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Abstract: 

 

Background: Congenital heart defects (CHD) are a leading cause of morbidity and mortality in 

children and despite advanced surgical treatments, many patients progress to heart failure. 

Currently, transplantation is the only effective cure and is limited by donor availability and organ 

rejection. Recently, cell therapy has emerged as a novel method for treating pediatric heart 

failure with several ongoing clinical trials. However, efficacy of stem cell therapy is variable and 

choosing stem cells with highest reparative effects has been a challenge.  

Methods: We previously demonstrated the age-dependent reparative effects of human c-kit+ 

progenitor cells (hCPC) in a rat model of juvenile heart failure. Using a small subset of patient 

samples, computational modeling analysis showed that regression models could be made linking 

sequencing data to phenotypic outcomes. In the current study, we used a similar quantitative 

model to determine whether predictions can be made in a larger population of patients and 

validated the model using neonatal hCPCs. We performed RNAseq from CPCs isolated from 32 

patients, including 8 neonatal samples.  We tested 2 functional parameters of our model, cellular 

proliferation and chemotactic potential of conditioned media.  

Results: Interestingly, the observed proliferation and migration responses in each of the selected 

neonatal hCPC lines matched their predicted counterparts. We then performed canonical 

pathway analysis to determine potential mechanistic signals that regulated hCPC performance, 

and identified several immune response genes that correlated with performance. ELISA analysis 

confirmed the presence of selected cytokines in good performing hCPCs, and provided many 

more signals to further validate.  

Conclusions: These data show that cell behavior may be predicted using large datasets like 

RNAseq, and that we may be able to identify patients whose CPC exceed or underperform 

expectations. With systems biology approaches, interventions can be tailored to improve cell 

therapy, or mimic the qualities of reparative cells.   

 
 
 
 
Key words: congenital; computer-based model; stem cell 
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Introduction 

Congenital heart defects (CHD) are present in 8-9 of 1000 newborns (35,000 annually in the 

United States) and palliative surgical therapy has greatly increased their survival 1. Despite 

improved surgical outcomes, many children still develop reduced cardiac function and go on to 

heart failure and transplantation.  CHD are the leading cause of right-ventricular (RV) failure in 

pediatric populations, especially in patients with diseases like Hypoplastic Left Heart Syndrome 

(HLHS) and Tetralogy of Fallot. Surgical palliation puts an increased load on the RV that is 

balanced by hypertrophy and fibrosis, leading to reduced function.  In addition, these patients 

also suffer great morbidity in the form of reduced exercise capacity and intellectual deficiencies.  

Currently, transplantation is the only cure for many of these children; however, it has limitations 

such as organ rejection, organ shortage, and limited transplant longevity 2. 

While hundreds of cellular therapy trials have been investigated in adults 3, 4, the use of 

stem/progenitor cells to treat cardiac dysfunction in congenital patients is relatively new.  The 

TICAP trial using autologous cardiosphere-derived cells has shown short and long-term safety 

with modest efficacy 5, 6.  Additionally, studies on cord blood-derived cells (NCT01883076) and 

mesenchymal stem cells (MSCs, NCT03525418) are ongoing in children and based on positive 

animal studies 7, 8.  We have recently published that human c-kit+ progenitor cells (hCPCs) can 

be isolated from pediatric biopsies and can improve the failing RV in a donor age-dependent 

manner 9.  Specifically, our studies and work from other laboratories show that neonatal hCPCs 

show the maximum reparative effect compared with CPCs derived from infant (1-12 month) and 

child (>12 month) donors 9-12. A clinical trial study is now underway applying neonatal hCPCs 

for cardiac reparative therapy in children (NCT03406884). 
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For stem cell therapy, given the potential for patient-to-patient variability, it is critical to 

select cells with the highest reparative potential. An unbiased way to determine what cellular 

signals and cues direct functional outcomes is to use statistical modeling as part of the cue-

signal-response paradigm 13, 14.  While linking cellular cues to functional outcomes using 

modeling has been well-published, our recent studies applied statistical modeling approaches on 

a small subset of patients and showed that regression models can link sequencing data from each 

cell to its phenotypic outcome 9, 15, 16. Additionally, using systems biology, we showed what 

mechanisms and signaling pathways regulate the efficacy of CPCs and are potentially involved 

in the reparative ability of these cells. Statistical models using neonatal CPC mRNA showed 

high predictability rates for different cardiac functions including RV ejection fraction (EF), 

migration and proliferation 9.  

As data gathering has increased for biological data sets and the variables and conditions 

driving a biological response are being increased more than the number of observations or cell 

responses, reduction of the dimensionality of the problem is helpful to identify a unique solution. 

Capturing covariance with PCA and PLSR has distinct advantages relative to simply observing 

variation of each individual signal across all conditions 14, 17. Principal component analysis 

considers the entire dataset in an unsupervised manner, and captures how the signals being 

measured vary in a coordinated manner.  PLSR allows the user to propose a relationship, 

introducing hypotheses, by splitting the variables into dependent and independent variables. 

Then a linear relationship is identified relating these variables to each other based on biological 

information; this allows the solution to be related to the independent variables most connected 

with the dependent variables. PLSR has the added benefit of accommodating unknown 

coefficients and incomplete datasets because it will reduce the dimensions into principal 
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component space from which contributing vectors are considered, instead of each individual data 

point for every single perturbation or condition 17-19. 

