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MATERIALS AND METHODS 

Sequence retrieval and probe design. Sequence retrieval and probe design for the GeoChip 5.0 

were performed using the GeoChip design pipeline as described previously (1, 2). Briefly, a 

keyword query for each protein-encoding gene of interest (see Supplementary text for a detailed 

description of the target genes) was submitted to the NCBI nr database to retrieve candidate 

sequences (Fig. S1). All sequences were downloaded from the NCBI databases before July 29, 

2013. Next, protein/enzyme sequences that had been experimentally confirmed were selected as 

seed sequences to build a Hidden Markov Model (HMM), which was then used to search the 

retrieved sequences and confirm functions. Confirmed sequences were considered to be potential 

targets for probe design.  

 

To maintain consistency between GeoChip versions and minimize the number of probes that 

needed to be designed, legacy probes from previous versions of GeoChip that were still valid 

were included on GeoChip 5. The legacy probes were searched against the entire confirmed 

target sequence database to determine if any of the confirmed sequences were covered by legacy 

probes. If a confirmed sequence was covered by a legacy probe, that sequence was immediately 
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assigned to the corresponding legacy probe and excluded from further probe design steps. If a 

legacy probe showed potential cross hybridization to a non-target sequence, it was voided and 

removed from the probe collection and the corresponding target sequences were released and 

reused for probe design.  

 

Probe design was performed using a new version of the CommOligo software (3). Two types of 

probes were designed: gene-specific (each probe targets one gene sequence); and group-specific 

(one probe targets two or more highly homologous sequences) (1). The newly designed 

candidate probes and legacy probes were searched against the NCBI nt/env_nt databases to 

verify specificity based on experimentally determined sequence similarity (≤ 90%), continuous 

stretch (≤ 20 bases) and free energy (≥ -35 cal/mol) criteria (1). Potentially non-specific probes 

were removed from further consideration. Multiple probes targeting the same sequence or group 

of sequences were designed, so CommOligo was used to rank the remaining probes (3), and only 

top ranked probes were used for array construction. 

 

Microarray construction. Two major formats of the GeoChip 5.0 array were developed. The 

smaller format (GeoChip 5.0S) has ~60,000 probes per array (See Table S1 for details). For 

delineating experimental parameters, several modified versions of GeoChip 5.0S were constructed 

that included perfect match (PM) and mismatch (MM) probes from different pure cultures. The 

larger format (GeoChip 5.0M) has ~180,000 probes per array (Table S1). All GeoChip 5.0 

microarrays were manufactured by Agilent (Santa Clara, CA, USA) using either the 8x60K (8 

arrays per slide) or the 4x180K (4 arrays per slide) format. Each GeoChip array was evenly divided 

into 96 (8×12 grids) subarrays for 5.0S, and 256 (8×32 grids) subarrays for 5.0M. Each subarray 

has sixteen 16S control probes and five common oligonucleotide reference standard probes 

(CORS) (4) at specific positions. The 16S control probes were split into two groups of 8 and were 

placed at the top and bottom of each subarray. CORS probes were placed in the central region of 

each subarray. Additionally, each subarray had 2 or 3 randomly placed Agilent negative control 

probes. The hyperthermophile control probes and functional gene probes were randomly placed 

across the array in the remaining available spaces. 
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DNA extraction, purification and quantification. Genomic DNA from Desulfovibrio vulgaris 

Hildenborough (DvH) and Clostridium cellulolyticum H10 (H10) were extracted using a GenElute 

Bacterial Genomic DNA Kit (Sigma-Aldrich) following the manufacturer's instructions. To 

evaluate GeoChip 5.0 performance, previously collected samples were used: soil from the 

BioCON experimental site (5), groundwater from the Department of Energy’s Oak Ridge 

Integrated Field Research Center (OR-IFRC; Oak Ridge, TN, USA) (6, 7), and mixed liquor of 

wastewater and activated sludge from the aeration tank at the Norman Water Reclamation Facility 

(Norman, OK, USA). Soil (5 g soil)  and groundwater (4-6 l) were extracted using freeze-grinding 

mechanical lysis (8). The soil community DNAs were then purified using a low-melting agarose 

gel followed by phenol extraction (8). Groundwater DNAs did not require further purification. The 

wastewater samples were centrifuged at 15,000 × g for 10 min to get pellets, and DNA was 

extracted using a PowerSoil DNA Isolation kit (Qiagen, Germantown, MD). 

 DNA quality was assessed by absorbance ratios (A260/A280 and A260/A230) using a 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE), and final 

DNA concentrations were quantified with PicoGreen (9) using a FLUOstar Optima microplate 

reader (BMG Labtech, Jena, Germany). 

 

Target DNA preparation, amplification and labeling. Since very low amounts of community 

DNAs were obtained from groundwater, whole community genome amplification (WCGA) was 

required (10). Aliquots of DNA were amplified using the Templiphi kit (GE Healthcare) and a 

modified reaction buffer containing 0.1 mM spermidine and 267 ng ml-1 single stranded binding 

protein to improve the amplification efficiency (10). For samples with measurable DNA (by 

PicoGreen), 5-10 ng was used. For those samples without measurable DNA, the samples were 

concentrated to a volume of 10 µl and 2-5 µl was used for amplification (initial amplification was 

attempted with 5 µl and then reduced if unsuccessful). Samples were amplified for 6 hrs. All the 

amplified DNAs (~2 ug) were used for subsequent labeling. 

DNA (amplified or unamplified) was mixed with 5.5 µl random primers (Life 

Technologies, random hexamers, 3 µg/µl), brought to 35 µl with nuclease-free water, heated to 99 

°C for 5 min, and immediately placed on ice. Labelling master mix (15 µl), including 2.5 µl of 

dNTP (5 mM dAGC-TP, 2.5 mM dTTP), 0.5 µl of Cy-3 dUTP (25 nM; GE Healthcare), 1 µl of 

Klenow (imer; San Diego, CA; 40 U ml-1), 5 µl Klenow buffer, and 2.5 µl of water, was added 
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and the samples were incubated at 37°C for 6 h in a thermocycler and then at 95°C for 3 min to 

inactivate the enzyme. After the addition of Cy3, samples were protected from the light as much 

as possible. Labelled DNA was cleaned using a QIAquick purification kit (Qiagen) per the 

manufacturer’s instructions and then dried down in a SpeedVac (45°C, 45 min; ThermoSavant). 

 

GeoChip hybridization. GeoChip 5.0S and 5.0M use different volumes of hybridization buffer.  

The volumes below are for GeoChip 5.0M, volumes for 5.0S are in parentheses. Standard 

hybridization conditions were followed unless otherwise indicated. 

Labeled DNA was resuspended into 27.5 µl (11.9 µl) of DNase/RNase-free distilled water, 

and then mixed completely with 99.4 µl (43.1 µl) of hybridization solution containing 63.5 µl (27.5 

µl) of 2×HI-RPM hybridization buffer, 12.7 µl (5.5 µl) of 10×aCGH blocking agent, formamide 

(10% final concentration), 0.05 μg/µl Cot-1 DNA, and 10 pM CORS (4). The solution was 

denatured at 95 oC for 3 min, and then incubated at 37 oC for 30 min. The DNA solution was 

centrifuged briefly (1 min, 6000 × g) to collect liquid at the bottom of the tube and then 110 µl (48 

µl) of the solution was pipetted into the center of the well of the gasket slide (Agilent).  The array 

slide was placed on the gasket slide, array side down, sealed using a SureHyb chamber, placed into 

the hybridization oven, and hybridized at 67 oC for 24 h.  

