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1. Introduction

Here we supply additional methodological details with regard to the wgd software package for the analysis of
whole genome duplications (WGDs) in genome data. In section 5, we provide a detailed step-by-step protocol
to acquire the results shown in Figure 1 of our main paper. In that section, we also show exactly which
parameter settings were used to generate the relevant data.

2. KS distribution construction

We describe the workflow for paralogous families, as the approach for one-vs.-one ortholog KS distributions is
essentially the same. For every gene family, a multiple sequence alignment (MSA) is inferred using one of the
supported aligners (currently MUSCLE (Edgar 2004) and MAFFT (Katoh et al. 2013) are supported for
protein MSAs (which are back-translated), and PRANK (Löytynoja & Goldman 2008) for codon-level MSAs).
Subsequently, the KS values for all gene pairs in the family are estimated by maximum-likelihood (ML)
using the model of Nielsen & Yang (1998) as implemented in the codeml program from the PAML package
(Yang 2007). Codon frequencies are determined using the F3X4 method based on the average nucleotide
frequencies at the three codon positions. Codon model 0 is used for pairwise KS, KA and ω estimation,
assuming a constant ω across sites and branches. KS estimates are subsequently node-weighted to correct for
the redundancy in KS estimates when the family has undergone multiple duplication events. To this end the
user can choose to apply average linkage clustering (e.g. Maere et al. 2005) or phylogenetic tree construction
(e.g. Vanneste et al. 2015) using FastTree (Price et al. 2010) or PhyML (Guindon et al. 2010). We note
that the modular design of the package allows to easily provide support for other aligners and phylogenetic
tree inference programs than those currently supported. The full KS analysis workflow can be executed in
parallel to allow efficient computation on multi-core systems.

3. Kernel density estimation & Gaussian mixture modeling

Kernel density estimates (KDEs) are used frequently for the visualization of empirical distributions as density
curves, and have been used for KS distributions as well. One problem that is rarely accounted for however
when fitting KDEs to KS distributions is the boundary effect at KS = 0 (or any other lower bound when
some filtering step is used). When not accounted for the boundary, a KDE will strongly underestimate
the density around the boundary, where the size of this region of underestimation is dependent on the
bandwidth. This underestimation may lead to spurious peaks in low KS regions. One simple approach to
account for the boundary effect is to reflect the data around the boundary and generate a new data set from
the combination of the original data and the reflected data. One can then fit a KDE to the resulting data
set, which is of course visualized in the original KS range of interest. We note that this approach effectively
amounts to the assumption that the derivative of the density curve at the boundary is equal to 0. This was
implemented both in wgd kde and wgd viz. Gaussian mixture modeling has been used frequently in the
literature to study KS distributions (e.g. Barker et al. 2008, Vanneste et al. 2015, Devos et al. 2006, Li et al.
2018). However there has been a widespread misconception that peaks in the KS originating from WGDs are
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expected to show a Normal distribution (e.g. Barker et al. 2008, Devos et al. 2006, Li et al. 2018). Simple
molecular evolutionary arguments however indicate otherwise. If we consider synonymous substitution as a
Poisson process, and synonymous substitution rates for different duplicate pairs sampled from some Gamma
distribution, the expected distribution of number of synonymous substitutions will follow a Negative binomial
distribution (which is well approximated in the continuous case by the Gamma or log-normal distribution).
WGD peaks in the KS distribution will therefore have positive skew, and this effect will be stronger the
more recent the WGD. Normal GMMs are not able to account for this effect, and neither can they cope
with the background exponential decay from SSDs. We provide tools for fitting mixtures of log-normal
components to KS distributions using either an expectation-maximization (EM) algorithm or a variational
Bayes (VB) inference algorithm (Blei & Jordan 2006). The latter is of particular interest here, as it allows to
mitigate to some extent the common overfitting problems encountered with GMMs by means of regularization.
The parameter γ governs the strength of regularization, with a small γ leading to stronger regularization,
making less components likely to be active in the mixture. Therefore this strategy allows to some degree to
automatically select the number of components, as for strong enough regularization the weights of spurious
components will be shrunk towards 0. However in practice, overfitting can still be a problem, and active
components should be interpreted with caution (see for example Tiley et al. (2018) for a recent study on
mixture modeling for WGD inference).