In the current study, the focus was to increase the predictive power of our statistical 

model by adding more samples to our analysis, and to validate predicted responses in each 

neonate cell line. We selected proliferation and migration-induction as two key indicators of 

cardiac reparative ability of the cells based on our prior studies and performed in vitro assays to 

define the functional outcome of each neonate cell line. In vitro results verified our predictive 

model and identified cardiac and immune response genes that are enriched in better performing 

CPCs. We also ran validation on selected markers and found that at least one of the outcomes 

could be functionally predicted using an ELISA assay. With clinical trials in cell therapy 

ongoing for children, the possibility of matching transcriptomic sequencing data to clinical 

endpoints could allow for personalized and predictive medicine. 

 

Material and Methods 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. All studies were approved by the Children’s Healthcare of Atlanta and 

Emory Institutional Review Board (IRB00005500).  All other methods are available as an online 

supplement.   

 

Results 

Statistical modeling analysis of different ages of pediatric cardiac progenitor cells shows a 

tight clustering of similar aged hCPCs  

Individual patient CPCs were grouped in 3 different age groups as previously published; 

neonates (0-1 month), infants (1-12 months), and children (2-5 years) 9.  In order to build our 
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initial model, we used mRNA sequencing data of CPCs from selected patients from our 

published study (that used microarray) and plotted them in principal component space. Three 

individual patients from the neonate patient group, and 2 individual patients from each of the 

infant and child groups with known cardiac reparative effects were selected. Any patients with 

known genetic mutations were excluded from the study; however, these patients may have 

unknown genetic abnormalities that have not been detected in our study.  Keeping with our 

published study, a tight clustering of similar donor aged hCPCs was observed in the PCA plot 

(Figure 1A). While the neonate-1 sample locates more closely with the two infant samples, 

suggesting variability in rate of maturation with respect to chronological age, it nevertheless has 

a positive PC1 score as do the other neonate samples.  Infant and child samples were found in 

close proximity to each other and in the same quadrant as their counterparts.  The amount of 

variance captured by the first two components is demonstrated on the x and y axes in Figure 1A. 

Furthermore, partial least squares regression (PLSR) analysis was performed to define a 

mathematical relationship between hCPC signals (mRNA) and cardiac reparative functions of 

MSC migration and CPC proliferation. PLSR analysis of patient mRNAs and cardiac functions 

identified the most important signals from mRNA contents by calculating importance of variable 

projection (VIP). VIP is calculated using a weighted sum of squares variable and is a relative 

value for determination of the contribution of each gene, either positively or negatively, to the 

associated outcome of reparative function. Genes with top 300 VIPs (exactly 256 top genes were 

selected, but here we refer to it as 300 genes, expanded in Table 1) were selected in an unbiased 

manner and a new PLSR prediction model was retrained only with these 300 genes from the 

patients, and the loadings plot is shown in principal component space (Figure 1C). In this study, 

we focused on proliferation and migration as two selected cardiac reparative effects of hCPCs. 
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Mapping the loading plot of these genes in PC space demonstrated the contribution of many 

cardiac and immune response genes such as HAND2, MYOCD, as well as interleukins and 

cytokines, with proliferation and migration functions.   

Predictability measurements of CPC outcomes for proliferation and migration show a high 

predictability rate which remains relatively high even after reducing the number of the 

genes  

To determine the power of our model to use mRNA levels as inputs and predict cardiac 

reparative response outputs, we ran several regression analyses (Figure 2) using our 

bootstrapping method. We calculated predictability for both proliferation and migration 

responses of hCPCs using the complete set of signals (11,000 genes), then compared the 

calculated, predicted number to that of the actual number determined experimentally. Training 

the model with 11,000 genes provided 94% predictability for proliferation and 99% for 

migration. We have shown that we could reduce the number of signals, keeping only those that 

project the greatest on one or more of the PCs, and still retain high predictability for measured 

responses 13,15. From 11,000 genes, we reduced the model to the top 300 genes with the highest 

variable importance of projections (VIPs), and retained predictability (92% and 98% for 

proliferation and migration responses respectively), only slightly lower than when the whole set 

of signals was used (Figure 2). To further reduce the model, we picked mRNA signals that were 

highly correlated with both proliferation and migration responses, as opposed to those that 

projected greater for one or the other outcomes, and retrained the PLSR model with these signals 

(comprehensive list in Supplementary Table 1). To select highly correlated genes with both 

proliferation and migration responses, we arbitrarily chose top 150 genes correlated with either 

proliferation or migration responses. Ninety one out of 150 genes were overlapping between the 
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two sets. Predictability of proliferation and migration responses was slightly reduced in the 

model with 91 genes (78% and 92% respectively). These results suggested that even with a 

reduced number of mRNA signals we still predict measured responses with a model including 

just the 300 top mRNA signals differentially expressed with respect to the functional traits.  This 

gene set was regarded as optimal for further statistical modeling and systems biology analyses.  