 After hybridization, slides were disassembled in room temperature Wash Buffer 1 

(Agilent), then transferred to fresh room temperature Wash Buffer 1 on a magnetic stir plate set at 

200 rpm and incubated for 5 min.  The slides were then incubated at 37°C in Wash Buffer 2 

(Agilent) for 1 min on a magnetic stir plate set at 140 rpm.  Slides were then slowly removed from 

the buffer.  The slide’s hydrophobic coating allowed the slide to shed the buffer and dry almost 

immediately.   

 

Microarray imaging and signal processing. The slides were imaged as a Multi-TIFF with a 

NimbleGen MS200 Microarray Scanner (Roche NimbleGen, Madison, WI, USA). The data was 

extracted using the Agilent Feature Extraction program, v11.5.  Extracted data was then loaded 

onto the GeoChip data analysis pipeline (http://www.ou.edu/ieg/tools/data-analysis-

pipeline.html).   

Probe quality was assessed, and poor or low signal probes were removed.  Probe spots with 

coefficient of variance (CV; probe signal SD/signal) >0.8 were removed. Then the signal-to-noise 
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ratio [SNR; (probe signal-background)/background SD] was calculated. As suggested by Agilent, 

the average signal of Agilent’s negative control probes within each subarray was used as the 

background signal for the probes in that subarray instead of the local background typically used. 

If all negative control probes within a given sub-array failed to yield a valid signal, the mean 

background signal intensity from an adjacent sub-array was used instead.  The signal intensity for 

each spot was corrected by subtracting the background signal intensity. If the net difference was 

<0, the spots were excluded from subsequent analysis.  

 A two-step data normalization and quality filtering method was performed for all arrays in 

an experiment (4, 11). First, the average signal intensity of CORS was calculated for each subarray, 

and the maximum average value among all subarrays was applied to normalize the signal intensity 

of samples in each array. Second, the sum of the signal intensity was calculated for each array, and 

the maximum sum value was applied to normalize the signal intensity of all spots in each array, 

which produced a normalized value for each spot in each array. Detailed descriptions of the 

optimized GeoChip sample preparation, hybridization, imaging and normalization methods and 

reagents and equipment needed is in (12).  

 

Shotgun metagenomic sequencing. Libraries were constructed using a KAPA HyperPlus Prep 

kit (Roche, Pleasanton, CA). Shotgun sequencing was performed at the Oklahoma Medical 

Research Foundation on two lanes of a HiSeq 3000 (Illumina, San Diego, CA) using a 2×150 bp 

sequencing kit).  

 

Statistical analysis. Various statistical methods were used for analyzing the GeoChip data. 

Three different nonparametric multivariate analysis methods, ADONIS (permutational 

multivariate analysis of variance using distance matrices), ANOSIM (analysis of similarities) and 

MRPP (multi-response permutation procedure), and detrended correspondence analysis (DCA), 

were used to measure the overall differences of community functional gene structure (13). The 

microbial community functional gene diversity was estimated using Shannon Index, Simpson 

Index and functional gene richness. Pearson correlation coefficient was used for testing the 

dependence among environmental factors. A dendrogram tree of environmental factors was 

constructed based on Manhattan distances using Ward's minimum variance method (14), and was 

cut into hierarchical clusters using the cutree method (15). Canonical correspondence analysis 
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(CCA) and partial CCA were used for analyzing statistical linkages between the functional gene 

structure and environmental variables. Variation partitioning analysis (VPA) was used to divide 

and assign the variance in microbial functional gene structure among samples. A forward 

selection procedure was used to build a stepwise CCA model (16). Briefly, at each step the 

model is extended by adding an additional variable to maximize the explanatory power of the 

model. The procedure is automatically terminated when (i) the explanatory power of the model 

starts to decrease, (ii) the permutation test fails after a variable is added or (iii) all variables are 

included. Welch’s t-test was used to test the significance of differences in functional gene 

richness and alpha diversity between paired groups of samples without assuming unequal 

variances. All statistical analyses were performed in R (version 3.4.4, 2018-03-15) using 

packages stats, ape and vegan. 
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SELECTION OF GENE FAMILIES FOR GEOCHIP 5.0 FABRICATION 

All functional gene families from previous GeoChips (a total of 410) were updated. Detailed 

rationale for selecting these gene families and categories was previously provided (1, 2, 17-19). 

All gene families from previous versions (all genes submitted prior to June 2009) were manually 

updated. The keyword queries, alignment cutoff values, and seed sequences were modified as 

necessary to increase sequence coverage and accuracy based on the NCBI databases available in 

July 29, 2013. During this update, some gene families were combined or separated based on newly 

discovered gene families or increased sequence availability. For example, twelve dioxygenase 

gene families from GeoChip 4 were combined into three gene families due to similarities in the 

sequences of these families; norB was spilt into two gene families to differentiate a new subgroup 

discovered after design of GeoChip 4. GeoChip 5.0 greatly expanded overall gene and sequence 

coverage by adding more than 1,000 new gene families and covered a total of 1,447 gene families 

involved in carbon (135 genes), nitrogen (28 genes), sulfur (27 genes), and phosphorus (7 genes) 

cycling, antibiotic resistance (19 genes), stress response (103 genes), microbial defense (65 genes), 

metabolic pathways (4 genes), plant growth viruses (115 genes), virulence (605 genes), metal 

homeostasis (119 genes), organic contaminant degradation (105 genes), pigments (30 genes) and 

electron transfer (11 genes) (Table 1). Detailed descriptions for all selected functional gene 

families is provided below and Table S1. 

Several of the updated and expanded categories have been discussed in detail in other publications, 

including virulence genes (20) and stress response (21, 22) genes. In addition, microbial defense, 

plant growth promotion, pigments and protist phylogenetic markers were added to increase 

coverage of functional processes of importance to various ecological and environmental processes. 

Here we provide an overview of these gene families.  

Categories for geochemical cycling  

Microorganisms play key roles in geochemical cycling, including carbon, nitrogen, phosphorous, 

sulfur. Genes for these cycles were included on GeoChip 5. Many of these genes were also on 

versions 3 and 4 but have been greatly expanded and refined in this updated version. 
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Carbon cycling 

Genes in the carbon cycling category include those for carbon degradation, carbon fixation, and 

methane cycling (methane oxidation and methanogenesis).  

Carbon degradation.  

Microorganisms are capable of degrading a wide variety of carbon sources. To cover some of that 

diversity, the number of carbon degradation genes covered on GeoChip 5.0 was greatly expanded. 

GeoChip versions 2-4 included genes for degradation of cellulose, lignin, chitin, starch, 

hemicellulose, and pectin (1, 11, 23). In addition to those genes, genes for degradation of terpenes 

and genes for the glyoxylate cycle were included.  

