Supporting Information

Chain-shortened myostatin inhibitory peptides improve grip strength in mice

Kentaro Takayama, Tomo Asari, Mariko Saitoh, Kei Nirasawa, Eri Sasaki, Yoshimi Roppongi, Akari Nakamura, Yusuke Saga, Takahiro Shimada, Hiroaki Ikeyama, Akihiro Taguchi, Atsuhiko Taniguchi, Yoichi Negishi, and Yoshio Hayashi*

Table of contents

Materials and Experimental procedure	page S2–S6
Analytical HPLC chromatograms	page S7–S29
Figure S1. Induction of GAS muscle hypertrophy by E31R-treatment muscular dystrophic model mdx mice.	nt in Duchenne page S30
Figure S2. Induction of GAS muscle hypertrophy by peptide 3- or E3 wild-type mice.	1R -treatment in page S31
Figure S3. The aliphatic residue-directed SAR studies of peptide chyclohexylglycine (Chg) or phenylglycine (Phg) residue.	1 using either page S32
Figure S4. D-form scanning in peptide 1.	page S33
Figure S5. Investigation of morphological change to peptide treatment.	page S34

1. Materials

Reagents and solvents were purchased from Wako Pure Chemical Industries (Osaka, Japan), and Sigma-Aldrich (St. Louis, MO), Watanabe Chemical Industries (Hiroshima, Japan), and Tokyo Chemical Industries (Tokyo, Japan). All were used as received. Sterile Dulbecco's Modified Eagle's Medium (DMEM) and fetal bovine serum (FBS) were purchased from Nacalai Tesque (Kyoto, Japan) and Nichirei Bioscience Inc. (Tokyo, Japan), respectively. Sterile 100-mm dishes, 96-well clear-wall poly-D-Lys-coated plates and 96-well white-wall plates were purchased from BD Biosciences (Franklin Lakes, NJ), Thermo Fisher Scientific (Waltham, MA) and Corning (Cambridge, MA), respectively. Plasmids, FuGENE HD and Dual-Luciferase Reporter Assay System for cell-based assay were purchased from Promega (Madison, WI). Recombinant human/mouse/rat myostatin and mouse myostatin-derived recombinant prodomain protein were purchased from Merck Millipore (Billerica, MA) and R&D Systems (Minneapolis, MN), respectively.

2. Synthesis of peptide derivatives

In the synthesis of all peptides, protected peptide-bound resins were automatically prepared using Prelude (Gyros Protein Technologies, Inc., Tucson, AZ). Fmoc-NH-SAL resin (54 mg, 0.02 mmol) and Fmoc-amino acids (0.2 mmol) were sequentially coupled using the O-(7-Aza-1H-benzotriazol-1-yl)-N,N,N',N'-tetra-methyluronium hexafluorophosphate (HATU, 0.2 mmol)-1-hydroxy-7-azabenzotriazole (HOAt, 0.2 mmol)-N,N-diisopropylethylamine (DIEA) method for 30 min in N,N-dimethylformamide (DMF, 2.0 mL) after removing Fmoc group with 20% piperidine-DMF (2.5 mL, 20 min) in each step. The resins were treated with TFA-m-cresolthioanisole-EDT (4.3 mL, 40:1:1:1, v:v:v:v) for 150 min at rt to obtain crude peptides. Purified peptides as a TFA salt were obtained by preparative RP-HPLC in a 0.1% aqueous TFA-CH₃CN system, and solubilized in DMSO as 3 mM stock solutions for the reporter assay. The purity of synthesized peptides was >95% in RP-HPLC analysis using a C18 reverse-phase column [4.6 x 150 mm; COSMOSIL 5C18-AR-II (column 1), COSMOSIL 5C4-AR-300 (column 2), or SunFire C18 5 µm (column 3)] with a binary solvent system: a linear gradient of CH₃CN (20-40%, 40 min; 30-50%, 40 min for peptides 6, 7b, 7d, 7e, E31K, and E31R; 5-65%, 30 min for peptide 4b; 25-45%, 40 min for peptides 8a and 8c; 20-50%, 30 min for peptide 8b) in 0.1% aqueous TFA at a flow rate of 1.0 mL/min, detected at UV 230 nm. Yields of all products obtained as a white powder were calculated as TFA salts. HR-MS (TOF MS ES+) was recorded on a micromass LCT. Analytical data of synthetic peptide derivatives are shown below.

peptide **4a**: Yield of 18%; HRMS m/z [M+H]⁺ found 1995.2606 (calcd. for C₉₃H₁₆₄N₂₇O₂₁ 1995.2595); HPLC purity 99.8% (t_R = 22.77 min) (column 1).

peptide **4b**: Yield of 29%; HRMS m/z [M+H]⁺ found 2068.2524 (calcd. for C₉₈H₁₆₃N₂₈O₂₁ 2068.2548); HPLC purity 100% (t_R = 17.14 min) (column 2).

peptide 5: Yield of 20%; HRMS $m/z [M+H]^+$ found 1986.2250 (calcd. for C₉₆H₁₆₁N₂₄O₂₁ 1986.2268); HPLC purity 100% (t_R = 23.90 min) (column 3).

peptide 6: Yield of 13%; HRMS $m/z [M+3H]^{3+}/3$ found 725.4232 (calcd. for $C_{109}H_{164}N_{26}O_{21}$ 725.4266); HPLC purity 99.1% ($t_R = 13.47 \text{ min}$) (column 3).

E31K: Yield of 16%; HRMS $m/z [M+H]^+$ found 2173.3159 (calcd. for C₁₁₀H₁₇₀N₂₇O₁₉ 2173.3166); HPLC purity 99.5% (t_R = 8.64 min) (column 1).

E31R: Yield of 12%; HRMS $m/z [M+H]^+$ found 2201.3240 (calcd. for C₁₁₀H₁₇₀N₂₉O₁₉ 2201.3228); HPLC purity 99.4% (t_R = 9.04 min) (column 1).

E31N: Yield of 5.2%; HRMS $m/z [M+H]^+$ found 2159.2668 (calcd. for C₁₀₈H₁₆₄N₂₇O₂₀ 2159.2646); HPLC purity 97.7% (t_R = 32.97 min) (column 1).