Neonatal hCPCs shows the highest predictability rate for functional outcomes compared to 

other pediatric hCPCs 

Our recent publication demonstrated that there was a donor age-dependent effect of hCPC 

therapy following injury 9.  To determine whether this could be predicted on a larger scale, we 

used the model generated with the top 300 mRNA signals, and analyzed the data of 32 pediatric 

patients with this model and predicted functional outcomes of these cells. For each output, the 

response was normalized to the highest predicted function in the group, patient #1057 for both 

proliferation and migration responses. Of these samples, 27 patients for proliferation and 30 

patients for migration had measurable predictions and are shown in Figure 3.  As expected, 

neonatal CPCs showed the highest predicted response (7 of the top 10 lines) for both 

proliferation (Figure 3A and 3B) and migration (Figure 3C and 3D).  Additionally, consistent 

with previous findings and based on our prediction analysis 9,10, child CPCs showed the least 

predicted outcomes with infants being between the two.  While our analysis confirmed the 

previous finding that neonatal CPCs have the highest reparative effect, we observed patient-to-

patient variability with regard to proliferation and migration outcomes in each age group that are 

highlighted with asterisks. Our results also showed that proliferation and migration functional 

outcomes are highly correlated (R2=0.93) and relative reparative effect of proliferation and 

migration functions are similar in each patient (Supplementary Figure S1).  



9 

In vitro model validation in neonate patients verifies variability between different neonatal 

cell lines 

To test patient variability observed in our model and to examine if predicted responses match the 

observed ones in each patient, we performed in vitro experiments to test proliferation and 

chemotaxis capacity of seven different neonatal hCPC lines. Neonatal patients were chosen due 

to our ongoing clinical trial.  Our results confirmed patient variability between different neonatal 

cell lines, with patient #1059 having significantly lower proliferation response than several 

within the cohort (Figure 4A). When plotted with predicted values, our observed results matched 

for many of the samples with 78% accuracy for proliferation (Figure 4B). 

Furthermore, we measured the chemotactic potential of media from the same neonate cell 

lines using MSCs in a modified Boyden chamber.  MSCs subjected to 24 hour quiescence were 

treated with conditioned media and allowed to migrate to the other side of the chamber for 24 

hours. Similar to proliferation rates, our results verified significant patient variability for 

migration capacity of neonatal hCPC media (Figure 4C). While patient #1059 was a moderate 

performing line for proliferation, media from these cells demonstrated significantly higher MSC 

migration.  Again, the observed migration response for each neonate patient closely matched the 

predicted responses with 80% accuracy (Figure 4D). Taken together these results confirm the 

patient variability within the neonatal age group and validate our predictive model as closely 

matching observed functional outcomes.  

Transcriptomic analysis of c-kit+ progenitor cell shows the presence of immune response 

related genes among differentiated genes 

To investigate potential reparative signals in cells, a volcano plot of significance (negative log of 

the p-value) against difference in abundance (log2 scale) between “GOOD” and “POOR” 
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performing patients was plotted (Figure 5A, expanded in Table 2). “GOOD” and “POOR” 

performing cells were characterized by their predicted functional improvements in our model 

(see Supplementary Table 2 for categories) 8. Cells significantly increasing tricuspid annular 

plane systolic excursion (TAPSE) and RV ejection fraction, improving angiogenesis, and 

significantly reducing wall thickness and fibrosis in rats transplanted with c-kit+ cells were 

categorized as “GOOD” performing cells (at least within 10% of healthy values in all 

categories). Chemotactic and proliferative capacity of “GOOD” performing c-kit+ cells were 

also significantly higher than the “POOR” performing cells.  At least thirty genes were 

upregulated at least 4-fold in “GOOD” vs “POOR” hCPCs (Figure 5A red and blue dashed lines; 

expanded in Supplementary Table 3). All of these are significant at unadjusted p<0.05 

(NLP>1.3), but given the small sample size for the comparison do not reach experiment-wide 

significance, so should be regarded as candidate biomarkers that may not be individually 

diagnostic in each cell line.  In addition, there were several genes that were significantly 

increased (black dashed line; p<0.0001, NLP>4) but showed only modest differential expression 

(Expanded in Supplementary Table 3).  For our analysis, we focused on the 42 differentially 

expressed genes whose expression was either upregulated at least four-fold or significantly 

increased (P<0.0001; 10% FDR), or both (genes included in blue, black, and red dashed squares 

respectively in Figure 5A, all raw data included in online supplement and available at 

https://www.davislab.org/supplementary-data-from-publication). Many immune response related 

genes including interleukins (IL-1, IL-1, and IL24) and cytokines (CXCL6 and CXCL8) are 

present among the differentially expressed genes. Furthermore, we performed two-way 

hierarchical clustering analysis of the 42 differentially expressed genes between different age 

groups to indicate clustering of same patients in same groups. We applied Ward’s method and 
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indicated strong but as expected imperfect separation of patients by age (Figure 5B). The two-

way hierarchical clustering analysis showed that all patients (neonate, infant, child) are separated 

into 4 groups, of which neonates are grouped in either cluster 3 or 4.  Neonates #903 and #925 

that are among the top “GOOD” samples, along with neonates# 1059 and 1083 reside in cluster 

3. The rest of neonate CPCs cluster within group 4 (Figure 5B), and it is noteworthy that 

neonates in the bottom half of cluster 4 also tend to be up-regulated as observed for cluster 3 

containing the other neonates. 