4. Comparison of wgd with other available tools

Table 1: Comparison of wgd with some frequently used tools for studying WGDs. We note that
of these tools, only wgd is specifically designed for the purpose of providing an integrative tool for WGD
analysis, whereas the other tools provide some of the analyses that are often performed when studying WGDs.
This list may be inexhaustive but focuses on tools that have been used in recent studies. An ‘x’ marks a
feature as available. Notes: (i) Uses I-AdHoRe 3.0, only for intra-genomic co-linearity analysis in the current
version. (ii) Uses the heuristic counting method of Nei & Gojobori (1986), instead of a model of codon
substitution. (iii) Does not use clustering approach to identify paralogous families. (iv) Does not perform
node-weighting or node-averaging. References; SyMap: Soderlund et al. (2011); MCscanX: Wang et al.
(2012); CoGe: Lyons et al. (2008), Haug-Baltzell et al. (2017), FastKs: McKain et al. (2016). We note
that evopipes.net (Barker et al. 2010) also provides tools for KS distribution construction and gene family
inference, however this web-based platform has been unavailable for some time at the time of writing.

wgd SyMap CoGe MCScanX FastKs
Paranome/one-vs-one ortholog delineation x xiii

Whole paranome KS distributions x xiv

One-vs-one ortholog KS distributions x x
Mixture modeling x x
Co-linearity dotplots xi x x x
Interactive visualizations x x x
Anchor-pair KS distributions x x xii

Command line interface x x
Web interface x x
Open source x x x x x

5. Arabidopsis thaliana example recipe

This is a recipe for performing the analyses to obtain the results presented in Figure 1 of the wgd application
note. The analyses are presented for a test data set, but the exact same commands can be used for the
full data set to acquire the full results. The results (gene families, KS distributions and anchor pair KS
distributions) can also be found in the example directory of the wgd repository.

First install wgd, if you haven’t yet, (be sure you have Python3 installed):
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git clone https://github.com/arzwa/wgd.git
cd wgd
pip install . # if this doesn't work, try pip3 instead of pip

You will also need to have Blast, MUSCLE, FastTree and I-ADHoRe installed for the full analysis.

Get the sequence data from PLAZA (4.0)

wget ftp://ftp.psb.ugent.be/pub/plaza/plaza_public_dicots_04//Fasta/cds.ath.fasta.gz
gunzip cds.ath.fasta.gz

Note that this annotation contains mitochondrial and chloroplast genes as well as transposable elements. To
eliminate these do

grep -A 1 ">AT[1-9]G" cds.ath.fasta > cds.ath_filtered.fasta

Optional: For a quick test analysis, get a random sample of sequences from the file (skip this if you want to
do the full analysis).

grep ">" cds.ath_filtered.fasta | shuf | head -n 1000 > ids
grep -A 1 -f ids cds.ath_filtered.fasta | sed "/--/d" > sample.fasta
rm ids

Run an all-vs.-all Blastp analysis and cluster using MCL, assuming you’re working with sample.fasta
(replace with cds.ath_filtered.fasta for a full analysis). We use the default parameters, which are at the
moment of writing an e-value cut-off of 10−10 and an inflation factor of 2.0.

wgd mcl -s sample.fasta --cds --mcl

A directory named wgd_blast will appear that will contain some gene families in the file sample.fasta.blast.tsv.mcl.
We move the file to the working directory and give it a shorter name for convenience

mv wgd_blast/sample.fasta.blast.tsv.mcl ./sample.mcl

Now let’s compute a KS distribution (use -n to set the number of cores to use, defaults to 4). We again use
default methods, being the family-wise mode (as opposed to the pairwise mode, where codeml is run for every
pair instead of the whole family), MUSCLE for multiple sequence alignment and FastTree for node-weighting.