Many of these carbon substrates are derived from plants. Cellulose, hemicellulose, and lignin are 

all components of the plant cell wall. Cellulose is the primary component of cell walls in green 

plants, many types of algae, oomycetes and some bacteria. A number of enzymes can be 

involved in cellulose degradation including cellobiase, cellobiohydrolase/exoglucanase, and 

cellulose/endoglucanase (24, 25). Hemicellulose is composed of a wide variety of compounds 

including xylan, the most abundant fraction of hemicellulose and second most abundant 

polysaccharide in nature (26), mannan/heteromannan, and xylose. Xylan can be degraded by 

endo-1,4-beta-xylanase (27), mannan by beta-mannanase/mannanase (28), and xylose by xylose 

isomerase(29). Lignin is an important part of plant, and some algal, cell walls. It is extremely 

complex in structure and recalcitrant to degradation. Enzymes including glyoxal oxidase (glx), 

manganese peroxidase (mnp), and phenol oxidase are involved in the degradation of lignin (30-

32). Vanillin and related compounds are used to model degradation products from lignin(33, 34) 

, so the enzymes vanillate demethylase, vanillate monooxygenase(35, 36), and vanillin 

dehydrogenase (vdh) (37) were also included. 

Pectin is a complex mixture of plant polysaccharides (38). Enzymes involved in degrading pectin 

include pectate lyase (39), pectin methylesterase (pme) (40), rhamnogalacturonan acetylesterase 

(41), rhamnogalacturonan hydrolase (42), and rhamnogalacturonan lyase (43). Arabinose is 

found in a number of plant polysaccharides as part of side chains. Arabinose is degraded by 
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arabinofuranosidase. Due to the number of sequences available, arabinofuranosidase has been 

split into bacterial-archaeal and fungal gene sets (44, 45). 

Chitin is a polysaccharide present in many organisms including fungi, crustaceans, and insects. 

The two original genes (acetylglucosaminidase and chitinase) involved in chitin degradation 

were updated and chitinase was split into 3 sub-categories based on where the enzyme attacks 

(endo-, exo-, or undefined). Chitinases are found in any number of organisms including viruses 

(46).  

Starch, glycogen, and related compounds are energy storage polysaccharides used by a number 

of eukaryotes. A wide variety of enzymes are used to breakdown these compounds: Alpha-

amylase, pullulanase type I (amyX), gamma-amylase (glucoamylase), pullulanase, 

amylopullululanase (apu) (47-50), cyclomaltodextrinase (cda), neopullulanase (nplT), and 

isopullulanase (51, 52). Inulin is another polysaccharide that is used by plants for energy storage. 

Inulinase is currently the only degradative gene for this polysaccharide on GeoChip (53-55).  

Terpenes are hydrocarbons that comprise a large class of plant-derived secondary metabolites 

and are the main component of plant essential oils (56). Various types of essential oils have been 

shown to have antiviral, antibacterial and antioxidant activity (56, 57). Enzymes for terpene 

degradation include carveol dehydrogenase, limonene-1,2-epoxide hydrolase (limEH), limonene 

monooxygenase (LMO) (58-63), and camDCAB (camphor 5-monooxygenase) (64-67). 

The glyoxylate cycle is involved in the conversion of acetyl-CoA to succinate for use in a 

number of biosynthetic pathways and may also play an important role in bacterial and fungal 

virulence. The key enzymes are isocitrate lyase (AceA) and malate synthase (AceB) (68, 69).  

CO2 fixation.  

Carbon fixation converts inorganic carbon (CO2) into organic carbon that can be used by other 

organisms. Autotrophic CO2 fixation is “the most important biosynthetic process in nature” (70). 

There are now six known pathways for autotrophic CO2 fixation (71). When earlier versions of 

GeoChip were designed, only five pathways were known (72), and a single enzyme from each of 

four of these pathways were covered. Here we sought to increase coverage by including 
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additional enzymes from each cycle (total number of genes indicated in parentheses): Calvin 

cycle (9 genes) (73, 74), 3-hydroxypropionate bicycle (10 genes) (75), reductive acetyl–CoA 

pathway (2 genes) (76), reductive tricarboxylic acid cycle (8 genes) (77), and two new pathways: 

dicarboxylate/4-hydroxybutyrate cycle (12 genes) (78) and 3-hydroxypropionate/4-

hydroxybutyrate cycle (12 genes) (79). Only the reductive acetyl-CoA pathway did not have 

genes added as many of the enzymes in this particular cycle have dual functions in other normal 

cellular processes.  

In addition to enzymes, genes for carboxysomes, bacterial microcompartments that aid in the 

concentration of CO2 (80-82), were also selected. The seven carboxysome genes cover shell 

proteins, which act as a CO2 diffusion barrier, concentration mechanisms and carbonic anhydrase 

isoforms. One specific protein for each of the alpha and beta carboxysomes was also included (83). 

Methane metabolism:  

Methane accounts for about 10% of all greenhouse gas emissions and is primarily produced during 

decomposition of organic matter (84). Methanogenesis is the process by which single-carbon 

substrates are reduced to produce methane and generate energy. This methane can in turn be 

oxidized to create CO2 and O2. There are four methanogenesis pathways, the core pathway, 

acetoclastic, hydrogenotrophic, and methyl-corrinoid. The core pathway is the final reduction step 

to produce methane via methyl-coenzyme M. The hydrogenotrophic pathway reduces CO2 to CO 

and then formate, which then feeds into the core pathway. The acetoclastic pathway reduces acetate 

to acetyl CoA. The acetyl CoA is then reduced in the final step of the hydrogenotrophic pathway. 

The methyl-corrinoid pathway reduces substrates containing methyl groups and then feeds into the 

core pathway. Previously, only methyl-coenzyme M reductase (mcrA) was covered as an indicator 

for methanogenesis. Additional genes were added to cover the acetoclastic (3 genes), 

hydrogenotrophic (6 genes), and methyl-corrinoid (3 genes) pathways (85). Particulate and soluble 

methane monooxygenases, pmoA and mmoX, are included for methane oxidation. 
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Nitrogen Cycling 

While N is critical to all living things, the largest N pool, N2, is extremely stable and requires a 

great deal of energy to reduce it to a state that is biologically available. In addition, most of the 

nitrogen in soil is biologically unavailable. While some nitrogen is available from minerals in the 

soil, nitrogen availability is largely controlled by microbial activity. Nitrogen-fixing bacteria 

convert atmospheric N2 into NH4 allowing it to be used by plants and other bacteria. Plant and 

animal decay releases NH3 via ammonification. The NH3/NH4 can be converted to NO2 then 

NO3 via nitrification; NO3 is converted back to N2 via denitrification. NO3 can also be reduced to 

NH2 via N reduction. NH4 and NO2 can be oxidized to N2 anaerobic ammonium oxidation 

(anammox). Each of these processes is covered on the GeoChip: N fixation (1 genes), 

nitrification (4 genes), denitrification (6 genes), ammonification (4 genes), dissimilatory (2 

genes) and assimilatory (5 genes) N reduction to NH4, and anammox (2 genes) (2, 86).  

Nitrogen cycling genes that are new to GeoChip 5 include the nitrification gene, nitrite 

oxidoreductase (nxrA) (87) and hydrazine synthase (hzsA) involved in the anammox system (88). 

Two types of nitrous oxide reductase genes were included: cnorB a cytochrome bc complex type 

enzyme and qnorB, a quinol-oxidizing single-subunit class (89). An assimilatory nitrate 

reductase (narB) from cyanobacteria was added as well. This gene is similar to nasA, but has a 

different nomenclature (90-95).  

Additionally, 3 new genes for nitrogen assimilation by bacteria and fungi, including ammonium, 

nitrate and nitrite transporters were added. 

