | 69  | 10000 |
| MEK3        | 85  | 10000 |
| MEK4        | 92  | 10000 |
| MEK5        | 83  | 10000 |
| MEK6        | 98  | 10000 |
| MELK        | 98  | 10000 |
| MERTK       | 100 | 10000 |
| MET         | 90  | 10000 |
| MET(M1250T) | 96  | 10000 |
| MET(Y1235D) | 100 | 10000 |
| MINK        | 77  | 10000 |
| MKK7        | 97  | 10000 |
| MKNK1       | 89  | 10000 |
| MKNK2       | 94  | 10000 |
| MLCK        | 93  | 10000 |
| MLK1        | 94  | 10000 |
| MLK2        | 79  | 10000 |
| MLK3        | 94  | 10000 |
| MRCKA       | 97  | 10000 |
| MRCKB       | 100 | 10000 |
| MST1        | 83  | 10000 |
| MST1R       | 93  | 10000 |
| MST2        | 97  | 10000 |
| MST3        | 70  | 10000 |
| MST4        | 85  | 10000 |
| MTOR        | 99  | 10000 |
| MUSK        | 98  | 10000 |

| MYLK                  | 94  | 10000 |
|-----------------------|-----|-------|
| MYLK2                 | 100 | 10000 |
| MYLK4                 | 87  | 10000 |
| MYO3A                 | 89  | 10000 |
| MYO3B                 | 97  | 10000 |
| NDR1                  | 90  | 10000 |
| NDR2                  | 93  | 10000 |
| NEK1                  | 100 | 10000 |
| NEK10                 | 92  | 10000 |
| NEK11                 | 99  | 10000 |
| NEK2                  | 95  | 10000 |
| NEK3                  | 76  | 10000 |
| NEK4                  | 86  | 10000 |
| NEK5                  | 87  | 10000 |
| NEK6                  | 90  | 10000 |
| NEK7                  | 92  | 10000 |
| NEK9                  | 92  | 10000 |
| NIK                   | 95  | 10000 |
| NIM1                  | 96  | 10000 |
| NLK                   | 100 | 10000 |
| OSR1                  | 85  | 10000 |
| p38-alpha             | 93  | 10000 |
| p38-beta              | 96  | 10000 |
| p38-delta             | 92  | 10000 |
| p38-gamma             | 77  | 10000 |
| PAK1                  | 96  | 10000 |
| PAK2                  | 96  | 10000 |
| PAK3                  | 92  | 10000 |
| PAK4                  | 85  | 10000 |
| PAK6                  | 97  | 10000 |
| PAK7                  | 96  | 10000 |
| PCTK1                 | 85  | 10000 |
| PCTK2                 | 93  | 10000 |
| РСТК3                 | 97  | 10000 |
| PDGFRA                | 88  | 10000 |
| PDGFRB                | 91  | 10000 |
| PDPK1                 | 95  | 10000 |
| PFCDPK1(P.falciparum) | 87  | 10000 |
| PFPK5(P.falciparum)   | 100 | 10000 |
| PFTAIRE2              | 94  | 10000 |
| PFTK1                 | 95  | 10000 |
| PHKG1                 | 100 | 10000 |

| PHKG2                | 79  | 10000 |
|----------------------|-----|-------|
| PIK3C2B              | 98  | 10000 |
| PIK3C2G              | 92  | 10000 |
| PIK3CA               | 100 | 10000 |
| PIK3CA(C420R)        | 77  | 10000 |
| PIK3CA(E542K)        | 76  | 10000 |
| PIK3CA(E545A)        | 81  | 10000 |
| PIK3CA(E545K)        | 67  | 10000 |
| PIK3CA(H1047L)       | 98  | 10000 |
| PIK3CA(H1047Y)       | 75  | 10000 |
| PIK3CA(I800L)        | 65  | 10000 |
| PIK3CA(M1043I)       | 91  | 10000 |
| PIK3CA(Q546K)        | 85  | 10000 |
| PIK3CB               | 100 | 10000 |
| PIK3CD               | 83  | 10000 |
| PIK3CG               | 88  | 10000 |
| PIK4CB               | 99  | 10000 |
| PIM1                 | 86  | 10000 |
| PIM2                 | 89  | 10000 |
| PIM3                 | 100 | 10000 |
| PIP5K1A              | 100 | 10000 |
| PIP5K1C              | 99  | 10000 |
| PIP5K2B              | 100 | 10000 |
| PIP5K2C              | 83  | 10000 |
| PKAC-alpha           | 95  | 10000 |
| PKAC-beta            | 95  | 10000 |
| PKMYT1               | 100 | 10000 |
| PKN1                 | 81  | 10000 |
| PKN2                 | 98  | 10000 |
| PKNB(M.tuberculosis) | 78  | 10000 |
| PLK1                 | 91  | 10000 |
| PLK2                 | 67  | 10000 |
| PLK3                 | 77  | 10000 |
| PLK4                 | 87  | 10000 |
| PRKCD                | 85  | 10000 |
| PRKCE                | 100 | 10000 |
| PRKCH                | 98  | 10000 |
| PRKCI                | 72  | 10000 |
| PRKCQ                | 91  | 10000 |
| PRKD1                | 93  | 10000 |
| PRKD2                | 95  | 10000 |
| PRKD3                | 89  | 10000 |