wgd ksd sample.mcl sample.fasta

This creates a directory wgd_ksd. You can check the histograms that were generated or inspect the KS
distribution itself:

head -n 3 wgd_ksd/*tsv

AlignmentCoverage AlignmentIdentity ... Ks Node Omega Outlier Paralog1 ...
AT1G77815__AT3G09510 0.18941 0.50538 ... 2.4193 2.0 0.308 False AT1G77815 ...
AT2G27980__AT2G37520 0.73607 0.49256 ... 10.1451 2.0 0.0613 True AT2G27980 ...

To get anchor pairs, first download the GFF file

wget ftp://ftp.psb.ugent.be/pub/plaza/plaza_public_dicots_04// # ... omit this line break
GFF/ath/Arabidopsis_thaliana.COL0.Araport11.longest_transcript.all_features.gff3.gz

gunzip Arabidopsis_thaliana.COL0.Araport11.longest_transcript.all_features.gff3.gz
mv Arabidopsis_thaliana.COL0.Araport11.longest_transcript.all_features.gff3 ath.gff

Then run wgd syn, again with default parameters (which can be seen in the documentation here:
https://wgd.readthedocs.io/en/latest/syn.html#wgd.colinearity.write_config_adhore):

wgd syn -ks wgd_ksd/sample.fasta.ks.tsv -f gene -a ID ath.gff sample.mcl

Chances are that you get the WARNING No multiplicons found! warning when using the small test data,
in that case nothing interesting happens. However when doing the full analysis, you should find dotplots
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and anchor-pair KS distributions in the wgd_syn directory. Here you can also find the configuration file for
I-ADHoRe (adhore.conf) with the exact parameter settings, which in this case was:

genome= genome
Chr1 ./wgd_syn/gene_lists/Chr1.lst
Chr2 ./wgd_syn/gene_lists/Chr2.lst
Chr3 ./wgd_syn/gene_lists/Chr3.lst
Chr4 ./wgd_syn/gene_lists/Chr4.lst
Chr5 ./wgd_syn/gene_lists/Chr5.lst
ChrC ./wgd_syn/gene_lists/ChrC.lst
ChrM ./wgd_syn/gene_lists/ChrM.lst
blast_table= ./wgd_syn/families.tsv
output_path= ./wgd_syn/i-adhore-out
gap_size= 30
q_value= 0.75
cluster_gap= 35
prob_cutoff= 0.01
anchor_points= 3
alignment_method= gg2
level_2_only= false
table_type= family
multiple_hypothesis_correction= FDR
visualizeGHM= false
visualizeAlignment= true

Mixture models can be fit using the following command:

wgd mix --method bgmm wgd_ksd/sample.fasta.ks.tsv

which will fit models using the variational Bayes algorithm with up to four components. You can find plots
and output data with component-wise probabilities in the directory wgd mix.

The Carica papaya distribution was obtained with identical methods, whereas a one-vs.-one ortholog distribu-
tion can be obtained by following the same approach but with the one-vs.-one flag in wgd mcl and wgd ksd.
When all KS distributions are computed, wgd viz can be used to interactively visualize these together. To
do so, put all distributions in one directory (I assume it is named ks_dir) and run a bokeh server instance:

bokeh serve &

Then run

wgd viz -i ./ks_dir

A browser window will appear where you can toy around with the visualization. Below (Supplementary
figure 1) a screenshot of the current user interface is included, with as example distributions those included
in Figure 1 of our main paper.
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Figure 1: Screenshot of the current user interface (UI) in wgd viz for interactive visualization of
KS distributions and KDEs. The UI allows modifying the colors, hiding and showing different distributions
(by clicking labels in the legend), adapting visual attributes (e.g. opacity of the KDE), filtering and (optional)
reweighting by KS range and modifying the number of histogram bins and KDE bandwidth. The user can
scroll and zoom using the mouse and save the plot to a file.
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