Phosphorus cycling 

Phosphorus plays an important role in biological life as a component of cellular components such 

as nucleotides, ATP and membranes. Excess phosphate (Pi) is frequently stored by all living 

organisms as polyphosphate chains that can contain hundreds of Pi residues. Polyphosphate has 

numerous functions from Pi storage, stress response, virulence, and maintenance of stationary 

phase (96). Two genes for polyphosphate biosynthesis (ppk and phytase) and one for 

polyphosphate degradation (exopolyphosphatase/ppx) were included on earlier versions of 
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GeoChip. Polyphosphate kinase/ppk removes a Pi from ATP to lengthen poly P. Phytase is 

involved in the conversion of organic phosphorous to inorganic by hydrolyzing phytate. 

Additional genes for oxidation of inorganic phosphate compounds found in the environment 

were added including hypophosphite dioxygenase (htxA), which oxidizes hypophosphite (97) 

and phosphonate dehydrogenase (ptxD), which oxidizes phosphonate (98, 99). Two new genes 

for polyphosphate degradation were also added. These include a second form of polyphosphate 

kinase (ppk2) that creates either GTP from GDP or ADP from AMP (100, 101) and an 

endopolyphosphatase (ppn) that cleaves poly-P into various sized units. 

Sulfur cycling 

Sulfur is the ancient “motor of life” and played a similar role in ancient Earth as O2 plays now 

(102). In the current primarily aerobic environment, sulfur acts as both an electron acceptor and 

donor for anaerobic respiration and can be oxidized (102). The sulfate reduction/sulfide 

oxidation cycle is found in a variety of environments, such as freshwater and marine sediment or 

microbial mats, and the O2-H2S interface formed in this cycling often moves based on factors 

such as tides or amount of sunlight present (102, 103). Previous versions of GeoChip included 

dsrA and dsrB for sulfite reduction, sox for sulfate oxidation, and three genes for adenylylsulfate 

reductase (2 for aprA and aprB). Additional genes involved in sulfur transformation reactions 

were included on this newest version.  

Dimethylsulfoniopropionate (DMSP), a major source of C and S in marine environments, is 

degraded by either cleavage by DMSP lyase or demethylated by DMSP demethylase (dmdA) 

(104). Cleavage of DMSP produces dimethylsulfide (DMS), a volatile compound which, when 

transported to the atmosphere and oxidized, can modulate the formation of clouds (105, 106). 

Demethylation of DMSP ultimately leads to release of additional C that can be further utilized by 

marine bacteria (104). The sox “gene” of previous GeoChips was split into five “active” 

component subunits: soxA, soxB, soxC, soxV, and soxY (107). CysI and J encode a sulfite 

reductase in the cysteine biosynthesis pathway (108).  
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Categories related to microbial response to environmental conditions 

Metal Homeostasis: 

High concentrations of metals can be toxic to microorganisms. This type of contamination is 

common due to both anthropogenic and natural causes (109). To limit exposure and protect 

against damage from these metals, microorganisms have developed resistance mechanisms (110, 

111). Previous versions of GeoChip covered 44 genes/enzymes for resistance to 13 commonly 

detected metals with well-studies resistance mechanisms (Ag, Al, As, Cd, Co, Cr, Cu, Hg, Ni, 

Pb, Se, Te and Zn) (110-112) and one gene for bacterial metallothioneins and metallothionein-

like proteins (smtA).  

The metal resistance category has been expanded to include additional resistance, metal uptake 

and maintenance mechanisms (72 additional genes) in addition to metal resistance and has been 

renamed metal homeostasis. Metal acquisition genes included those for ion pumps for several 

metals including boron (2 genes), calcium (2 genes), magnesium (3 genes), manganese (2 genes), 

potassium (6 genes), and sodium (8 genes). A number of genes related to iron scavenging, such 

as transporters, siderophores or siderophore receptors, storage, and oxidation (11 genes) were 

also included. Metal resistance gene families were updated to include transport and enzymatic 

transformation genes for resistance to arsenic (6 genes), copper (10 genes), mercury (9 genes), 

and chromium (2 genes). Nutrient metals can also be toxic at higher concentration, so uptake and 

efflux transporters were included for metals such as nickel (7 genes), cobalt (5 genes), copper 

(10 genes) and zinc (14 genes). A majority of the genes in this category are transporters, which is 

the most common metal resistance mechanism for bacteria (112). In addition, transports are 

involved in uptake of nutrient metals. Other mechanisms of metal resistance are enzymatic 

medication of the toxic metal or sequestration, so the metal is no longer biologically available.  

New genes include arsenic related genes arrA (respiratory arsenate reductase) (113) and arxA 

(anaerobic arsenite oxidase) (114), boron related genes bor1 (boron transporter) (115), atr1 

(boron exporter from fungi) (116), calcium (chaA, calcium/proton antiporter) (117), 

cobalt/magnesium (corA) (118), and cobalt/nickel (nreB, MFS family protein) (119).  
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Several genes involved in iron uptake, storage, scavenging, and oxidation were added, including 

those for iron receptors [fecA (120), feoB (121), fepA (122), fhuA (123), fhuE (124), fiu (125), 

cirA (126)], siderophore biosynthesis [entB (127)], internal iron storage [bacterioferritin (bfr) 

(128), dps (129)], and iron oxidation [rustocyanin (130)]. Siderophores, high-affinity iron-

chelating compounds, are produced when iron is limited (131, 132). 

Genes for magnesium transporters include mgtA (133) and mgtE (134). Genes for manganese 

include the transporters psaA/mntA (135) and mntH/Nramps (136). New nickel genes included 

the periplasmic nickel-binding protein nikA (137), a nickel transporter permease nikC (138), and 

a high-affinity nickel-transport protein NiCoT (nixA and hoxN) (139, 140). In addition, vacuolar 

Ca exchangers were included. These exchangers allow growth in environments with elevated Ca 

(141). 

New potassium genes include uptake proteins trkA (142), ktrBD (143), Kup/trkD (144), and 

trkGH (145), the P-type ATPase transporter kdpA (146) and the efflux transporter kefBC (147).  

New genes for sodium include the sodium/proton antiporters nhaA (148), nhaB (149), nhaC 

(150), nhaD (151), nhaP (152), and mrpA-like subunits from several different systems (mrpA, 

shaA, phaA, mnhA, snoA) (153-155). In addition, a Na+-translocating NADH:ubiquinone 

oxidoreductase nrqB (156), and the permease natB (157) were included.  

New zinc genes include the high-affinity transporters znuA and znuC (158); zinc-binding proteins 

troA (159) and adcA (160); transporters Zrt1, Zrt2 (161), Zrt3 (162), zupT/ygiE (163), cot1 (164) 

and msc2 (165); efflux transporters yiiP/fieF (166), and the zinc/cadmium resistance protein zrc1 

(167).  

Organic Contaminant Degradation 

Several major changes were made to this group of genes from earlier GeoChip versions. First, a 

number of old genes were removed as they no longer give useful information for various reasons 

such as crossover with other non-target genes that could not be resolved by HMMER or being so 

far down a degradation pathway(s) that they were involved in reactions that could be considered 

general cell metabolism. Second, several target genes were combined due to sequence similarity, 
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which meant they could not be fully separated. Several genes were split due to enantiomer 

selectivity and other genes that were composed of 2 or more subunits were reduced to a single 

subunit. Several new genes were also added. 

Genes will be listed below by chemical with the reason for that chemical being chosen. Several of 

the genes can be utilized in multiple degradation pathways as they are further “downstream” but 

will only be listed here one time. 

2-Aminobenzenesulfonate is used in the manufacture of dyes and pharmaceuticals. It can be 

degraded by catechol_B (catechol 2,3-dioxygenase) (168). 