Finally, to show whether these highly differentiated genes (42 genes) are correlated with 

cardiac regenerative functions, we ran a regression analysis of proliferation and migration 

responses with the most variable genes (PC1) for all pediatric hCPCs (Figure 5C) and showed 

that both responses are highly correlated with these genes (R2 = 0.61 for both proliferation and 

migration). Collectively, expression of these genes is more predictive of cell function than any 

single transcript. We expanded our analysis and identified individual genes that are highly 

correlated with proliferation and migration cardiac functions (Comprehensive list of genes in 

Table 3). Genes playing roles in cardiac and/or immune response mechanisms are highlighted in 

bold.  Functional analysis of the highly differentiated genes using Ingenuity Pathways Analysis 

demonstrated that these genes are involved in pathways such as cardiovascular system 

development and function, immune response pathways and networks, as well as cellular 

growth/proliferation (comprehensive list in Supplementary Table 4).  Moreover, there were 17 

overlapping genes between the 42 highly upregulated genes of “GOOD” vs “POOR” patients 

and the 300 top genes from the original list of genes. Interestingly, the canonical pathways that 

these 17 genes are involved in highly match with the pathways involved in our model 

(Supplementary Table 5). 
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Protein validation of model demonstrates CXCL6 as a mediator of hCPC function 

Based on our data from Figure 5A, we selected several differentially expressed genes for protein 

validation.  As shown in Figure 6A, RNA for both CXCL6 and CXCL8 were enriched in 

newborns as compared to both infant and child samples.  Additionally, there was a high 

correlation between both of these molecules and either proliferation or migration (Figure 6B).  

We also examined IL-1IL-1β, and IL-24, which had high correlations, but were unable to 

detect levels in several patients by ELISA (correlations shown in Supplementary Figure S2).  We 

examined both CXCL6 (Supplementary Figure S3) and CXCL8 (Figure 6C and Supplementary 

Figure S3) by ELISA and correlated normalized protein values to migration and proliferation.  

While there was no correlation between CXCL6 protein levels and either function, there was a 

strong correlation (R2 = 0.74) between CXCL8 and migration.  Figure 6D shows individual data 

for normalized CXCL8 levels, migration, and proliferation, showing a strong relationship 

between CXCL8 and migration with >80% accuracy.  Finally, using our RNAseq statistical 

model, we were able to successfully predict CXCL8 protein levels based on expression data with 

82% accuracy (Figure 6E). 

 

Discussion 

Stem cell therapy has been widely tested in the context of adult coronary heart diseases using a 

variety of stem and progenitor cells. Despite this, very few studies have been performed in the 

pediatric population. An initial clinical trial of stem cell therapy in a small cohort of children 

with HLHS (TICAP) demonstrated an improvement in cardiac function in children undergoing 

intracoronary infusion of cardiosphere-derived cells 5, 6. With that improvement, a follow-up trial 

(PERSEUS) is planned as a Phase II study.  In addition, clinical trials based on cord blood-

derived cells and mesenchymal stem cells, as well as another clinical trial approved for c-kit+ 
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progenitor cells, are underway 7, 8.  While the adult data have been mixed, it is clear that there is 

much patient-to-patient variability that may lead to confounding results in planned pediatric trials 

with small numbers of patients. 

It is essential to select stem cells with highest cardiac reparative ability for therapy, 

therefore, our lab previously compared CPCs from donors of varying ages to determine optimal 

characteristics of cells.  Our data demonstrated that both cells and exosomes from newborn 

patients had the highest ability to repair the damaged myocardium 9, 15.  This was keeping with 

several published studies showing that cells from newborn donors were optimal 12, 20, 21.  We then 

performed statistical modeling analysis on a small number of samples to determine potential 

mechanisms in an unbiased manner, as well as create predictive regression models relating 

mRNA and microRNA levels to select outputs. PLSR analysis identified the 300 top VIP 

mRNAs and a predictive model was regenerated using these 300 signals.  We have generated our 

predictive model based on a slightly small sample size. It should be noted that our samples were 

obtained from children with various congenital heart diseases who were undergoing heart 

surgeries, therefore our sample size was limited. Additionally, the model in this study is based on 

our previously published model which contained a similar sample size. 9 However, now that we 

have validated the current model, we can begin to develop larger scale models with obtaining 

more clinical samples. 

In the current study, we selected the same top 300 genes from Agarwal et al. 9 and 

retrained our predictive model with an expanded set of pediatric patients. We used proliferation 

and migration as responses due to the ease of testing and the high involvement of these pathways 

in our mechanistic models.  Furthermore, several published studies demonstrate the importance 

of implanted cell proliferation and stem cell migration in healing the damaged myocardium 22-24.  
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Our data show that the prediction power is comparable between the full model (11,000 genes) 

and the model with 300 genes (all above 90% predictability). However, when we further reduced 

the number of signals to 91 top genes that were highly correlated with both proliferation and 

migration responses, prediction power was decreased for both responses especially for the 

proliferation response (78% vs 92% for 91 signals). Similarly, the prediction power in the model 

generated with 42 differentially expressed genes was further reduced for both proliferation and 

migration responses (66% and 71% respectively, data not shown).  Therefore, we selected the 

refined model generated with 300 genes for further analysis which had the predictability rates of 

92% and 98% for proliferation and migration respectively. In previous published data, Gray et al. 

were able to obtain a high predictability with only 11 signals which was about 3% of their 

original data of 337 signals 16. However it should be noted that in our study, the refined model 

with 300 genes was 2.7% of the 11,000 signals of the full model. Therefore, similar to the 

previous study, we were able to narrow down the number of our initial signals to the same extent 

and still train a model with high predictability power. This is critical for clinical studies in which 

it may not be feasible to perform RNAseq on all samples, but rather to select a focused list of 

candidate biomarkers that may predict efficacy as well as the full set, but better than any 

individual biomarker. 

