

Supplementary Figure 1: The alignment of genomic and predicted protein sequence of the *DNA*-*PKcs*^{*PQR*} (A) and *DNA*-*PKcs*^{*SD*} (B) allele from homozygous *DNA*-*PKcs*^{*PQR*/*PQR*}, *DNA*-*PKcs*^{*SD*/*SD*} mice. The synonymous substitution (CTA->TTA) generates a new restriction site (CTTAAG) for Afill, which was used for screening. (C) A set of representative genotyping results from crosses between *DNA*-*PKcs*^{*PQR*/+} parents. The PCR products corresponding to the WT allele is 280bp, to PQR is 387bp. (D) The body weight of adult *DNA*-*PKcs*^{*PQR*/*PQR*}, *DNA*-*PKcs*^{*PQR*/-} (compound heterozygous with null), *DNA*-*PKcs*^{+/SD} *DNA*-*PKcs*^{*SD*/SD} mice (average± standard error). Based on student t test, there is no significant difference between any two genotype groups. (E) Western blotting using commercial antibodies developed against pS2056 of human DNA-PKcs (Bethyl Laboratories Inc., BL2423, 1:500)

SupFigure2

Α.

At 8-10 week	Weigh	it (mg)	Count (10 ⁶)		
	Thymus	Spleen	Thymus	Spleen	
WT (n=3)	38.90±11.24	95.93±3.56	68.5±33.2	64.8±18.8	
PQR/PQR(n=3)	34.33±9.72	80.07±13.15	58.57±11.9	52.2±14.9	
PQR/- (n=3)	41.25±6.45	92.50±35.6	61.5±11.3	64.5±35.6	

Β.

At 4 week	Count (10 ⁶)			
	Thymus	Spleen		
WT (n=4)	173.4±34.3	65.9±9.8		
SD/SD(n=11)	127.8±46.9	59.8±19.7		
+/SD (n=3)	160.8±35.4	56.9±19.9		

Supplementary Figure 2

(A) Thymus and Spleen weight (g) and totally cellularity in *DNA-PKcs*^{PQR/PQR} and control mice. B) Total cell count of thymus and spleen from *DNA-PKcs*^{SD/SD} and *DNA-PKcs*^{+/+} littermates. The data represents the average and standard deviation of >3 mice of each genotype. (C) The percentage of IgG1+ cells among all B220+ B cells at day 4 of class switch. The data represents the average and standard deviation of 3 independent experiments. ATM inhibitor KU55933 was used at final concentration of 7.5µM and DNA-PKcs inhibitor NU7441 was used at a final concentration of 2.5 µM. (D) The distribution of ATM genotyping from breeding between *DNA-PKcs*^{SD/SD}*ATM*^{+/-} parents. The breeding between *ATM*^{+/-} mice were used as control. P was calculated using the Fisher exact test. (E) The independent repeats of radiation sensitivity of B cells activated for class switch recombination. The activated B cells were irradiated on the day of purification and cytokine stimulation (anti-CD40 and IL4) and the cell counts were determined 4 days later.

SupTable 1

		CODINGJOINTsLEFT	Р	N	Р	RIGHT	N+P=	Del=
	GL	AAGCGGAGCACCACAGTGCTAACTGGGACC				ACTATGCTATGGACTACTGGGGTCAAGGAA		
PKcS ^{+/+}	1	AAGCGGAGCACCACAGTGCTAACTG <u>G</u>				CTATGGACTACTGGGGTCAAGGAA	0	10
	2	AAGCGGAGCACCACAGTGCTAACTGGG <u>A</u>				TGCTATGGACTACTGGGGTCAAGGAA	0	6
	3	AAGCGGAGCACCACAGTGCTAACTG				TGCTATGGACTACTGGGGTCAAGGAA	0	9
	4	AAGCGGAGCACCACAGTGCTAACTGGG			Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	1	3
	5	AAGCGGAGCACCACAGTGCTAACTGGGA		CG		TGCTATGGACTACTGGGGTCAAGGAA	2	6
	6	AAGCGGAGCACCACAGTGCTAACTGGGACC	GG			ATGCTATGGACTACTGGGGTCAAGGAA	2	3
	7	AAGCGGAGCACCACAGTGCTAACTGGGA		GGG		ACTATGCTATGGACTACTGGGGTCAAGGAA	3	2
	8	AAGCGGAGCACCACAGTGC		CCA		ACTATGCTATGGACTACTGGGGTCAAGGAA	3	11
-	9	AAGCGGAGCACCACAGTGCT		CCG		TATGGACTACTGGGGTCAAGGAA	3	17
J-	10	AAGCGGAGCACCACAGTGCTAACTGGGACC		CC	T	ACTATGCTATGGACTACTGGGGTCAAGGAA	3	0
\geq	11	AAGCGGAGCACCACAGIGCIAACIGGGAC	G	GG		IGCIAIGGACIACIGGGGICAAGGAA	3	5
	12	AAGCGGAGCACCACAGIGCIAACIG		AGGG		AIGCIAIGGACIACIGGGGICAAGGAA	4	8
	13	AAGCGGAGCACCACAGTGCTAACTGGGA		AACG		ATGCTATGGACTACTGGGGTCAAGGAA	4	5
	14	AAGCGGAGCACCACAGTGCTAACTG		AGGG		ATGCTATGGACTACTGGGGTCAAGGAA	4	8
	15						4	19
	10		CT.				5	4
	10		GT		TCC		0	2 15
	10				100		8	23
	13			T			1	5
	2	AAGCGGAGCACCACAGTGCTAACTG		TT		CTATGCTATGGACTACTGGGGTCAAGGAA	2	6
QF	3	AAGCGGAGCACCACAGTGCTAACTGGGA		AGG		TGCTATGGACTACTGGGGTCAAGGAA	3	6
Ú)	4	AAGCGGAGCACCACAGTGCTAACTGGG		TC	Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	3	3
R	5	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	GG		GGACTACTGGGGTCAAGGAA	3	11
C D	6	AAGCGGAGCACCACAGTGCTAACTGGGAC	GT	A		ACTATGCTATGGACTACTGGGGTCAAGGAA	3	1
S	7	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	AA	Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	4	1
×	8	AAGCGGAGCACCACAGTGCTAACTGGGAC	GT		AG	CTATGCTATGGACTACTGGGGTCAAGGAA	4	2
	9	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	GGA		CTATGCTATGGACTACTGGGGTCAAGGAA	4	2
DNA-I	10	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	GGG		GCTATGGACTACTGGGGTCAAGGAA	4	6
	11	AAGCGGAGCACCACAGTGCTAACT		CTATT		ACTATGCTATGGACTACTGGGGTCAAGGAA	5	6
	12	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	GG	GT	ACTATGCTATGGACTACTGGGGTCAAGGAA	5	1
	13	AAGCGGAGCACCACAGTGCTAACTGGG		GCCCT		CTATGCTATGGACTACTGGGGTCAAGGAA	5	4
	14	AAGCGGAGCACCACAGTGCTAACTGGGAC	GT	AGGG		GCTATGGACTACTGGGGTCAAGGAA	6	6
	15	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	ATAT	Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	6	1
	16	AAGCGGAGCACCACAGTGCTA	Т	CGGGAG		GCTATGGACTACTGGGGTCAAGGAA	7	14