| PRKG1                         | 100 | 10000 |
|-------------------------------|-----|-------|
| PRKG2                         | 78  | 10000 |
| PRKR                          | 100 | 10000 |
| PRKX                          | 100 | 10000 |
| PRP4                          | 100 | 10000 |
| РҮК2                          | 94  | 10000 |
| QSK                           | 83  | 10000 |
| RAF1                          | 99  | 10000 |
| RET                           | 87  | 10000 |
| RET(M918T)                    | 96  | 10000 |
| RET(V804L)                    | 99  | 10000 |
| RET(V804M)                    | 100 | 10000 |
| RIOK1                         | 100 | 10000 |
| RIOK2                         | 94  | 10000 |
| RIOK3                         | 100 | 10000 |
| RIPK1                         | 0   | 10000 |
| RIPK2                         | 98  | 10000 |
| RIPK4                         | 83  | 10000 |
| RIPK5                         | 68  | 10000 |
| ROCK1                         | 94  | 10000 |
| ROCK2                         | 100 | 10000 |
| ROS1                          | 85  | 10000 |
| RPS6KA4(Kin.Dom.1-N-terminal) | 97  | 10000 |
| RPS6KA4(Kin.Dom.2-C-terminal) | 99  | 10000 |
| RPS6KA5(Kin.Dom.1-N-terminal) | 96  | 10000 |
| RPS6KA5(Kin.Dom.2-C-terminal) | 80  | 10000 |
| RSK1(Kin.Dom.1-N-terminal)    | 89  | 10000 |
| RSK1(Kin.Dom.2-C-terminal)    | 80  | 10000 |
| RSK2(Kin.Dom.1-N-terminal)    | 93  | 10000 |
| RSK2(Kin.Dom.2-C-terminal)    | 100 | 10000 |
| RSK3(Kin.Dom.1-N-terminal)    | 83  | 10000 |
| RSK3(Kin.Dom.2-C-terminal)    | 65  | 10000 |
| RSK4(Kin.Dom.1-N-terminal)    | 100 | 10000 |
| RSK4(Kin.Dom.2-C-terminal)    | 61  | 10000 |
| S6K1                          | 80  | 10000 |
| SBK1                          | 80  | 10000 |
| SGK                           | 81  | 10000 |
| SgK110                        | 100 | 10000 |
| SGK2                          | 88  | 10000 |
| SGK3                          | 84  | 10000 |
| SIK                           | 96  | 10000 |
| SIK2                          | 91  | 10000 |

| SLK                          | 83  | 10000 |
|------------------------------|-----|-------|
| SNARK                        | 92  | 10000 |
| SNRK                         | 80  | 10000 |
| SRC                          | 94  | 10000 |
| SRMS                         | 75  | 10000 |
| SRPK1                        | 86  | 10000 |
| SRPK2                        | 90  | 10000 |
| SRPK3                        | 87  | 10000 |
| STK16                        | 100 | 10000 |
| STK33                        | 71  | 10000 |
| STK35                        | 96  | 10000 |
| STK36                        | 91  | 10000 |
| STK39                        | 88  | 10000 |
| SYK                          | 66  | 10000 |
| TAK1                         | 76  | 10000 |
| TAOK1                        | 98  | 10000 |
| TAOK2                        | 70  | 10000 |
| ТАОК3                        | 88  | 10000 |
| TBK1                         | 89  | 10000 |
| TEC                          | 100 | 10000 |
| TESK1                        | 96  | 10000 |
| TGFBR1                       | 94  | 10000 |
| TGFBR2                       | 94  | 10000 |
| TIE1                         | 100 | 10000 |
| TIE2                         | 98  | 10000 |
| TLK1                         | 85  | 10000 |
| TLK2                         | 100 | 10000 |
| TNIK                         | 93  | 10000 |
| TNK1                         | 76  | 10000 |
| TNK2                         | 86  | 10000 |
| TNNI3K                       | 100 | 10000 |
| TRKA                         | 100 | 10000 |
| TRKB                         | 89  | 10000 |
| TRKC                         | 97  | 10000 |
| TRPM6                        | 87  | 10000 |
| TSSK1B                       | 83  | 10000 |
| ТТК                          | 53  | 10000 |
| ТХК                          | 93  | 10000 |
| TYK2(JH1domain-catalytic)    | 100 | 10000 |
| TYK2(JH2domain-pseudokinase) | 78  | 10000 |
| TYRO3                        | 94  | 10000 |
| ULK1                         | 96  | 10000 |