With smaller patient numbers, it is difficult to isolate and study variability, which we 

were able to do with our expanded bank of nearly 40 samples.  We fit the transcriptomic data to 

our regression models and made predictions regarding proliferation and ability to induce MSC 

migration.  We were able to confirm that there was variability across several newborn samples, 

and that we could predict outcomes a priori with high accuracy.  It is worth noting that the 

observed variability across samples (including infant #1057 which showed the highest 
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proliferation and migration improvements across all age groups) could be the result of biological, 

technical, or experimental problems, which are not unusual in this kind of studies.  While 

migration and proliferation are two important functions, they are not the only indicators of 

cardiac repair.  Future studies will need to be performed to determine whether these two 

outcomes correlate with functional recovery, and potentially inform the use of these in vitro 

assays as surrogates for efficacy.  In addition, we only examined newborn samples in this study.  

We chose this population as all the current clinical trials are centered on HLHS and newborn 

cells and understanding which cells may not have efficacy is critically important.  Despite this, 

future work will expand confirmation to the older pediatric population. 

To further investigate which specific genes play a role in improving the functionality of 

CPCs, we examined the outliers in an unbiased way. Our full model consisted of around 11000 

genes. Volcano plot of significance against difference in abundance was created for these genes 

and we showed that 42 genes are upregulated in “GOOD” vs “POOR” patients, characterized by 

their predicted functional improvement. We selected these parameters to include as many genes 

as possible based on prior studies 25. We excluded downregulated genes from this part of the 

study and focused only on the upregulated genes. Studying downregulated genes in vivo due to 

cell therapy is extremely hard and in order to be more clinically relevant, something must be 

more easily measurable. It may be possible that our list is too relaxed or stringent, but we were 

sensitive to excluding false negatives. Published data have shown the association of many of 

these genes with their cardiac repair potential (Bolded genes in Table 3) 26-28. Our original model 

includes 300 top genes and about 17 genes from this list matched with the 42 highly upregulated 

genes in the updated model, which makes about 6% of the total 300 genes (Table 2). Similar to 

42 genes, these 17 genes play important roles in cardiac and immune response pathways that 
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overlap between the two sets of genes. These results suggest that with narrowing down our 

model to only a few genes (17 genes), we still capture similar cardiac and immune response 

pathways (Supplementary Figure S1), which implies that we could potentially determine 

reparative response from a small number of genes, similar to studies looking at serum 

biomarkers for injury and/or recovery 29, 30. 

The unbiased statistical analysis of our dataset showed CXCL6 and CXCL8 cytokines 

among the highly upregulated genes in “GOOD” patients. The role of innate and adaptive 

immune mechanisms in deriving regenerative responses have been identified after cardiac 

injuries 25. These two genes were also highly correlated with proliferation and migration 

responses. To validate our analysis and determine the levels of these cytokines in “GOOD” 

patients, we tested the abundance of these secreted proteins in the conditioned media collected 

from neonatal CPCs and observed that the amount of secreted CXCL8 in the media is positively 

correlated with the migration-inducing potency of these cells.  There was no correlation of 

CXCL8 with proliferation, for example, despite the high expression levels of CXCL8 protein 

present in the conditioned media of neonate #1059 CPCs, the proliferative rate of these cells was 

lower. CXCL8 has been shown to induce migration of MSCs directly, and thus it potentially 

serves as validation of the model 31, 32.  We found that protein levels of CXCL6 did not correlate 

with either output measured. CXCL6 increases proliferation and migration in other cell types 33; 

however, our data does not determine that there is no role of CXCL6 in CPC function, rather that 

there was no correlation. In fact, recently CXCL6 was shown to be important in the CPC 

secretome, but mainly with regard to angiogenesis 34.  As we gather data from more patients, we 

may be able to test additional outputs as well.  Moreover, we only tested a small subset of genes 

and proteins in our predictive model, and testing was done under basal cell culture conditions.  
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As the microenvironment of the injured pediatric heart is likely different, these studies should be 

repeated under more pathological conditions such as hypoxia and hypertrophic signaling.  In 

vivo testing of all cell lines is both labor and cost intensive, thus finding correlative in vitro 

readouts will help support testing of more signals. 

In summary, our data represents a novel advance in pediatric cell therapy that can be 

expanded in the future.  The use of transcriptomic data to create predictive models based on 

preclinical studies may help inform ongoing clinical trials.  The idea of using personalized, 

precision medicine to determine potential stem cell efficacy, as well as potential mechanisms, is 

attractive from a therapeutic standpoint.  Identification of important signals may inform FDA-

required potency assays and release criteria.  Further, as some of the ongoing trials are 

allogeneic, finding the optimal donor profile could greatly improve outcomes 35.  With limited 

number of genes, a more efficient therapeutic strategy can be applied in cardiac cell therapy by 

rapid identification of optimal donors with strategies such as quantitative PCR or ELISA. While 

our approach certainly has caveats, such as inconsistencies between RNA profile and protein 

content of the cells and difficulties in discerning whether these signals are causative mechanisms 

or merely biomarkers, the unbiased and quantitative selection of cues, signals, and responses not 

only allows for better understanding of hCPC therapy, but the potential to extend this to other 

cell types and similar outcomes for other diseases. 
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Table 1. List of genes with corresponding VIP values 
 