2-, 3-, & 4- Chlorobenzoate is an intermediate in dye manufacturing and is degraded by cbeA 

(chlorobenzoate 1,2-dioxygenase) (169). 

2,4-Dichlorophenoxyacetic Acid (2,4-D) is a common herbicide and is degraded by tfdA (2,4-

D/alpha-ketoglutarate dioxygenase) (170). 

2,4-Dichlorophenol is an intermediate in the production of 2,4-D and is degraded by tfdB (2,4-

dichlorophenol 6-monooxygenase) (171). 

2,4,5-trichlorophenoxyacetic acid is a synthetic auxin and herbicide used from the 1940s through 

the 1980s. It is very toxic due to the presence of trace contaminants, introduced during 

manufacturing. It is degraded by tftA (2,4,5-trichlorophenoxyacetic acid oxygenase) and tftH 

(hydroxyquinol 1,2-dioxygenase) (172). 

3-Chloroacrylic acid is a pesticide metabolite and is degraded by caad (trans-3-chloroacrylic acid 

dehalogenase), cis-caaD (cis-3-chloroacrylic acid dehalogenase) (173), and MSAD (malonate 

semialdehyde decarboxylase) (174). 

3-Chlorobenzoate is an intermediate in dye manufacturing and is degraded by cbaA (3-

chlorobenzoate-3,4-dioxygenase) (175). 
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4-Aminobenzenesulfonate is used in the manufacture of dyes and pharmaceuticals and is degraded 

by pcaG (protocatechuate 3,4-dioxygenase) (176) and pcaB (carboxymuconate cycloisomerase) 

(177). 

4-Chlorobenzoate is an intermediate in the production of various organic chemicals including dyes 

and fungicides, and as a preservative. It is degraded by fcbA (4-chlorobenzoyl ligase) (178) and 

fcbB (4-CBA-CoA dehalogenase) and fcbC (chlorobenzoate thioesterase) (178). 

Acetylene is a basic building block for a number of chemical processes and is degraded by Xamo 

(alkene monooxygenase) (179). 

Acrylonitrile is used in production of plastics and is degraded by NHase (nitrile hydratase) (180) 

and ALN (aliphatic nitrilase) (181). 

Saturated hydrocarbons (alkanes) are one of the main components of crude oil. Degradation of 

these compounds is important in bioremediation and in the ecology at natural oil seeps. Alkanes 

are degraded by alkylsuccinate synthase (AssA) (182). 

Aniline is used in the manufacture of many products but mainly for polyurethane and is degraded 

by tdnQ (aniline dioxygenase) (183). 

Anthracene is a natural product in coal tar and used in dye production and is degraded by nahB 

(naphthalene dihydrodiol) (184). 

Atrazine is a widely used pesticide in US agriculture and is degraded by atzA (atrazine 

chlorohydrolase), atzB (hydroxyatrazine hydrolase), atzC (N-isopropylammelide 

isopropylaminohydrolase), atzD (cyanuric acid amidohydrolase), trzN (atrazine hydrolase), and 

trzA (triazine hydrolase) (185-188).  

Benzaldehyde is a downstream product of a number of xenobiotic degradation pathways and is 

degraded by xylC (4-hydroxybenzaldehyde dehydrogenase) (189). 

Benzoate is the downstream product of a number of xenobiotic degradation pathways and is 

degraded by BpH (benzoate-para-hydroxylase) (190), benD (2-hydro-1,2-dihydroxybenzoate 
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(DHB) dehydrogenase) (191), bco (benzoyl CoA reductase) (192), bclA (benzoate-coenzyme A 

ligase) (193), badK (cyclohex-1-ene-1-carboxyl-CoA hydratase), and badI (2-ketocyclohexane-1-

carboxyl-CoA hydrolase) (194, 195). 

Benzonitrile is a common solvent and intermediate in many industrial chemical processes and is 

degraded by nitrilase (196) and amiE (aliphatic amidase) (197). 

Biphenyl is found naturally in coal tar, crude oil and natural gas. It is the starting material for PCBs 

and is used in the production of many other organic compounds. Biphenyl is degraded by bphB 

(2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase), bphC (2,3-dihydroxybiphenyl 1,2-

dioxygenase), and bphD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase) (198-201). 

Carbazole is used in the minor amounts for the production of dyes and is produced during 

incomplete combustion. It is degraded by carA (carbazole 1,9a-dioxygenase) (202). 

Catechol used in production of pesticides, fragrances and other compounds and is found in small 

amounts found in nature, but the bulk is man-made. It is degraded by catechol (catechol 1,2-

dioxygenase) (203), xylF (2-hydroxymuconate semialdehyde hydrolase), xylJ (2-oxopent-4-enoate 

hydratase), and bphF1 (4-hydroxy-2-oxovalerate aldolase) (204-208). 

Chloromethane is produced in minor amounts by phytoplankton. It was once used as a refrigerant 

but has been discontinued. It is degraded by cmuA (isopropylbenzene dioxygenase) (209). 

Cyanuric acid is used as part of, or in the manufacture of, bleaches, disinfectants or herbicides. It 

is also involved in atrazine degradation. It is degraded by atzE (biuret hydrolase) (210). 

Cyclohexane is a common non-polar solvent and is degraded by BMO (butane monooxygenase), 

chnA (cyclohexanol dehydrogenase), chnB (cyclohexanone 1,2-monooxygenase), chnC (1-oxa-2-

oxocycloheptane lactonase), chnD (hydroxyhexanoate dehydrogenase) (211-213), and chnE (6-

oxohexanoate dehydrogenase) (214). 

Cyclopentanol is used to make cyclopentanone, an important compound in fragrance and 

pharmaceutical manufacturing. It is degraded by cpnA (cyclopentanol dehydrogenase), cpnB 
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(cyclopentanone monooxygenase) (215, 216), cpnC (5-valerolactone hydrolase), and cpnE (5-

oxovalerate dehydrogenase)  (217)  

Cymene is a natural compound in essential oils and is degraded by cymA (p-cymene methyl 

hydroxylase), BADH (benzylalcohol dehydrogenase), cymC (aryl-aldehyde dehydrogenase), 

cmtAb (p-cumate dioxygenase), cmtC (2,3-dihydroxy-p-cumate dioxygenase), cmtD (HCOMODA 

decarboxylase), and cmtE (HOMODA hydrolase) (218-220). 

Dibenzothiophene is found in crude oil and is degraded by dbtAc (dibenzothiophene dioxygenase) 

and dbtB (dibenzothiophene dihydrodiol dehydrogenase) (221, 222). 

Dibenzo-p-dioxin is produced in small amounts by natural fires. Larger amounts were made 

industrially for various uses including herbicides and defoliants. It is degraded by dxnA (dioxin 

dioxygenase) and dbfB (2,2,3-trihydroxy-biphenyl dioxygenase) (223). 

Dichloroethane is used in polyvinyl chloride (PVC) production and is degraded by linB 

(haloalkane dehalogenase), moxF (methanol dehydrogenase), and dehH (haloacetate 

dehalogenase) (224-226). 

Dichloromethane is a common solvent and used to “glue” some plastics together. It is degraded by 

dcmA (dichloromethane dehalogenase) (227). 

Dimethyl sulfoxide is a solvent that can mix with many different organic solvents and with water 

and is degraded by dmsA (dimethyl sulfoxide reductase) (228). 