E31Q: Yield of 8.7%; HRMS $m/z [M+H]^+$ found 2173.2837 (calcd. for C₁₀₉H₁₆₆N₂₇O₂₀ 2173.2802); HPLC purity 96.9% (t_R = 34.16 min) (column 1).

peptide **7a**: Yield of 4.3%; HRMS $m/z [M+H]^+$ found 2227.3347 (calcd. for $C_{112}H_{172}N_{29}O_{19}$ 2227.3384); HPLC purity 98.5% (t_R = 30.81 min) (column 1).

peptide **7b**: Yield of 4.3%; HRMS m/z [M+H]⁺ found 2227.3345 (calcd. for $C_{112}H_{172}N_{29}O_{19}$ 2227.3384); HPLC purity 100% (t_R = 10.25 min) (column 1).

peptide **7c**: Yield of 4.3%; HRMS m/z [M+H]⁺ found 2253.3604 (calcd. for C₁₁₄H₁₇₄N₂₉O₁₉ 2253.3541); HPLC purity 98.5% (t_R = 30.81 min) (column 1).

peptide **7d**: Yield of 10%; HRMS $m/z [M+H]^+$ found 2235.3057 (calcd. for C₁₁₃H₁₆₈N₂₉O₁₉ 2235.3071); HPLC purity 99.7% (t_R = 10.03 min) (column 1).

peptide 7e: Yield of 17%; HRMS m/z [M+H]⁺ found 2235.3086 (calcd. for C₁₁₃H₁₆₈N₂₉O₁₉ 2235.3071); HPLC purity 100% (t_R = 9.01 min) (column 1).

peptide **8a**: Yield of 8.5%; HRMS m/z [M+H]⁺ found 2253.3518 (calcd. for C₁₁₄H₁₇₄N₂₉O₁₉ 2253.3541); HPLC purity 95.4% (t_R = 23.26 min) (column 1).

peptide **8b**: Yield of 12%; HRMS m/z [M+H]⁺ found 2253.3506 (calcd. for C₁₁₄H₁₇₄N₂₉O₁₉ 2253.3541); HPLC purity 97.7% (t_R = 18.26 min) (column 2).

peptide **8c**: Yield of 7.4%; HRMS m/z [M+H]⁺ found 2253.3503 (calcd. for C₁₁₄H₁₇₄N₂₉O₁₉ 2253.3541); HPLC purity 98.8% (t_R = 21.79 min) (column 1).

I30Chg: Yield of 21%; HRMS m/z [M+5H]⁵⁺/5 found 582.1447 (calcd. for $C_{132}H_{225}N_{42}O_{32}$ 582.1454); HPLC purity 100.0% (t_R = 21.16 min) (column 3).

I33Chg: Yield of 22%; HRMS $m/z [M+H]^+$ found 2910.7319 (calcd. for C₁₃₂H₂₂₅N₄₂O₃₂ 2910.7270); HPLC purity 97.6% (t_R = 19.86 min) (column 3).

I35Chg: Yield of 21%; HRMS $m/z [M+H]^+$ found 2910.7297 (calcd. for C₁₃₂H₂₂₅N₄₂O₃₂ 2910.7270); HPLC purity 99.2% (t_R = 18.84 min) (column 3).

I37Chg: Yield of 11%; HRMS $m/z [M+H]^+$ found 2910.7236 (calcd. for C₁₃₂H₂₂₅N₄₂O₃₂ 2910.7270); HPLC purity 97.9% (t_R = 20.56 min) (column 3).

I30Phg: Yield of 23%; HRMS $m/z [M+H]^+$ found 2904.6721 (calcd. for C₁₃₂H₂₁₉N₄₂O₃₂ 2904.6801); HPLC purity 97.6% (t_R = 17.62 min) (column 3).

I33Phg: Yield of 17%; HRMS $m/z [M+H]^+$ found 2904.6746 (calcd. for C₁₃₂H₂₁₉N₄₂O₃₂ 2904.6801); HPLC purity 96.3% (t_R = 17.22 min) (column 3).

I35Phg: Yield of 22%; HRMS $m/z [M+H]^+$ found 2904.6794 (calcd. for C₁₃₂H₂₁₉N₄₂O₃₂ 2904.6801); HPLC purity 97.3% (t_R = 17.58 min) (column 3).

I37Phg: Yield of 11%; HRMS $m/z [M+H]^+$ found 2904.6709 (calcd. for C₁₃₂H₂₁₉N₄₂O₃₂ 2904.6801); HPLC purity 100% (t_R = 15.70 min) (column 3).

L38Chg: Yield of 9.5%; HRMS m/z [M+H]⁺ found 2910.7280 (calcd. for C₁₃₂H₂₂₅N₄₂O₃₂ 2910.7270); HPLC purity 96.4% (t_R = 19.68 min) (column 3).

L41Chg: Yield of 5.7%; HRMS $m/z [M+H]^+$ found 2910.7285 (calcd. for C₁₃₂H₂₂₅N₄₂O₃₂ 2910.7270); HPLC purity 98.3% (t_R = 20.35 min) (column 3).

L43Chg: Yield of 3.2%; HRMS m/z [M+4H]⁴⁺/4 found 728.6867 (calcd. for $C_{132}H_{225}N_{42}O_{32}$ 728.6818); HPLC purity 99.0% ($t_R = 20.80$ min) (column 3).

L38Phg: Yield of 5.4%; HRMS $m/z [M+H]^+$ found 2904.6799 (calcd. for C₁₃₂H₂₁₉N₄₂O₃₂ 2904.6801); HPLC purity 95.6% (t_R = 17.60 min) (column 3).

L41Phg: Yield of 2.5%; HRMS $m/z [M+H]^+$ found 2904.6768 (calcd. for C₁₃₂H₂₁₉N₄₂O₃₂ 2904.6801); HPLC purity 98.0% (t_R = 17.06 min) (column 3).

L43Phg: Yield of 4.8%; HRMS m/z [M+H]⁺ found 2904.6829 (calcd. for C₁₃₂H₂₁₉N₄₂O₃₂ 2904.6801); HPLC purity 98.2% (t_R = 19.07 min) (column 3).

S28s: Yield of 28%; HRMS $m/z [M+H]^+$ found 2884.7090 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 98.8% (t_R = 18.20 min) (column 3).

R29r: Yield of 21%; HRMS m/z [M+H]⁺ found 2884.7119 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 98.8% (t_R = 18.35 min) (column 3).

I30i: Yield of 18%; HRMS $m/z [M+H]^+$ found 2884.7126 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 99.7% (t_R = 16.20 min) (column 3).

E31e: Yield of 21%; HRMS m/z [M+H]⁺ found 2884.7109 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 97.2% (t_R = 17.95 min) (column 3).