Gene Name VIP 
Value 

 Gene Name VIP 
Value 

 Gene Name VIP Value 

ARL4C 1.45  FZD2 1.35  PDE4D 1.64 
ARMC9 1.37  GABRE 1.30  PDE5A 1.63 

ASS1 1.45  GALNT6 1.52  PDGFRB 1.63 

ATP10A 1.62  GBGT1 1.46  PDZRN3 1.51 

ATP2A3 1.31  GBP5 1.41  PHACTR1 1.54 

B3GNT5 1.50  GCH1 1.38  PIK3CD 1.51 

B4GALT6 1.66  GCNT4 1.70  PML 1.46 

BACH1 1.40  GDF5 1.28  PNPLA3 1.36 

BAIAP2L1 1.52  GFPT2 1.35  POPDC3 1.42 
BCHE 1.76  GK 1.56  POU2F2 1.38 

BCL11A 1.71  GPR4 1.40  PPAP2B 1.31 
BCL2A1 1.32  GPR63 1.45  PRKAA2 1.57 

BMP2 1.54  GREB1L 1.35  PRKAR2B 1.36 
BMP4 1.34  HAND2 1.56  PRR16 1.50 

BMPR1B 1.35  HAS2 1.35  PRTFDC1 1.38 
BNC1 1.35  HBEGF 1.44  PRUNE2 1.70 
BVES 1.55  HES1 1.32  PTGES 1.38 

BVES-AS1 1.48  HIP1 1.29  PTPN22 1.46 
C1QTNF1 1.49  HIST1H4B 1.29  PTPRE 1.40 

C3 1.59  HSBP1L1 1.34  PYCARD 1.30 
CACNA1A 1.45  HSD11B1 1.35  QPCT 1.37 
CACNA1C 1.37  HTR2B 1.64  RAB3D 1.53 
CACNA1H 1.64  ICAM1 1.58  RAP1GAP2 1.45 
CADPS2 1.33  IFI30 1.31  RASA4 1.46 
CARD6 1.31  IL18R1 1.38  RASA4B 1.58 

CCDC102B 1.34  IL1A 1.47  RASIP1 1.30 
CCDC148 1.54  IL1B 1.56  RFTN2 1.63 
CCDC36 1.81  IL23A-1 1.38  RGCC 1.51 
CDCP1 1.36  IL32 1.49  RGL3 1.50 

CEACAM19 1.28  IL33 1.46  RGS5 1.67 
CGNL1 1.39  IRAK2 1.32  RGS7 1.57 
CHD7 1.59  ITGA8 1.29  RGS7BP 1.31 
CHST6 1.32  ITGBL1 1.85  RHBDF2 1.40 
CHSY3 1.66  ITPKB 1.33  RNF144B 1.29 

CNKSR2 1.35  ITPR3 1.51  RNF212 1.50 
COL4A5 1.45  KCNC4 1.32  RTKN2 1.35 

CPS1 1.62  LAMA1 1.35  SAMD12 1.31 
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CRISPLD2 1.43  LAMA4 1.33  SATB1 1.30 
CRYAB 1.29  LAMA5 1.51  SCN3A 1.59 

CTH 1.39  LIPG 1.59  SCN8A-1 1.29 
CTHRC1 1.43  LOXL3 1.59  SCUBE3 1.45 
CXCL1 1.42  LPPR4 1.49  SDHAP2 1.35 
CXCL2 1.51  LRRC32 1.64  SECTM1 1.40 
CXCL5 1.34  MAGI1 1.39  SEMA5A 1.29 
CXCL6 1.51  MAN1A1 1.58  SEMA6D 1.32 
CXXC5 1.74  MAP2 1.54  SGCD 1.56 
CYP1B1 1.51  MASP1 1.40  SH3D21 1.36 
DAAM2 1.39  MBNL3 1.28  SHROOM4 1.33 
DHRS3 1.34  MDFI 1.38  SLC1A1 1.44 

DNAH11 1.73  MEF2C 1.32  SLC1A3 1.32 
DNER 1.32  MEST 1.46  SLC22A4 1.44 
DNM1 1.32  MICA 1.28  SLC23A3 1.34 
DOK5 1.33  MOXD1 1.40  SLC24A3 1.73 
DOK6 1.53  MRVI1 1.54  SLC39A8 1.44 
DSP 1.33  MUC1 1.35  SLC4A4 1.54 

DUSP6 1.40  MUC20 1.29  SLC7A2 1.46 
EBF1 1.34  MYCT1 1.29  SNED1 1.29 
ECM2 1.40  MYLIP 1.75  SOD2 1.49 
EDA 1.38  MYLK 1.42  SPEG 1.41 

EDA2R 1.35  MYOCD 1.40  SPHK1 1.54 
EHD4 1.40  NALCN 1.42  SQRDL 1.35 
EHF 1.30  NAMPT-1 1.54  ST3GAL1 1.49 
EMB 1.59  NCAM1 1.68  ST6GALNAC3 1.53 

EMCN 1.52  NDUFA4L2 1.48  STEAP1 1.31 
EPB41L3 1.35  NEK10 1.47  TBX15 1.50 

ESM1 1.48  NFASC 1.65  TDRP 1.37 
F2RL1 1.41  NFATC2IP 1.40  TFPI2 1.42 

F3 1.57  NFKBIA 1.39  TGM2 1.45 
FAM162B 1.56  NOVA1 1.36  TIE1 1.44 

FBN2 1.68  NOVA2 1.34  TIFA 1.40 
FGD4 1.42  NOX4 1.37  TINAGL1 1.39 
FGF7 1.30  NR2F2 1.70  TMEM130 1.31 
FMN2 1.62  NRCAM 1.45  TMEM132A 1.62 