Dodecyl sulfate is used for the production of SDS a common surfactant in cleaning supplies and 

is degraded by sdsA (alkyl sulfatase), alkJ (alcohol dehydrogenase), and alkH (aldehyde 

dehydrogenase) (229-231). 

Ethylbenzene is an important intermediate in the production of the plastic polystyrene and is 

degraded by ebdA (ethylbenzene dehydrogenase), apc (acetophenone carboxylase), akbA 

(ethylbenzene dioxygenase), Ped (1-phenylethanol dehydrogenase) (232-235) .  
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Gamma-hexachlorocyclohexane (lindane) is an insecticide widely used in agriculture and also 

used to treat lice and scabies. It is degraded by linA (gamma-hexachlorocyclohexane 

dehydrochlorinase), linC (2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase), linD (2,5-

dichlorohydroquinone reductive dechlorinase) (236). 

Gallate is a natural coumpound found in a number of plants and is used to manufacture 

pharmaceuticals. Gallic acid was used in the manufacture of inks. It is degraded by athL 

(pyrogallol hydroxyltransferase) (237). 

Glyphosate, also known as the herbicide “RoundUp” and has been in use since the 1970s. It is one 

of the most highly used herbicides in the world. It is degraded by Phn (carbon-phosphorus lyase) 

and mauAB (methylamine dehydrogenase) (238, 239). 

Isopropylbenzene (cumene) is commonly found in crude oil and used as a base for the production 

of other chemical compounds. It is degraded by cumB (dihydroxyisopropylbenzene 

dehydrogenase), cumC (3-isopropylcatechol-2,3-dioxygenase), cumD (HOMODA hydrolase) 

(240). 

Hydroxyacetophenone is an intermediate in the breakdown of other compounds such as bisphenol 

A and is degraded by arylest (arylesterase) (241). 

Mandelate is the base chemical for a number of pharmaceuticals and is degraded by mdlA 

(mandelate racemase), mdlB (mandelate dehydrogenase), mdlC (benzoylformate decarboxylase) 

(242). 

m-cresol is a solvent used to dissolve various polymers and is degraded by mdlD (benzaldehyde 

dehydrogenase (NAD(+)) and xlnD (3-hydroxybenzoate 6-hydroxylase) (242). 

Methanesulfonic acid is used as an acid catalyst in a variety of organic solvents and is degraded 

by MSAMO (methanesulfonic acid monooxygenase) (243). 

Methylquinoline is used in dye production and is degraded by qorL (quinoline 2-oxidoreductase), 

Quinoline (3-methyl-2-oxo-1,2-dihydroquinoline 8-monooxygenase) (244). 
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MTBE is widely used fuel oxygenate. It has caused widespread ground water contamination and 

is degraded by alkB (alkane 1-monooxygenase) (245). 

Naphthalene is found in coal tar and used as a base compound in various chemical reactions. Main 

component in mothballs. It is degraded by nahC (dihydroxynaphthalene and dioxygenase), nahD 

(2-hydroxychromene-2-carboxylate isomerase) and nahF (salicyladehyde dehydrogenase) (246). 

Nicotine is a natural alkaloid in several plants, especially tobacco. It is a stimulant in animals and 

was used as an insecticide. Nicotine is degraded by ndhC (nicotine dehydrogenase), 6HDNO ((S)-

6-hydroxynicotine oxidase), 6HLNO ((R)-6-hydroxynicotine oxidase) (247). 

Nitrobenzene is a basic building block used in a number of chemical reactions and is degraded by 

amnB (2-aminophenol 1,6-dioxygenase), nbzA (nitrobenzene nitroreductase), and nbzB 

(hydroxylaminobenzene mutase) (248). 

Nitrobenzoate is an intermediate in the breakdown of a number of chemicals and is degraded by 

nbaC (3-hydroxyanthranilate 3,4-dioxygenase) (249). 

Nitroglycerin is a common and widely used explosive (TNT). It is degraded by xenAB 

(nitroglycerin reductase) (250). 

Nitrophenol is a precursor in the production of pharmaceutical, herbicide, and pesticide. It is 

degraded by nphA (4-nitrophenol 2-monooxygenase), mhqA (hydroquinone 1,2-dioxygenase), and 

pcpE (maleylacetate reductase) (251-254). 

Octane is an alkane component of gasoline and is degraded by alkK (acyl-CoA synthetase) (255). 

Organophosphates are a type of insecticide and are degraded by adpB (aryldialkylphosphatase) 

(256). 

Pentachlorophenol (PCP) is a common herbicide, insecticide, fungicide, algaecide, general 

disinfectant, and used in antifouling paint. It has been in use since the 1930s and is highly toxic 

and slow to degrade. It is degraded by pcpB (pentachlorophenol 4-monooxygenase), pcpC 
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(tetrachlorohydroquinone reductive dehalogenase), and tcpA (chlorophenol 4-monooxygenase) 

(257, 258). 

Pentaerythritol tetranitrate (PETN) is a high-power explosive and much more toxic than other 

explosives like RDX. It is considered a “munitions constituent of great concern” by the DOD. It 

is degraded by Onr (pentaerythritol tetranitrate reductase) (259). 

Naphthalene and phenanthrene are used as base compounds in chemical reactions to make dyes, 

plastics, pesticides and other compounds. They are degraded by nahD (chromene-2-carboxylate 

isomerase), phdJ (carboxybenzalpyruvate hydratase-aldolase), phdK (carboxybenzaldehyde 

dehydrogenase) (260). 

Phenoxybenzoate is used in the synthesis of larger chemical compounds and is degraded by pobA 

(p-hydroxybenzoate hydroxylase) and POBMO (phenoxybenzoate monooxygenase) (261, 262). 

Phenylacetaldoxime is used as a base chemical for pesticides and has potential applications in 

cancer treatment. It is degraded by oxdB (phenylacetaldoxime dehydratase) (263). 

Phenylpropionate is naturally produced during breakdown of plant material and is also a 

component of synthetic steroids. It is degraded by hcaE (3-phenylpropionate dioxygenase), hcaB 

(2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase), mhpA (3-(3-

hydroxyphenyl)propionate hydroxylase), mhpB (3-(2,3-dihydroxyphenyl)propionate 1,2-

dioxygenase), and mhpC (2-hydroxy-6-ketonona-2,4-dienedoic acid hydrolase) (264, 265). 

Phthalate is commonly added to plastics to improve their physical properties but are easily released 

into the environment. It is degraded by phtA (phthalate 4,5-dioxygenase), phtB (phthalate 4,5-cis-

dihydrodiol dehydrogenase), ophC (4,5-dihydroxyphthalate decarboxylase), tphA (terephthalate 

1,2-dioxygenase), tphb (terephthalate 1,2-cis-dihydrodiol dehydrogenase), and HBH (3-

hydroxybenzoate 4-hydroxylase) (266-269). 

Pyrene is a natural compound found in coal tar and in combustion products, including those 

produced by the burning of gasoline. Used in the production of dyes. It is degraded by nidA (pyrene 

dioxygenase) (270)  
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Reductive dehalogenase (Rd) is involved in the removal of halogen atoms from parent compounds 

such as PCE and TCE (271, 272). 

Salicylate is a downstream product of several pathways including naphthalene, phenanthrene, 

anthracene, and dibenzofuran. It is degraded by nahG (salicylate hydroxylase) and nagG 

(salicylate 5-hydroxylase) (273-275). 