SupTable 1 Endogenous DQ52-JH4 junctions from peripheral B cells in *DNA-PKcs*^{+/+} (n=19) and *DNA-PKcs*^{PQR/PQR} (n=16) *B cells* mice. GL= Germline line sequence; P=palindromic (p) nucleotides; N=nontemplate-encoded nucleotides. Del=deletion, from the predicated GL seq.

SupTable 2

	CODING JOINTS LEFT	Р	N	Р	RIGHT	N+P=	Del=
GL	AAGCGGAGCACCACAGTGCTAACTGGGACC				ACTATGCTATGGACTACTGGGGTCAAGGAA		
1	AAGCGGAGCACCACAGTGCTAACTGGGACC	GG	G		GCTATGGACTACTGGGGTCAAGGAA	3	5
2	AAGCGGAGCACCACAGTGCTAACTGGGAC				TGCTATGGACTACTGGGGTCAAGGAA	0	5
3	AAGCGGAGCACCACAGTGCTAACTGGG <u>AC</u>				TATGCTATGGACTACTGGGGTCAAGGAA	0	3
4	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	GT		TATGCTATGGACTACTGGGGTCAAGGAA	3	3
5	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	A		GCTATGGACTACTGGGGTCAAGGAA	2	6
6	AAGCGGAGCACCACAGTGCTAACTGGGAC	G		GC	GCTATGGACTACTGGGGTCAAGGAA	3	6
7	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	AGG		GCTATGGACTACTGGGGTCAAGGAA	4	6
8	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	AC		CTATGCTATGGACTACTGGGGTCAAGGAA	3	2
9	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	GGACTTA		ATGGACTACTGGGGTCAAGGAA	8	9
10	AAGCGGAGCACCACAGTGCTAACTGGGAC	G	GGAT	Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	6	1
11	AAGCGGAGCACCACAGTGCTAACTGGGA		GGGAGAGT	G	CTATGCTATGGACTACTGGGGTCAAGGAA	9	3
12	AAGCGGAGCACCACAGTGCTAACTGGG		GGGGTGTC		TGGACTACTGGGGTCAAGGAA	8	12
13	AAGCGGAGCACCACAGTGCTAACTGGG	CC	TC		CTATGCTATGGACTACTGGGGTCAAGGAA	4	4
14	AAGCGGAGCACCACAGTGCTAACTGGG		TC		ATGCTATGGACTACTGGGGTCAAGGAA	2	6
15	AAGCGGAGCACCACAGTGCTAACTGGG				<u>AC</u> TGGGGTCAAGGAA	0	18
16	AAGCGGAGCACCACAGTGCTAACTGGG			Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	1	3
17	AAGCGGAGCACCACAGTGCTAACTGG				TATGCTATGGACTACTGGGGTCAAGGAA	0	6
18	AAGCGGAGCACCACAGTGCTAACTG		Т	Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	2	5
19	AAGCGGAGCACCACAGTGCTAACT		CCCT	Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	5	6
20	AAGCGGAGCACCACAGT	A	TGAGGAT	Т	ACTATGCTATGGACTACTGGGGTCAAGGAA	9	13

Supplementary Table 2

Endogenous DQ52-JH4 junctions (n=20) from peripheral *DNA-PKcs^{SD/SD} B cells*. GL= Germline line sequence; P=palindromic (p) nucleotides; N=nontemplate-encoded nucleotides. Del=deletion, indicating base pair deletion from the predicated GL seq.