FMNL1 1.31  OSCAR 1.54  TMEM132B 1.32 
FMOD 1.46  OSR1 1.53  TMEM154 1.48 
FOXD1 1.31  P4HA3 1.56  TMOD2 1.55 
FOXF1 1.32  PABPC4L 1.44  TNFAIP3 1.38 

FST 1.47  PCSK5 1.66  TP53I11 1.52 
FUOM 1.40  PDE1A 1.64   
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Table 2. List of differentiated genes in good vs. poor c-kit+ progenitor cells with overlapping 

genes from original model identified. 

 

Upregulated genes in good 
vs. poor patients 

Upregulated genes in good 
vs. poor patients 

Overlapping upregulated genes 
(good vs. poor patients) with 
Agarwal et al 9 top 300 VIPs 

C3 KCNK1 C3 
CADPS2 KIAA1804 CADPS2 
CARD11 LAMP3 CXCL1 
CSF2 LOC100505622 CXCL2 
CXCL1 MDFI CXCL6 
CXCL2 MICB EPB41L3 
CXCL6 MME FBN2 
CXCL8 NRCAM GPR4 
DSC2 PDZK1IP1 HSD11B1 
EPB41L3 POU2F2 IL1A 
FAM163A PTBP1 IL1B 
FBN2 RBM10 MDFI 
GPR4 RPL14 NRCAM 
HIF3A S1PR1 POU2F2 
HPSE SLC3D2 SLC7A2 
HSD11B1 SLC6A15 TFPI2 
IGF2BP2 SLC7A2 TIE1 
IL1A STARD10  
IL1B STRN4  
IL24 TFPI2  
IRAK3 TIE1  
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Table 3. List of top genes correlated with proliferation and migration (from 42 upregulated 

genes in good vs. poor c-kit+ progenitor cells).  Bolded genes are associated with cardiac and/or 

immune response mechanisms.  Twenty-seven genes are shared between proliferation and 

migration. 

 

Selected top 
correlated genes 
with proliferation 

Correlation (r2) Selected top 
correlated genes 
with migration 

Correlation (r2) 

S1PR1 0.62 S1PR1 0.59 
POU2F2 0.59 POU2F2 0.56 
HPSE 0.54 IL1A 0.55 
KCNK1 0.52 IL1B 0.51 
SLC35D2 0.52 SLC35D2 0.51 
CXCL1 0.51 CXCL1 0.50 
CXCL8 0.51 CXCL8 0.50 
IL1B 0.51 HPSE 0.49 
GPR4 0.48 KCNK1 0.48 
IL1A 0.48 KIAA1804 0.48 
LOC100505622 0.48 NRCAM 0.48 
MME 0.48 TIE1 0.47 
CXCL6 0.47 CXCL6 0.46 
HIF3A 0.46 HIF3A 0.43 
NRCAM 0.43 LOC100505622 0.43 
TFPI2 0.42 GPR4 0.42 
TIE1 0.42 PTBP1 0.41 
KIAA1804 0.41 STARD10 0.41 
STARD10 0.40 MME 0.39 
C3 0.37 SLC7A2 0.39 
CSF2 0.37 IGF2BP2 0.37 
FAM163A 0.37 C3 0.36 
IL24 0.36 MICB 0.36 
PTBP1 0.35 CADPS2 0.35 
SLC6A15 0.35 CXCL2 0.35 
SLC7A2 0.35 EPB41L3 0.35 
CADPS2 0.32 FBN2 0.35 
CXCL2 0.32 CSF2 0.34 
HSD11B1 0.32 IRAK3 0.33 
EPB41L3 0.31 LAMP3 0.32 
FBN2 0.31 CARD11 0.30 
IGF2BP2 0.31   
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Figure Legends: 

 

Figure 1. Statistical modeling analysis of different ages of pediatric c-kit+ progenitor cells.  (A). 

Principal component analysis (PCA). Patient c-kit+ progenitor cells (CPCs) (neonate, infant, 

child) were analyzed based on their mRNA expression levels. Results were plotted in principal 

component (PC) space. Individuals in each age group are clustered together and are localized in 

close proximity.  (B). Partial least squares regression (PLSR) analysis of gene array. PLSR 

analysis of patient (neonate, infant, child) mRNAs and cardiac functions identified the most 

important signals from mRNA contents by calculating variable importance for projection (VIP).1 

Top 300 genes with the most important signals were selected from the aforementioned PLSR 

analysis, and a new PLSR prediction model was trained for these patients by plotting the 300 

genes in principal component space. Enlarged inset demonstrates selected cardiac and immune 

system related genes that are clustered with two selected cardiac functions (proliferation and 

migration-red font). 