A32a: Yield of 30%; HRMS m/z [M+H]⁺ found 2884.7129 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 99.6% (t_R = 16.68 min) (column 3).

I33i: Yield of 26%; HRMS m/z [M+H]⁺ found 2884.7122 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 99.1% (t_R = 15.14 min) (column 3).

K34k: Yield of 27%; HRMS $m/z [M+H]^+$ found 2884.7085 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 98.4% (t_R = 14.15 min) (column 3).

I35i: Yield of 17%; HRMS $m/z [M+H]^+$ found 2884.7114 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 98.7% (t_R = 15.04 min) (column 3).

Q36q: Yield of 42%; HRMS $m/z [M+H]^+$ found 2884.7065 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 100% (t_R = 18.32 min) (column 3).

I37i: Yield of 28%; HRMS $m/z [M+H]^+$ found 2884.7124 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 99.3% (t_R = 16.14 min) (column 3).

L38I: Yield of 45%; HRMS $m/z [M+H]^+$ found 2884.7112 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 99.9% (t_R = 22.60 min) (column 1).

S39s: Yield of 39%; HRMS $m/z [M+H]^+$ found 2884.7117 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 99.6% (t_R = 15.98 min) (column 3).

K40k: Yield of 31%; HRMS m/z [M+H]⁺ found 2884.7114 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 96.9% (t_R = 15.24 min) (column 3).

L411: Yield of 34%; HRMS $m/z [M+H]^+$ found 2884.7129 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 99.6% (t_R = 14.71 min) (column 3).

R42r: Yield of 18%; HRMS $m/z [M+H]^+$ found 2884.7092 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 98.6% (t_R = 21.23 min) (column 3).

L43I: Yield of 42%; HRMS $m/z [M+H]^+$ found 2884.7090 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 97.6% (t_R = 19.48 min) (column 3).

3. Luciferase reporter assay

As previously reported,^{19–21} HEK293 cells were subcultured in DMEM containing 10% FBS and nonessential amino acids at 37 °C under 5% CO₂. The cells were seeded at 2.0×10⁴ cells per well in the 96-well plates. After incubation for 24 h, transfection of reporter (pGL4.48[luc2P/SBE/Hygro]) and control (pGL4.74[hRluc/-TK]) plasmids was carried out using FuGENE HD. After 24 h of transfection, the culture medium was exchanged to serum-free DMEM for 8 h starvation. Respective synthesized peptides were dissolved in H₂O, diluted by addition of DMEM containing recombinant human/mouse/rat myostatin to a final concentration of 8 ng/mL (0.32 nM)], and incubated for 20 min at rt. Cells were treated with a peptide solution and incubated for 4 h at 37 °C under 5% CO₂, and then washed with PBS. The preparation of cell lysates and the measurement of the luciferase reporter activities were conducted according to manufacturer's protocol of a Dual-Luciferase Reporter Assay System (Promega). Mouse myostatin-derived recombinant propeptide (prodomain) was used as a positive control and underwent the same manipulation arriving at a final concentration of 10 nM. Each experiment was carried out in triplicate. Values represent means \pm SD (n= 3). To determine IC₅₀ values, the peptide derivatives were dissolved at concentrations of $0.016-2 \mu M$ and the inhibitory activities of peptides were determined in triplicate at each concentration. Curve fitting was performed using KaleidaGraph 4.5.

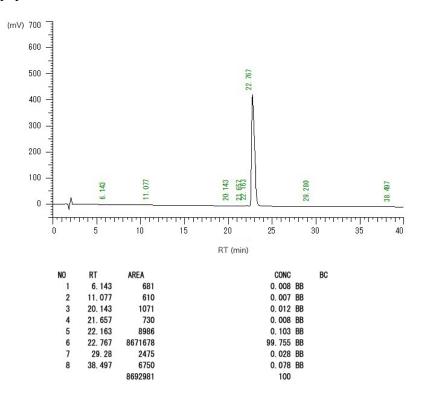
4. Measurement of circular dichroic spectra

As previously reported,^{18,24} circular dichroic (CD) spectra of peptides were obtained at 25 $^{\circ}$ C using a Jasco J-1500 CD spectrometer (JASCO, Japan) in a quartz cell with a 0.5-cm path length. Briefly, peptides with a final concentration of 5 μ M were prepared in 20 mM sodium phosphate buffer (pH 7.4) containing 10% 2,2,2-trifluoroethanol. All spectra were collected between 190–250 nm with a scan speed of 100 nm/min, a response time of 1 s, and a bandwidth of 1 nm. The baseline scan, which was acquired by measuring the buffer alone, was subtracted from the experimental readings. CD data, which were collected every 0.1 nm, were the average of nine scans. The normalized CD data was expressed in the mean residue ellipticity (deg•cm²/dmol) and plotted as functions of wavelength. Obtained CD spectra were analyzed by using Jasco secondary estimation software with Reed's reference set as reference spectra.

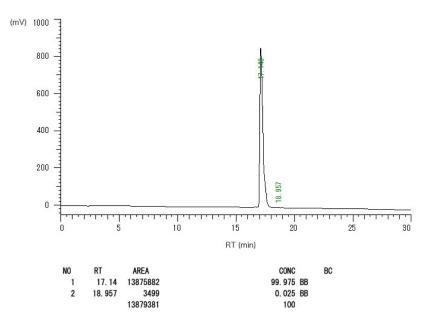
5. Intramuscular administration of peptides into anterior tibialis of mdx mice

Animal studies were approved by the Animal Research Committee of Tokyo University of Pharmacy and Life Sciences. The peptide solution (0.75 mM peptide **E31R** or **8a** in saline, 40 μ L) and a saline (control, 40 μ L) were intramuscularly injected into left and right tibialis anterior or gastrocnemius muscle of 5-week-old *mdx* or C57BL/6 mice, respectively (at day 0). At day 14), the treatment was repeated for the same muscle. Then at day 42, the muscles were collected and weighed. Statistical analysis was performed using a Student's *t*-test.

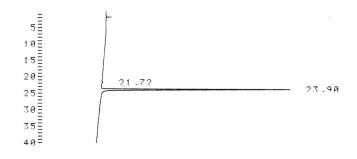
6. Histological analysis


The treated gastrocnemius muscles were dissected 28 days after the 2nd injection of **E31R** or at day 14 for the saline-treated animals. The frozen tissue sections were prepared transversely (6 μ m) using a cryostat, and then hematoxylin and eosin staining was performed on each section. Fiber sizes were determined by measuring the area of each myofiber in a fixed area. Two hundred cross-sectioned myofibers were randomly selected from 3 fields of each tissue section.