| ULK2   | 88  | 10000 |
|--------|-----|-------|
| ULK3   | 79  | 10000 |
| VEGFR2 | 94  | 10000 |
| VRK2   | 76  | 10000 |
| WEE1   | 90  | 10000 |
| WEE2   | 95  | 10000 |
| WNK1   | 89  | 10000 |
| WNK3   | 96  | 10000 |
| YANK1  | 82  | 10000 |
| YANK2  | 88  | 10000 |
| YANK3  | 87  | 10000 |
| YES    | 88  | 10000 |
| YSK1   | 100 | 10000 |
| YSK4   | 97  | 10000 |
| ZAK    | 93  | 10000 |
| ZAP70  | 99  | 10000 |

# Inhibition of human, monkey, rabbit, rat, dog, mouse, and minipig RIP1 activity in the fluorescence polarization (FP) assay

Compound **6** was tested against six nonhuman species of RIP1 in FP binding assays using the method decribed in Harris et al. (2016). The mean IC50 from a minimum of duplicate determinations is summarized in Table S4. Values for human and monkey RIP1 are at the lower limit of sensitivity (ca. 10 nM). Using the tight binding potency of 6.3 nM reported in Table 1 the species selectivity is underestimated by ca. 3 fold (e.g., rabbit is 380-fold less potent than human).

**Table S4.** RIP1 Species Selectivity of Compound 6.

| Species  | RIP1 FP IC50 (µM) | Fold |
|----------|-------------------|------|
| Human    | 0.016             | 1    |
| Monkey   | 0.026             | 1.6  |
| Rabbit   | 2.4               | 150  |
| Rat      | >3.1              | >190 |
| Dog      | 7.1               | 440  |
| Mouse    | >10               | >625 |
| Mini Pig | >10               | >625 |

### 7. Compound 6 RIP1 co-crystallization

#### **Methods:**

Crystals of the RIP1 complex with benzazepinone **6** were obtained by co-crystallization using sitting drop vapor diffusion with all sample manipulation carried out at 4°C or over ice. 100nL drops of the protein at 14.8mg/ml in the storage buffer (25mM Tris-HCl, 150mM NaCl, 1mM DTT, 10% glycerol, pH7.5) with 4mM benzazepinone **6** (dissolved in DMSO) were dispensed using a Mosquito dispensing robot into a 96 well plate and incubated against the Qiagen PEGS I crystallization screening kit from which 150nL was dispensed on top of the protein drop. Crystals were obtained from solution 34 (100mM MES pH 6.5, 25% PEG 8k) and grew to full size over approximately one week. Crystals were quickly transferred through a 10µL drop containing precipitant solution, 10% ethylene glycol and 4mM benzazepinone **6** before plunge freezing into liquid nitrogen.

Data was collected at the ESRF synchrotron in Grenoble, France on beamline ID29 using a Pilatus 6M detector where 180° of data was collected using a oscillation increment of 0.2°. Data processing was carried out using the synchrotrons implementation of the Global Phasing program autoPROC (Acta Cryst. D67, 293-302 (2011)).

Structure determination was done by molecular replacement using the atomic coordinates of RIP1 kinase domain with Necrostatin-4 (PDB code 4ITJ) as a search model.