 

Figure 2. Predictability measurements of cardiac reparative functions. Predictability of selected 

cardiac functions was calculated by the PLSR model trained with all signals (11,000 genes), top 

300 VIP signals, and top 91 genes correlated with both proliferation and migration responses. 

Reduction of the 10,000+ genes to 300 genes does not significantly reduce the high predictability 

rate measured with all signals. Observed proliferation and migration responses are normalized to 

the maximum signal. 
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Figure 3. Prediction analysis of selected hCPCs. Top 300 RNA-seq data from pediatric CPCs 

were used in our predictive model and proliferation (A,B) and migration (C,D) responses for 

each patient were determined. Many of the neonates (gray bars) cluster together and reside close 

to the top with the most functional improvement. Most child CPCs (striped bars) cluster together 

near the bottom with the least functional improvement and infants (black bars) cluster together 

and reside intermediately between neonate and child patients. There are outliers in each age 

group that reside outside of their cluster (such as neonates #1050 and #1083, and infant #1057 

labeled with asterisks. Each sample is normalized by the highest scoring individual for each 

function (Infant #1057). 

 

Figure 4. Proliferation and migration analysis and validation of the predictive model. (A). 

Proliferation analysis of neonate CPCs in vitro. Cell proliferation assay was performed on 10,000 

cultured CPCs of each neonate using Click iT-Edu microplate assay and the absorbance was 

calculated after 24 hours of incubation. Some neonate CPCs showed a higher proliferation rate 

compare to the others. Absorbance was normalized to the maximum signal. N=5 replicates for 

each cell line; ANOVA followed by Tukey test, P<0.05. (B). Comparison of in vitro 

proliferation responses and the predicted responses. Observed proliferation response for each 

neonate patient was plotted against its predicted response. Proliferation assay was not performed 

with neonatal #1050 cell lines. This cell line was lost after collecting the conditioned media for 

migration assay. (C). Migration analysis of neonate CPCs in vitro. Migration assay was 

performed by applying conditioned media obtained from each neonate CPC on human 

mesenchymal stem cells (MSCs) in a Boyden chamber. Migrated cells were labeled with CMRA 

and cell migration was quantified after 24 hours by measuring CMRA fluorescence intensity. 
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Absorbance was normalized to the maximum signal. N=4 replicates for each cell line; One-way 

ANOVA followed by Tukey test, P<0.05. (D). Comparison of in vitro migration responses and 

the predicted responses. Observed migration response for each neonate patient was plotted 

against its predicted response.  

 

Figure 5. Transcriptomic analysis of hCPC and potential effectors. (A) Volcano plot of GOOD 

vs POOR patient (neonate, infant, child) comparison. A volcano plot of significance (negative 

log of the p-value) against difference in abundance (log2 scale) of genes was plotted between 

good and poor c-kit+ progenitor cells. Dashed blue square represents genes that are upregulated 

in good vs poor CPCs but not statistically significant. Signals residing in the red dashed square 

are genes that are significantly upregulated in good vs poor CPCs (p-value <0.0001). Genes are 

indicated by gray circles. Many immune response related genes including interleukins and 

cytokines are present among differentiated genes.  (B) Two-way hierarchical cluster analysis of 

differentially expressed CPC genes using Ward’s method. Two-way hierarchical analysis was 

performed on the same 42 genes between neonates (red labels), infants (green labels), and 

children (blue labels). The dashed vertical line indicates the cutoff on the dendrogram used to 

define the four clusters. (C) Correlated genes with proliferation and migration functions. The 

differentially upregulated genes showed high correlation with both proliferation and migration 

functions (running a regression analysis; R2=0.6 for both functions).  

 

Figure 6. Confirmation of CXCL6 as a mediator of hCPC function. (A) High expression levels 

of CXCL6 and CXCL8 in “GOOD” vs “POOR” pediatric patients. Statistical modeling 

demonstrated high expression levels of CXCL6 and CXCL8 mRNA in GOOD pediatric CPCs. 
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Patients above threshold (dotted lines) are GOOD samples with significantly high expression of 

CXCL6 (top panel) and CXCL8 (bottom panel). (B) Correlation of CXCL6 and CXCL8 mRNAs 

with proliferation and migration functions in pediatric patients. CXCL6 and CXCL8 mRNA 

expression showed relatively high positive correlation with both proliferation and migration 

functions. Signals are the mean TMM values from edgeR.  They have centered with respect to 

the overall mean gene expression of each sample (A and B). (C) Regression analysis of observed 

migration responses with protein expression levels of CXCL8 measured by ELISA in neonatal 

patients. Observed proliferation or migration responses for each neonate patient were plotted 

against CXCL8 protein expression levels. Observed migration responses in neonatal patients 

showed high correlation with CXCL8 protein expression levels (R2=0.74). (D). Comparison of in 

vitro proliferation and migration responses and protein expression levels of CXCL8 measured by 

ELISA. The abundance of CXCL8 protein levels (black bars) matched the migration induction 

potential of neonatal CPCs (gray bars). Expression level of CXCL8 protein did not fully match 

with the proliferation ability of the cells (white bars).  Proliferation assay was not performed with 

neonatal #1050 cell lines. This cell line was lost after collecting the conditioned media for 

migration assay. (E) Comparison of the abundance of CXCL8 proteins measured with ELISA 

and predicted expression levels of CXCL8 mRNA in neonatal CPCs. Predicted richness of 

CXCL8 mRNA (white bars) and the observed protein level of CXCL8 expressed in neonatal 

CPCs (black bars) matched very closely and showed an average accuracy of 82%.  ND=not 

detected. CXCL8 protein expression (ELISA) and observed proliferation and migration 

responses are normalized to the maximum signal. 














	002403_final ms for production
	Figures