Tetrahydrofuran is a solvent and used in the manufacture of a variety of polymers and is degraded 

by thmA (tetrahydrofuran hydroxylase) (276). 

Thiocyanate is used in the production of other chemicals and is degraded by scnC (thiocyanate 

hydrolase) (277). 

Toluate is a base compound used in the manufacture of various plastics and is degraded by xylX 

(toluate dioxygenase), xylL (dihydrocyclohexadiene carboxylate dehydrogenase), and xylG (2-

hydroxymuconic semialdehyde dehydrogenase) (278, 279). 

Toluene is a solvent and compound in the production of various chemical compounds and is 

degraded by bbsG (benzylsuccinyl CoA dehydrogenase), xylM (xylene monooxygenase), tmoA 

(toluene-4-monooxygenase), pchF (4-cresol dehydrogenase), tutFDG (benzylsuccinate synthase), 

bbsH (E-phenylitaconyl-CoA hydratase), and tomA (toluene 2-monooxygenase) (280-284). 

Xylene (or any other compound that has a cis,cis-muconate intermediate from catechol) is 

degraded by catB (muconate cycloisomerase) (285). 

Dioxygenases were combined into three sets due to highly similar sequences. These include 

one_ring_12DiOx (one-ring dioxygenases) which combined benzene 1,2-dioxygenase, benzoate 

1,2-dioxygenase, ortho-halobenozate dioxygenase, toluene dioxygenase, and halobenzoate 1,2-

dioxygenase (286-288). Another one-ring dioxygenase (one_ring_23DiOx) combined biphenyl 

2,3-dioxygenase and isopropylbenzene dioxygenase (289-291). The third set is multiring 

dioxygenases (mult_ring_12DiOx), which combined pyrene dioxygenase, PAH dioxygenase, 

phenanthrene dioxygenase, naphthalene 1,2-diooxygenase, and nitrobenzene 1,2-dioxygenase 

(292-294) . 
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Nitroreductases are involved in the reduction of both natural (chloramphenicol) and man-made 

nitroaromatic compounds. Type I nitroreductases are oxygen-insensitive while Type II are oxygen-

sensitive. Genetics of the latter have not been well-studied. Genes involved in the degradation of 

these compounds include nfsA (Type I, Group A) and nfsB (Type I, Group B) (295, 296). 

Stress Response: 

Microorganisms are exposed to a variety of environmental stressors and have developed 

mechanisms to respond to and minimize the negative effects of the stressor. Covered genes include 

those for heat and cold shock, osmotic stress, oxidative stress, protein stress, stringent response, 

general stress response, and oxygen, glucose, phosphate and nitrogen limitation as well as sigma 

factors (18). 

Selected sigma factors that are involved in transcription initiation for stress response genes include 

the housekeeping sigma factor σ70, σ38 for general stress response and σ32 and σ24 for heat shock 

(297). The haem-catalase katE was also included for general stress response (298) and a stringent 

response GTPase that maintains low intracellular concentrations of ppGpp (obgE) (299-301) 

(302). The ppGpp acts as a transcriptional regulator during periods of stress (303).  

Heat and cold shock proteins were included because microorganisms are often exposed to 

temperature variations in the environment. Heat shock proteins include dnaK, grpE, groES, and 

groEL, molecular chaperones that prevent or correct denaturation (304) and the regulatory gene 

hrcA (305). Microbes handle cold shock by increasing the ratio of unsaturated to saturated fatty 

acids in membrane lipids. This is accomplished via the desaturase gene, des; the expression of 

which is controlled by the two-component system genes, desK-desR (306). In addition, there are 

also cold shock induced chaperon proteins, cspA and cspB (307). 

Osmotic shock occurs when the cell encounters a sudden change in solute concentration in its 

surrounding environment, which can lead to a rapid increase or decrease of water in the cell. To 

protect themselves, microbial cells can modify the concentration of osmoprotectants within the 

cell using transport systems such as opuE, a sodium/proline symporter or the ProU transport 

system comprised of proV, proW, and proX (308). The ProU system has a broad substrate 

specificity, but preferentially transports glycine betaine and proline betaine (309, 310). 
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An increase in reactive oxygen species can trigger oxidative stress. This stress response is 

regulated by perR and oxyR and includes induction of ahpCF, an alkyl hydroperoxide reductase, 

and kata, a catalase, to detoxify reactive oxygen species (311-313). 

In environments where there is insufficient oxygen, cytochrome genes (cydA and cydB) are 

activated via regulatory genes such as fnr and arcA and arcB, a two-component system (314, 315). 

In addition, some microorganisms contain genes that allow them to use other electron acceptors, 

such as nitrate nitrate reductase genes (narG, narH, narJ, and narI) (316).  

Another stressor commonly encountered by microorganisms is nutrient limitation. Two common 

nutrients that are often limiting are carbon, phosphate and nitrogen. The genes bglP (aryl-beta-

glucosidespecific enzyme II) and bglH (phospho-beta-glucosidase) allow for the use of aryl-β-

glucosides as an alternate carbon source (317).  

Under phosphate-limiting conditions, the response regulator phoB induces expression of the Pst 

inorganic phosphate (Pi) uptake system. The subunits pstS, pstA, pstB, and pstC form the 

transporter. Alkaline phosphatase (phoA) releases Pi (318-320) . 

External N limitation is sensed by glutamine in enteric bacteria (321). Genes for glutamine 

synthase (glnA) and the regulatory genes tnrA and glnR were included (322). 

Protein stress is triggered by over production of recombinant proteins in microbial cells (323, 324), 

which induces the activation of heat shock sigma factor σ32 and σ32-dependent genes (325). We 

selected clpC (ATPase subunit in the Clp machinery) and regulator gene ctsR to target protein 

stress (326, 327). 

New genes added include antioxidant enzymes such as catalase, peroxidase, and superoxide 

dismutase, which protect organisms from abiotic and biotically produced oxygen radicals; 

envelope stress genes which are involved in modifying and repairing the cellular envelope when 

under stressful conditions (328), and pH stress response genes. 
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Plant growth promotion: 

Plant-microbe interactions are an important aspect of plant growth and health and bacteria and 

fungi produce a number of compounds to alter host plant metabolism and growth and increase 

stress tolerance and resistance to pathogens (329). Genes covered in this category include plant-

like hormones (9 genes) such as gibberellin, ethylene, auxin and polyamines (spermidine 

synthase), which are involved in plant growth (330-332) and trehalose synthase genes, which act 

as a protecting agent to maintain structural integrity of the cytoplasm under environmental stress, 

such as drought conditions (333). In addition, genes involved in pathogen suppression were 

included. Siderophores from these beneficial bacteria compete with pathogens for available iron 

(329) and references therein), so genes related to siderophore production were included. 

Antioxidants (superoxide dismutase, peroxidase) scavenge reactive oxygen species generated by 

plants in response to drought, nutrient and other stresses (334, 335).  

Microbial defense: 

Microbial defense mechanisms can indicate the presence of predators or competing microbes.  