Refinement was carried out with the Global Phasing program Buster (Acta Cryst. D68, 368-380 (2012)) with a previously solved but undisclosed higher resolution target structure utilized for structural restraints. The chemical library for benzazepinone **6** was generated with phenix.elbow (Acta Cryst. D66, 213-221 (2010)) modified by the Cambridge Crystallographic Data Centre program Mogul. All model building was carried out with COOT (Acta Cryst D66, 486-501, 2010) and figures generated utilizing the CCP4 program CCP4MG (Acta Cryst. D67, 386-394 (2011)).

Coordinates and structure factors for the cocrystal structure of RIP1 (1–294, C34A, C127A, C233A, C240A) and benzoxazepinone **6** have been deposited in the Protein Data Bank with the accession number 6RLN.

**Table S5:** X-ray diffraction processing and refinement statistics for the RIP1 benzazepinone 6 complex structure.

|                              | Overall       | Innershell | Outershell  |
|------------------------------|---------------|------------|-------------|
| Low Res Limit (Å)            | 48.83         | 48.83      | 2.97        |
| High Res Limit (Å)           | 2.87          | 11.12      | 2.87        |
| Rmerge (all)                 | 0.064         | 0.028      | 1.188       |
| Mean(I/σI)                   | 17.6          | 50.9       | 1.5         |
| <b>Observations (unique)</b> | 99490 (15475) | 1651 (325) | 9183 (1420) |

| Completeness         | 99.4                                     | 98.8            | 95.3 |  |  |  |  |
|----------------------|------------------------------------------|-----------------|------|--|--|--|--|
| Multiplicity         | 6.4 5.1 6.5                              |                 |      |  |  |  |  |
| Space Group          | P212121                                  |                 |      |  |  |  |  |
| Unit Cell Dimensions | 101.840 130.790 48.830 90.00 90.00 90.00 |                 |      |  |  |  |  |
| R-factor (R-Free)    |                                          | 0.1939 (0.2318) |      |  |  |  |  |

**Figure S4:** The binding orientation of benzazepinone **6** in the active site pocket of RIP1 produced by single crystal X-ray crystallography with associated omit map electron density contoured at  $3\sigma$  and a resolution of 2.87Å.



# 8. Compound 6: rat tissue distribution, permeability and p-gp substrate evaluation, hepataocyte turnover, metabolite ID and human PK/PD prediction.

Tissue Distribution of compound **6** in the male Han Wistar rat via constant intravenous infusion over 4 hours at a dose of 2.3 mg/kg (dosed in 20% Cavitron; 5% DMSO at dose volume of 4 mL/kg). At the end of the infusion, animals were euthanized and tissues were collected (brain, heart, kidney, liver, colon, skin and eyes). Homogenates were prepared in acetonitrile. Tissue homogenate concentrations were

determined based on a standard curve prepared in an identical fashion to the study animal tissue homogenates, using a tissue specimen from an untreated control rat. The tissue-to-blood ratio for each compound was calculated by dividing tissue concentration (expressed as ng compound/g tissue) by the approximate steady-state blood concentration (Table S6).

| 2.3 mg/kg<br>(4 hour infusion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conc at 4h<br>(ng/mL) | Tissue | Tissue<br>Concentration<br>(ng/g tissue) | Tissue:Blood<br>ratio<br>[ng/g tissue]:<br>[ng/mL] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|------------------------------------------|----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 395 ± 98              | Brain  | $24 \pm 4$                               | $0.06 \pm 0.01$                                    |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | Kidney | $3300 \pm 560$                           | $8.4 \pm 1.4$                                      |
| E 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Heart  | $1200\pm170$                             | $3.1 \pm 0.4$                                      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average               | Liver  | $3000 \pm 240$                           | $7.6 \pm 0.6$                                      |
| 100 (in the second seco |                       | Colon  | $1100\pm600$                             | $2.8 \pm 1.6$                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 3 4                 | Eye    | 92 ± 18                                  | $0.23 \pm 0.05$                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | me (hours)            | Skin   | $290 \pm 90$                             | $0.73 \pm 0.23$                                    |

Compound **6** was evaluated for permeability across MDR1-MDCK cell monolayers with and without the P-gp inhibitor cyclosporin A (CSA). P-gp substrate is classified as positive if the efflux ratio > 3.0 in the absence of inhibitor and  $\sim$ 1 in the presence of inhibitor (Table S7).