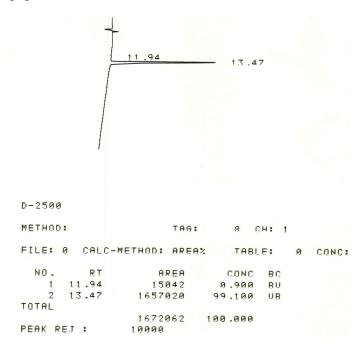
7. Measurement of grip strength in mdx mice

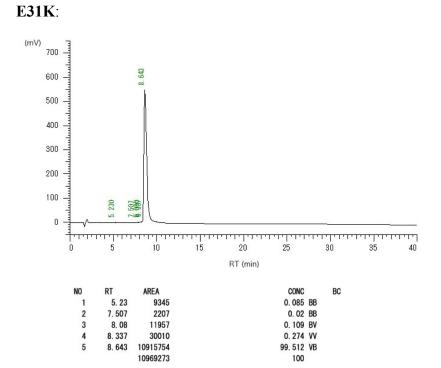

Animal studies were approved by the Animal Research Committee of Tokyo University of Pharmacy and Life Sciences. The peptide solution in saline (0.75 mM peptide **8a**, 40 μ L) were intramuscularly injected into respective four points per leg in 5-week-old *mdx* mice (at day 0) (n = 4). After two weeks (at day 14), the treatment was repeated. As a control, saline (40 μ L) was similarly treated in another group of *mdx* mice (n = 4). Then four weeks after the last treatment (at day 42), the grip strength of mice treated with peptide **8a** or with saline were measured by a grip strength meter MK-380M (Muromachi, Tokyo, Japan). Data normalized with body weight were presented as mean values ± SD. Statistical analysis was performed using a Student's *t*-test.

Analytical HPLC chromatograms

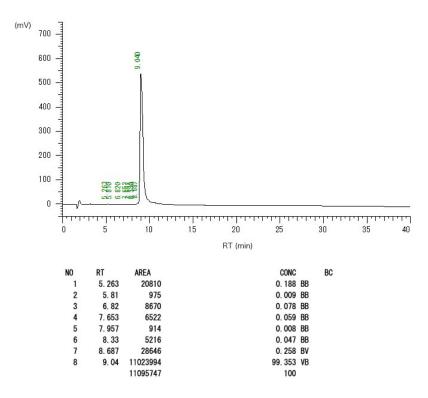


peptide 4b:

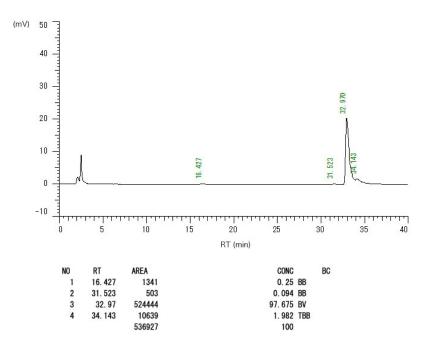

peptide 5:

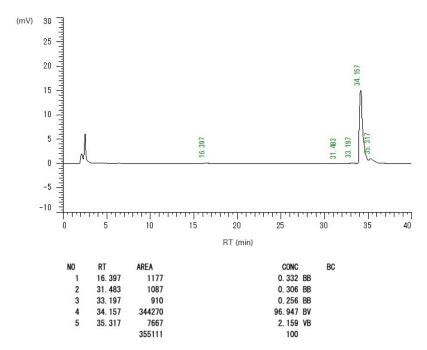


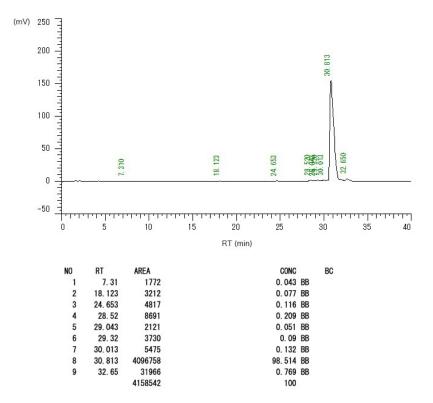
D-2500

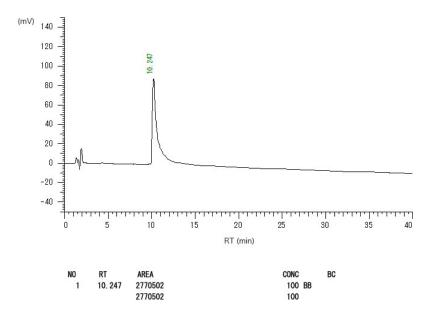

METHOD:	TAG:	177 CH: 1	
ЕТLE: 0 САГС-МЕТНОЛ): ARFA%	TARIE:	a conc:
	ARFA (8911 1	CONC RC 00.000 RR	
ТОТАЦ 183 РЕАК REJ : 1000		00.000	

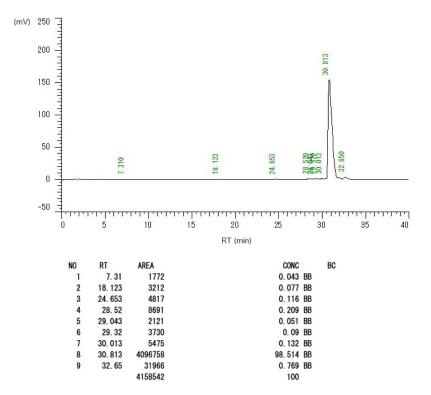
peptide 6:

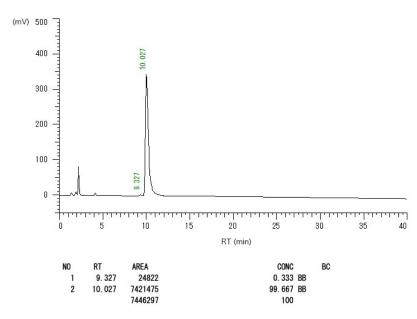


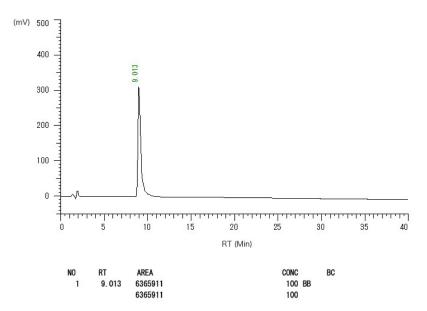


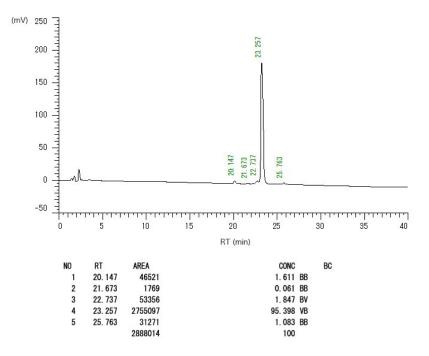


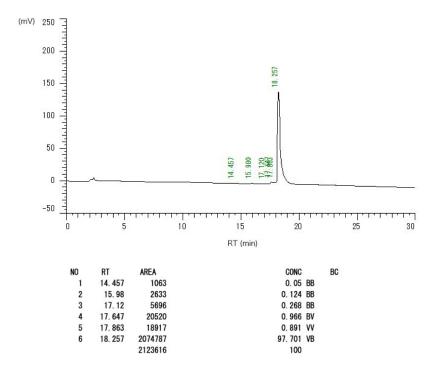


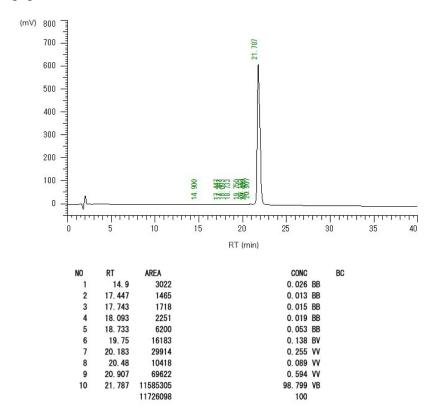


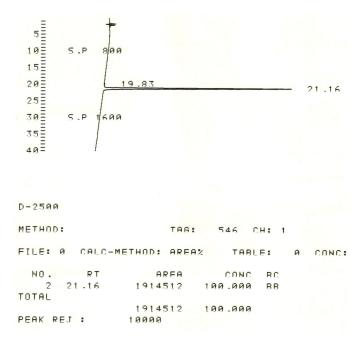


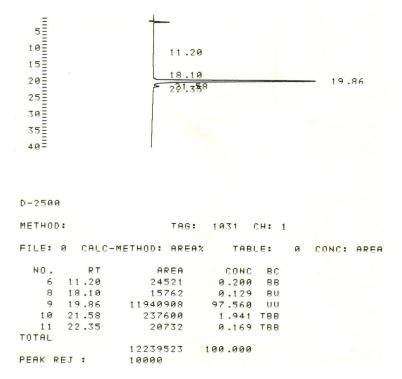


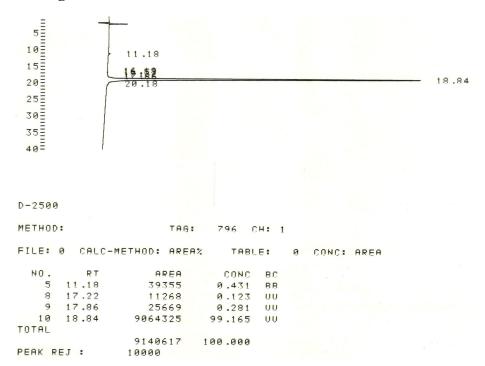


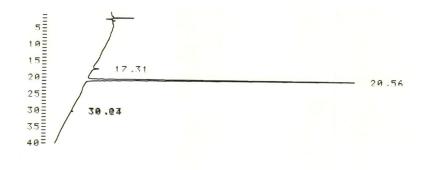




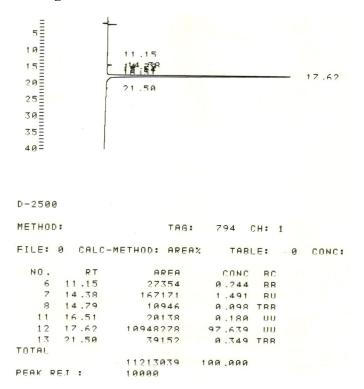




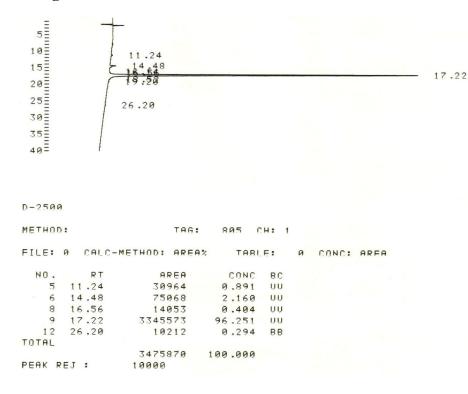

I30Chg:


I33Chg:

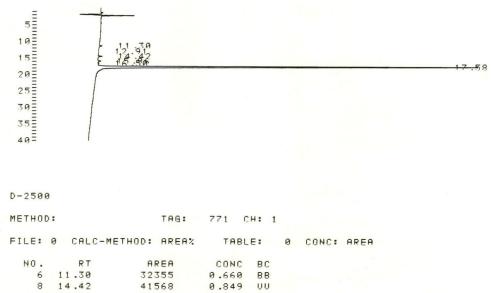
I35Chg:



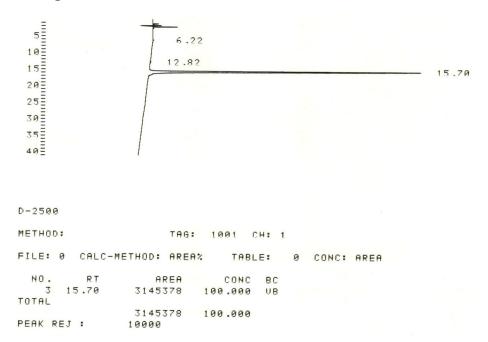
I37Chg:

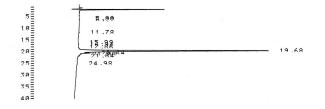


METHOD:		TAG:	807 C	H: 1		
FILE: 0	CALC-METHOD	: AREA%	TABL	E: 0	CONC:	AREA
		AREA 4852 3182	CONC 2.128 97.872	BC BB BB		
TOTAL						
PEAK REJ			199.999			


I30Phg:

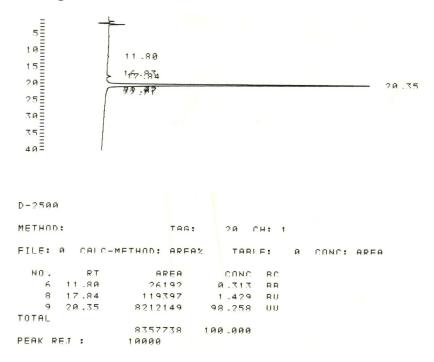
I33Phg:





8	14.42	41568	0.849	00		
9	15.86	44308	0.904	UU		
10	16.50	16469	0.336	UU -		
11	17.58	4764149	97.250	VB		
TOTAL						
		4898849	100.000			
PEAK R	EJ :	10000				

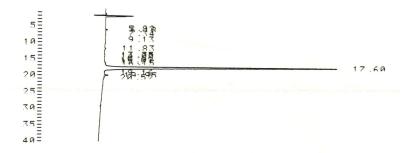
I37Phg:


L38Chg:

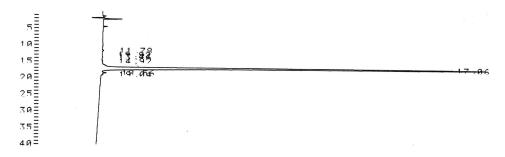

D-2500

METHOD:	TAG:	18 CH: 1	
FILE: 0 C	ALC-METHOD: AREA	72 TARIE:	0 CONC: AREA
NO.	RT AREA	CONC BC	
2 6.1	22 25403 🔍	0.267 00	
3 tt.	78 27257	0.286 UB	
5 16.1	94 27988	0.294 UU	
6 17.3	86 11029	0.116 UU	
7 19.	68 9184139	96.428 UU	
8 20.	64 155941	1.628 TBB	
9 21.1	08 35572	0.373 TBB	
10 21.3	84 20252	0.213 TBB	
11 24.	98 37700	0.396 TBB	
TOTAL			
	9524381	199.999	
PEAK REI :	10000		

L41Chg:

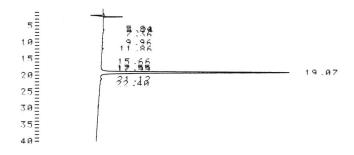

L43Chg:

D-2500

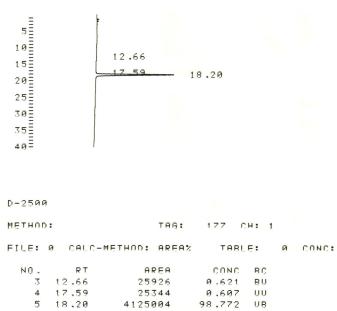

METHOD:	TAG:	28 CH:	1		
FTLE: 0 CALC	-METHOD: AREA%	TARI F:	a	CONC:	AREA
NO. PT	APEA	CONC P	20		
5 11.79	34537	0.463 P	R		
7 17.56	24581	0.329 P	80		
8 18.62	11881	0.159 1	JU.		
9 20.80	7389585	99.048 1	10		
TOTAL					
	7460584	100.000			
PEAK RET :	10000				

L38Phg:

МЕТНОС):	TAG:	19 C	H: 1	
FILE:	0 CALC-M	IETHOD: AREA	Z TABL	F: 0	CONC: AREA
NO.	RT	AREA	CONC	BC	
2	6.18	61621	0.845	00	
5	11.83	34365	0.471	UB	
7	14.00	18012	0.247	00	
9	15.71	19490	0.267	00	
10	16.15	50348	0.690	00	
11	17.60	6975954	95.634	00	
t 3	19.95	109772	1.505	TRU	
14	20.52	24893	9.341	TUB	
TOTAL					
		7294455	100.000		
PEAK R	E.T :	10000			

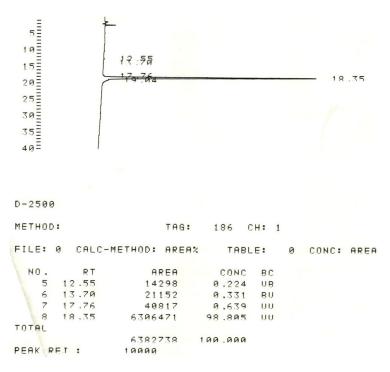

L41Phg:

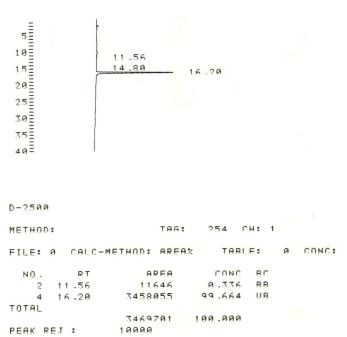
D-2500


METHOD:	TAG:	26 CH: 1	
FILE: 0 CALC-M	TETHOD: AREA%	TABLE: 0	CONC: AREA
NO. RT	AREA	CONC BC	
4 11.78	52153	0.408 BU	
7 13.76	24239	0.189 UU	
8 14.92	41853	0.327 UU	
9 17.06	12534396	97.976 UU	
10 18.56	97944	0.766 TBU	
11 19.04	42753	0.334 TUB	
ΤΟΤΑΙ			
	12793338	100.000	
PEAK REI :	10000		

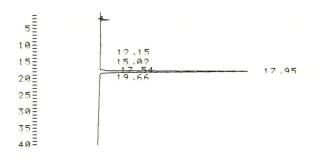
L43Phg:

D-2500

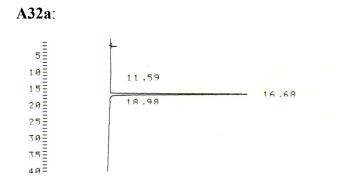

METHOD: TAG: 29 CH: 1 FILE: 0 CALC-METHOD: AREA% TARIE: a conc: NO. RΤ AREA CONC RC 2 6.24 21914 0.405 00 5 11.86 8 17.99 0.445 RR 24108 17672 0.326 UΠ 9 19.07 5319002 98.241 00 10 21.12 31567 0.583 TRR TOTAL 5414263 100.000 PEAK REJ : 10000



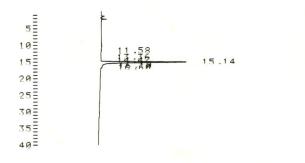
5 18.20	4125004	98.772	U B
TOTAL			
	4176274	100.000	
PEAK REJ :	10000		


R29r:

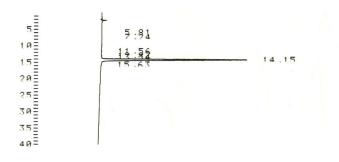
S28s:



E31e:



METHOD:	TAG:	255 CH: 1		
FILE: 0 CALC-M	IETHOD: AREA%	TABLE:	Ø	CONC:
NO. RT	AREA	CONC BC		
5 12.15	21930	0.293 88		
7 17.54	154383	2.061 BU		
8 17.95	7284248	97.242 UU		
9 19.66	30293	0.404 TBB		
TOTAL				
	7490854	100.000		
PEAK REJ :	10000			


D-2500	а				
МЕТНО):	TAG:	136 0	H: 1	
FILE:	0 CALC-1	1ETHOD: AREA	% TABL	E:	Ø CONC:
NO.	RT	AREA	CONC	BC	
2	11.59	10009	0.143	BB	
3	16.68	6964051	99.624	BU	
4	18.98	16256	0.233	твв	
TOTAL					
		6990316	100.000		
PEAK P	SEl :	10000			

I33i:

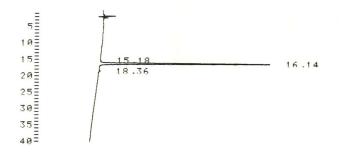
METHOD:			TAG:	t 4	16 0	H: 1		
FILE: 0	CALC-ME	THOD:	AREA%		TABL	E:	Ø	CONC:
NO.	RT	AR	REA	C	ONC	BC		
3	11.58	113	528	0.	.235	BB		
5	14.47	151	37	0	.315	BU		
6	15.14	47705	543	99.	.133	υu		
8	16.60	152	240	0	.317	TBB		
TOTAL								
		48122	248	100	.000			
PEAK RE	J :	10000						



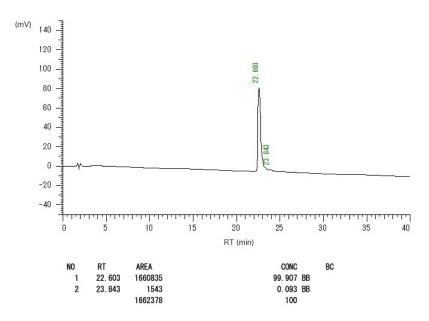
D-2500

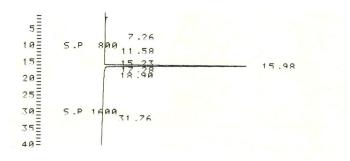
METHOD:			: 147	сн: 1		
FILE:	0 CALC-M	ETHOD: ARE	А% ТАВ	LE:	0	CONC:
NO.	RT	AREA	CONC	BC		
2	7.24	30136	0.407	0.0		
3	11.56	29452	0.398	0.0		
4	12.87	28288	0.382	0.0		
5	13.34	33899	0.458	0.0		
6	14.15	7281137	98.355	UU		
TOTAL						
		7402912	100.000			
PEAK RET :		10000				

I35i:

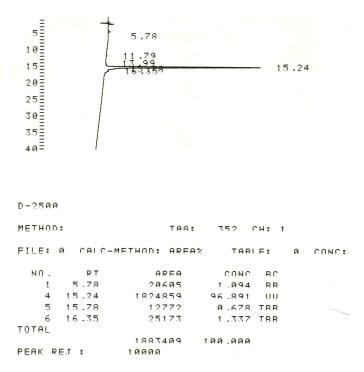

METHOD):		TAG:	181	CH:	1	
FILE:	0 CALC-	METHOD:	AREA%	TA	BLE:	0	CONC:
NO.	RT	AR	EA	CON	с вс		
3	8.02	145	91	0.28	9 UB		
4	12.87	143	02	0.28	3 BB		
5	15.04	49911	29	98.73	1 BU		
6	15.71	352	53	0.69	7 TBB		
TOTAL							
		50552	75	100.00	0		
PEAK P	SET :	10000					

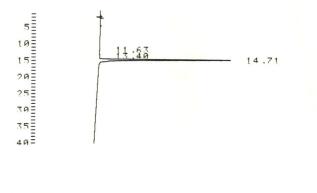
D-2500				
METHOD:	TAG:	118 C	H: 1	
FILE: 0 CALC-M	IETHOD: AREA	X TABL	E: 0	CONC:
NO. RT 2 18.32 Total	AREA 1156864	CONC 100.000	NB BC	
PEAK REJ :	1156864 10000	100.000		



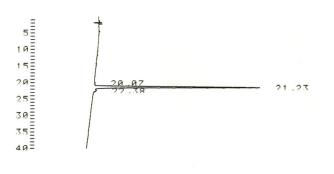

D-2500 METHOD: TAG: 119 CH: 1 FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: NO. RT AREA CONC BC

NO.	RT	AREA	CONC	BC
2	16.14	1815669	99.273	UB
3	18.36	13288	0.727	BB
TOTAL				
		1828957	100.000	
PEAK R	EJ :	10000		



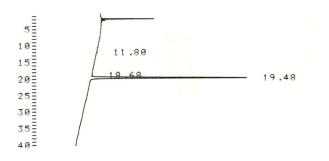


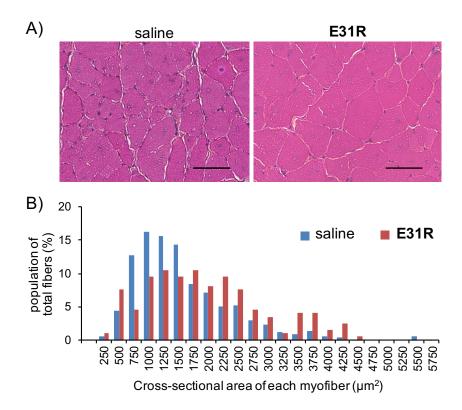
D-2500	1						
МЕТНОС	:		TAG:	253 1	CH: 1		
FILE:	0 CALC-	METHOD:	AREA%	TABI	E:	я	CONC:
NO.	RT	AR	EA	CONC	BC		
2	11.58	136	99	0.212	BB		
4	15.98	64362	96	99.621	υu		
7	31.76	107	79	0.167	BB		
TOTAL							
		64606	75	100.000			
PEAK R	EJ :	10000					