Table S7. MDCK permeability of compound 6

| Cell Line | Treatment                  | Papp (nm/s) |      | Efflux Ratio |
|-----------|----------------------------|-------------|------|--------------|
|           |                            | A-B         | B-A  | B-A/A-B      |
| MDR1-MDCK | Compound 6                 | 3.4         | 386  | 115          |
|           | Compound 6 + PgP Inhibitor | 67.4        | 58.5 | 0.90         |

In vitro evaluation of metabolic stability of compound **6** in the presence of NADPH, indicated moderate turnover in the rat and low turnover in both monkey and human hepatocytes as shown Table S8.

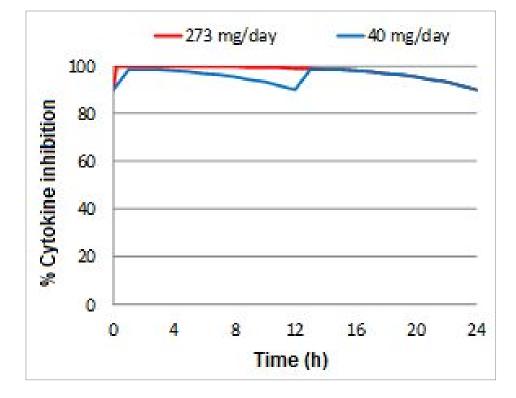
**Table S8**. Hepatocyte turnover of compound **6**. Human hepatocytes were from mixed gender, whereas rat and monkey were from male only.

| Species                                  | Rat | Monkey | Human |
|------------------------------------------|-----|--------|-------|
| Hepatocyte Clearance<br>(mL/min/g Liver) | 1.9 | <0.50  | <0.50 |

Allometric scaling and in vitro to in vivo extrapolations with and with-out effects of free fraction were used to generate predictions of human PK parameters (Table S9).

| Table S9. Average predicted huma | n PK profile of <b>6</b> based on PK Predictor Pro software. |
|----------------------------------|--------------------------------------------------------------|
| ÷                                |                                                              |

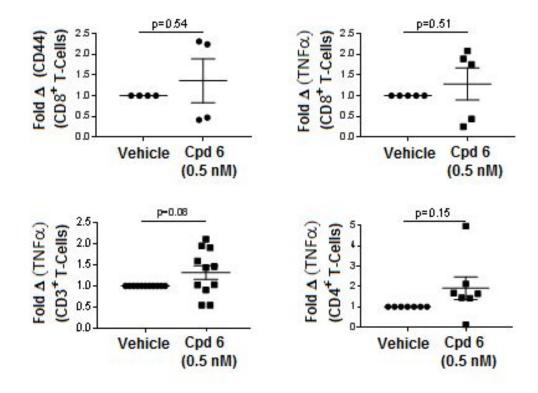
| Parameter             | Average | +95% | -95% |
|-----------------------|---------|------|------|
| Clearance (mL/min/kg) | 4.6     | 5.8  | 3.4  |
| Volume (L/kg)         | 1.3     | 1.5  | 1.1  |
| <u>Half life</u> (h)* | 3.3     | 1    |      |
| Bioavailability (%)   | 83      | 87   | 79   |


\* Half-life based on reconstructed PK profiles.

**\$** 

The predicted human PK/PD was modelled using the predicted human PK profile along with human whole blood activity as shown in Figure S5.

**Figure S5.** Predicted human PD dose effect levels of benzaepinone 6 at 273 mg once daily and 40 mg twice daily, maintaining 90% RIP1 inhibition levels over 24 hours.






#### 9. Additional PDOTS evaluation.

PDOTS prepared from tumors from pancreatic adenocarcinoma, colorectal, breast and gastric cancer patients treated with compound **6** show a trend toward increased effector-memory CD8+ T cells and TNF $\alpha$  expression, although these markers failed to reach statistical significance in this study (Figure S6). Compound **6** was dissolved to a concentration of 10  $\mu$ M in DMSO and underwent 1:200 dilution in culture medium to a final concentration of 0.5 nM. Vehicle control was a similar 0.5% DMSO solution in culture medium.

Figure S6. PDOTS prepared from tumors from pancreatic adenocarcinoma, colorectal, breast and gastric cancer patients treated with compound 6.



#### **10. References**

٨

Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. PHENIX: a comprehensive Pythonbased system for macromolecular structure solution. Acta Crystallogr. D. Biol Crystallogr. **2010**, 66, 213-221.

Bricogne, G. BUSTER. 2013. Cambridge, UK, Global Phasing Ltd. (Computer Program)

Degterev, A.; Hitomi, J.; Germscheid, M.; Ch'en, I. L.; Korkina, O.; Teng, X.; Abbott, D.; Cuny, G. D.; Yuan, C.; Wagner, G.; Hedrick, S. M.; Gerber, S. A.; Lugovskoy, A.; Yuan, J. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. **2008**, 4, 313-321.

Fabian M. A., Biggs W H 3rd, Treiber D K, Atteridge C E, Azimioara M D, Benedetti M G, Carter T A, Ciceri P, Edeen P T, Floyd M, Ford J M, Galvin M, Gerlach J L, Grotzfeld R M, Herrgard S, Insko D E, Insko M A, Lai A G, Lélias J M, Mehta S A, Milanov Z V, Velasco A M, Wodicka L M, Patel H K, Zarrinkar P P, Lockhart D J. A small molecule-kinase interaction map for clinical kinase inhibitors. *Nat. Biotechnol.* **2005**, 23, 329-336.

Harris, P. A.; Bandyopadhyay, D.; Berger, S. B.; Campobasso, N.; Capriotti, C. A.; Cox, J. A.; Dare, L.; Finger, J. N.; Hoffman, S. J.; Kahler, K. M.; Lehr, R.; Lich, J. D.; Nagilla, R.; Nolte, R. T.; Ouellette, M. T.; Pao, C. S.; Schaeffer, M. C.; Smallwood, A.; Sun, H. H.; Swift, B. A.; Totoritis, R. D.; Ward, P.; Marquis, R. W.; Bertin, J.; Gough, P. J. Discovery of Small Molecule RIP1 Kinase Inhibitors for the Treatment of Pathologies Associated with Necroptosis. *ACS Med. Chem. Lett.* **2013**, 4, 1238-1243.

Harris, P. A.; King, B. W.; Bandyopadhyay, D.; Berger, S. B.; Campobasso, N.; Capriotti, C. A.; Cox, J. A.; Dare, L.; Dong, X.; Finger, J. N.; Grady, L. C.; Hoffman, S. J.; Jeong, J. U.; Kang, J.; Kasparcova, V.; Lakdawala, A. S.; Lehr, R.; McNulty, D.E.; Nagilla, R.; Ouellette, M. T.; Pao, C. S.; Rendina, A. R.; Schaeffer, M. C.; Summerfield, J. D.; Swift, B.A.; Totoritis, R.D.; Ward, P.; Zhang, A.; Zhang, D.; Marquis, R. W.; Bertin, J.; Gough, P. J. DNA-Encoded Library Screening Identifies Benzo[b][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors. *J. Med. Chem.* 2016, *59*, 2163-2178.

Jameson, D. M., Mocz, G. Methods Mol. Biol. (Totowa, NJ, U.S.) 2005, 305, 301

Kabsch, W. XDS. Acta Cryst. 2010, D66, 125-132.

Kestranek, A., Chervenak, A., Longenberger, J., Placko, S. Chemiluminescent nitrogen detection (CLND) to measure kinetic aqueous solubility. *Curr Protoc Chem Biol.* **2013**, 5, 269-280.

Li, L.; Thomas, R. M.; Suzuki, H.; De Brabander, J. K.; Wang, X.; Harran, P. G. A Small Molecule Smac Mimic Potentiates TRAIL and TNFalpha-mediated Cell Death. *Science* **2004**, 305, 1471–1474.

Tummino, P.J., Copeland, R.A. Residence Time of Receptor-Ligand Complexes and Its Effect on Biological Function. *Biochemistry* **2008**, 47, 5481-5492.

Valkó, K. Chromatographic hydrophobicity index by fast-gradient RP-HPLC: a high-throughput alternative to log P/log D. Anal. Chem. **1997**, 69, 2022–2029.

Wasilko D., Lee S.E. TIPS: Titerless Infected Cells Preservation and Scale up. *BioProcessing*. **2006**, Fall, 2-32.

Williams, W.W., Morrison, J.F. The Kinetics of Reversible Tight-Binding Inhibition. *Meth. Enzymol.* **1979**, 63, 437-467.

Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A. McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin A., Wilson K. S. Overview of the CCP4 suite and current developments *Acta. Cryst.* **2011**, *D67*, 235-242.

Xie, T.; Peng, W.; Liu, Y.; Yan, C.; Maki, J.; Degterev, A.; Yuan, J.; Shi, Y. Structural basis of RIP1 inhibition by necrostatins. *Structure* **2013**, 21, 493-499.