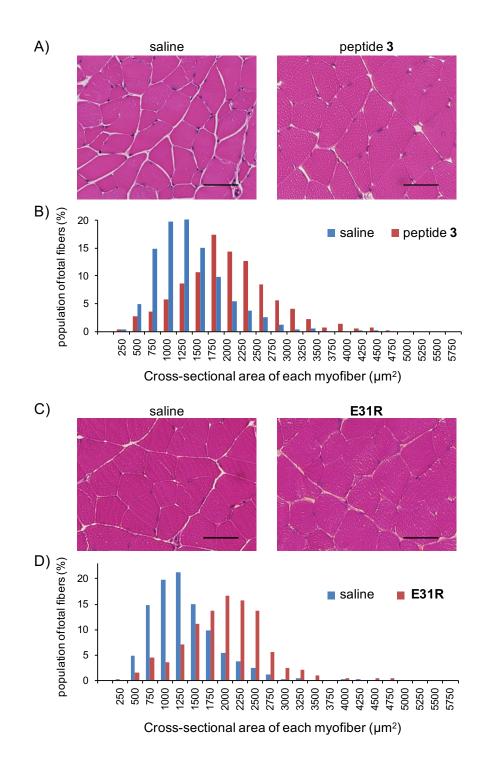
L411:

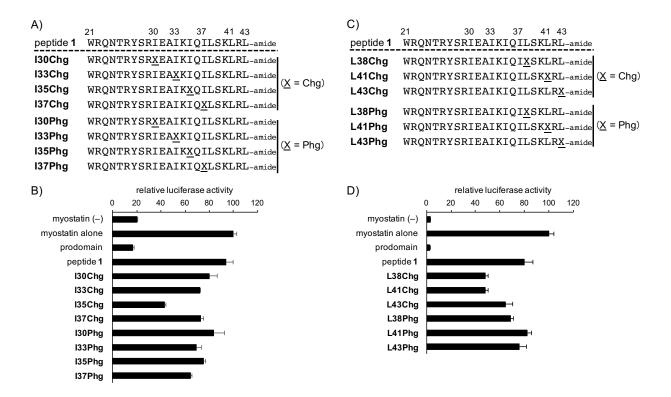
D-2500 METHOD: TAG: 357 CH: 1 FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: NO. RT 2 13.40 3 14.71 AREA CONC BC 10826 0.358 BV 3009602 99.642 UB TOTAL 3020428 100.000 PEAK REJ : 10000

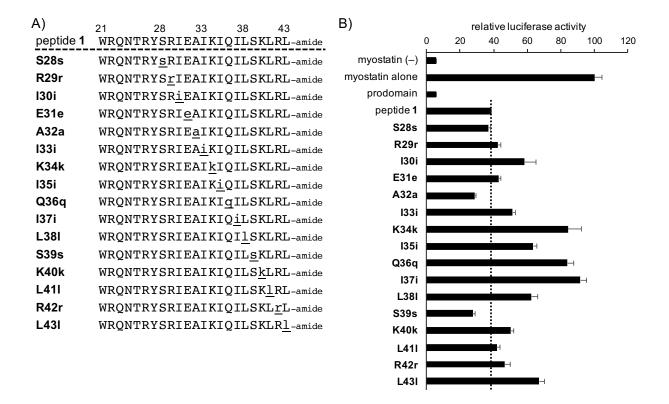



D-2500

METHOD:	TAG:	358 (CH: 1		
FILE: 0 CALC-	METHOD: AREA			Ø	CONC
NO. RT	AREA	CONC	BC		
3 20.07	11684	0.491	BU		
4 21.23	2344060	98.550	UU		
5 22.38	22794	0.958	твв		
TOTAL					
	2378538	100.000			
PEAK REJ :	10000				


L431:


метно):		TAG:	366	сн: 1		
FILE:	0 CALC-M	ЕТНОР:	AREA%	TAB	F:	9	CONC:
NO.	RT	AR	2EA	CONC	BC		
1	11.80	207	29	2.362	RU		
3	19,48	8565	530	97.638	UB		
TOTAL							
		8772	250	100.000			
PEAK P	RE' :	10000					


Figure S1. Induction of GAS muscle hypertrophy by **E31R**-treatment in Duchenne muscular dystrophic model *mdx* mice. (A) Hematoxylin and eosin staining of GAS muscles of *mdx* mice (n = 3) at day 42 after treatment with **E31R** or saline at days 0 and 14. Scale bars = 50 μ m. (B) Cross-sectional areas and distributions of myofiber sizes in **E31R** or saline treated GAS muscles.

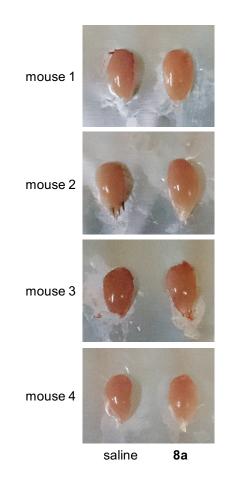

Figure S2. Induction of GAS muscle hypertrophy by peptide **3**- or **E31R**-treatment in wild-type mice. (A, C) Hematoxylin and eosin staining of GAS muscles of C57BL/6 mice (n = 3) at day 42 after treatment with peptide **3** (A), **E31R** (C) or saline (A, C) at days 0 and 14. Scale bars = 50 μ m. (B, D) Cross-sectional areas and distributions of myofiber sizes in peptide **3** (B), **E31R** (D) or saline (B, D) treated GAS muscles.

Figure S3. The aliphatic residue-directed SAR studies of peptide 1 using either chyclohexylglycine (Chg) or phenylglycine (Phg) residue. (A, C) Sequences of the Ile-substituted (A) and Leu-substituted (C) peptides. The numbers above each amino acid indicate its position in the prodomain sequence of mouse myostatin. (B, D) The luciferase reporter assay determined the activities of the Ile-substituted (B) and Leu-substituted (D) peptides toward myostatin inhibition relative to peptide 1. Peptide concentration: 1 μ M. Results are presented as mean values \pm SD (n = 3).

Figure S4. D-form scanning in peptide 1. (A) Sequences of a series of peptides substituted with D-form amino acid. The numbers above each amino acid indicate its position in the prodomain sequence of mouse myostatin. Lower case letter = D-form of the amino acid. (B) The luciferase reporter assay determined the activities of a series of peptides substituted with D-form amino acid toward myostatin inhibition relative to peptide 1. Peptide concentration: 3 μ M. Results are presented as mean values \pm SD (n = 3).

Figure S5. Investigation of morphological change to peptide treatment. Appearance of tibialis anterior (TA) muscles of *mdx* mice (mouse 1-4, n = 4) at day 42 after treatment with peptide **8a** (left TA) or saline (saline, right TA).