Antibiotic resistance. Microorganisms are frequently exposed to antibiotics both from natural 

sources (e.g., other bacteria in the surrounding environment) or from man-made sources (e.g., 

wastewater treatment plants). As such, microbes have developed mechanism to prevent damage 

from the antibiotics. These mechanisms can be intrinsic (functional or structural features that 

prevent the antibiotic from acting against the cell) or acquired (those resistance mechanisms 

derived from genetic elements that can be passed to other bacteria) (336). Primary mechanisms of 

resistance include prevention of entry, efflux, modification/absence of the antibiotic target, or 

inactivation of the antibiotic itself (336). Intrinsic features such as cell wall structures that 

minimize antibiotic entry or modified/absent targets generally do not require a specific gene to be 

present, so are difficult to test for with microarrays. So, most of the antibiotic resistance genes 

covered on the GeoChip are for efflux transporters (8 genes; e.g., ATP-binding cassette (ABC), 

multi-antimicrobial extrusion protein (MATE), major facilitator superfamily (MFS), resistance-

nodulation-division (RND), small multidrug resistance (SMR) transporters) or enzymes 

responsible for antibiotic degradation (9 genes). Several genes from previous GeoChip versions 
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were split into multiple genes due to the number of sequences. These splits were done along 

phylogenetic lines. Two intrinsic resistance mechanisms were also included: the genes qnr, which 

expresses a protein that binds to and protects DNA gyrase and topoisomerase IV from attack by 

ciprofloxacin (337) and vanA, which codes for a ligase that modifies the peptidoglycan binding 

site for vancomycin and other similar antibiotics (338).  

ABC transporters, MFS transporters, MATE transporters, RND transporters (includes Mex gene 

from previous GeoChip versions), and SMR transporters are broad classes of transporters that are 

involved in the transport of compounds across the cell membrane, both import and export, 

including antibiotics and other toxins (339-341). Because the transporters in each of these families 

is so similar, multiple genes within each family were combined into a single gene family. The 

individual genes may be specific to a particular genus (vcaM is found in Virbio spp.) or transport 

a specific drug type (macB transports macrolides) Genes from within each of these categories is 

listed in the table below. 

Gene family Genes included References 

ABC 

transporters 

macB, vcaM, smrA, lmrA, 

lmrCD, horA, yvcC/bmrA, 

patA/patB, msrA 

(342-350)    

MFS 

transporters 

mdfA, norA, cmlA, mefA, mefE, 

pmrA, emrB, flo, emeA, bmr3, 

blt, qacA, lmrB, emrD, emrd-3, 

qepA, tetBCD, tetKL  

(351-371) 

MATE 

transporters 

mepA, vcrM, abeM, vcmBDHN, 

norM, hmrM, pmpM  

(372-378) 

RND 

transporters 

acrAB, adeABC, adeDE, 

adeXYZ, adeFGH, adeIJK, 

adeMNO, bseAB, bpeEF, 

cmeABC, cmeDEF, mexAB, 

mexCD, mexEF, mexJK, 

mexXY/amrAB, mexHI, mexVW, 

mexPQ, mexMN, smeABC, 

smeDEF, sdeAB, sdeCDE, 

sdeXY, mtrCDEML, ceoAB, 

tbtABM, zrpADBC, axyABM, 

bdeAB, bpeAB, vexAB, vexCD, 

aheABC, ttgABC, vmeAB  

(379-412) 
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SMR 

transporters 

mmr, mvrC, 

qacE/qacEΔ1/qacE2, qac 

general, qacF, qacG, qacJ, 

qacC, qacH, qacZ, abeS, ssmE, 

smr, ebrAB, ydgEF, yvdSR, 

yvaDE  

(413-429) 

Beta-lactamases provide resistance to beta-lactam antibiotics such as penicillins, which are used 

to treat Gram-positive infections and a limited number of Gram-negative infections. There are 

several different mechanisms for inactivation and the beta-lactamases are classified by those 

mechanisms (430). The enzymes are separated into different “classes”, including Beta-lactamase 

Class A (431), Beta-lactamase Class B (432), Beta-lactamase class C, (433), and Beta-lacatamase 

Class D (434). 

Vancomycin is a glycopeptide antibiotic for Gram-positive infections. It was considered the “last 

resort” antibiotic for organisms resistant to other antibiotics. Resistance became common starting 

in 1990s. There are several variants, but vanA, vanB, and vanC are the main types found in clinical 

isolates (435).  

Streptogramin type antibiotics are the main choice for vancomycin resistant organisms. Resistance 

to streptogramin is conferred by Vgb (436). 

Fosfomycin is a broad spectrum antibacterial used alone or in conjunction with other antibiotics. 

fosA (437), fosB (438), and fosX (439) all catalyze the addition of another molecule to the oxirane 

portion of fosfomycin to cause inactivation. 

Quinolones are broad spectrum synthetic antibiotics used for both Gram-positive and -negative 

infections in human medicine and agriculture. There are several different mechanisms of 

resistance. Qnr is a plasmid borne mechanism that protects bacterial topoisomerases (440). 

Tetracycline-type antibiotics are natural and synthetically created polyketide antibiotics that have 

a broad spectrum of activity by inhibiting protein synthesis. In addition to the MFS transporters 

mentioned above, there are also enzymatic mechanisms. TetX is a monooxygenase that provides 

resistance to tetracycline antibiotics including those that have been only recently approved such as 

Tygacil (441). TetM and related genes provide resistance to tetracycline antibiotics through 
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protection of the ribosome (442). Other genes include tetO (443), tetQ (444), tetW (445), tetS 

(446), and otrA (447). 

Antimicrobial biosynthesis. Microorganisms produce a number of compounds that inhibit growth 

or kill other organisms (448). These include “classic” antibiotics such as chloramphenicol (para-

aminobenzoate synthase, glutamine amidotransferase, component II) and beta-lactams 

(isopenicillin N synthase), and well as other compounds like phenazines (phzB) (449) and 

pyrrolnitrin (prnD) (450), as well as vanadium haloperoxidase, which is involved in the 

production of various halogenated compounds in algae (451), and hydrogen cyanide synthase, 

which is involved in the production of the antimicrobial hydrogen cyanide (452). 

CRISPR. Bacteria and archaea are under constant pressure from viruses and other mobile 

parasitic genetic elements. CRISPR-Cas systems are adaptive immune systems used to defend 

against these elements through a multistep process during which the invader is recognized, short 

pieces are incorporated between short DNA repeats and used to recognize subsequent infections 

(453). This “immune system” most likely also plays an important role in the environment in 

relation to predation by viruses and incorporation of exogenous DNA. The CRISPR locus itself 

is made up of viral or plasmid sequence genome snippets separated by short repeat sequences. It 

is not a “functional gene” in and of itself as these repeat sequences are too short to use for our 

current probe design pipeline and the interspersed viral/plasmid sequences are constantly 

changing as the organisms are exposed to new sequences. So, CRISPR associated (Cas) genes 

were chosen for this section. The Cas proteins are suitable for probe design in our pipeline. 

Previous research has also shown that by knowing which of the Cas proteins are present it is 

possible to define the type, and even subtype, of the CRISPR system(s) present in an organism. 

Cas proteins selected (49 genes) covered various types and subtypes of CRISPR-Cas systems 

were selected, such as cas and cmr (454, 455).  

Environmental toxins. A small portion of marine algae produce toxins that can negatively impact 

humans and animals (456). Under favorable conditions, harmful algal blooms (HAB) can occur 

resulting in poisoning through ingestion of contaminated food or water, skin contact, or by 

inhalation of the toxins. The number of HABs occurring annually has been increasing over the 

past few decades and the number of areas affected by the blooms have increased likely due to 
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anthropogenic activities such as eutrophication, transport of harmful species via ballast water, 

warming-related weather events, and the increasing temperature and CO2 associated with global 

climate change (456).  

Saxitoxin is a neurotoxin produced by dinaflagellates (marine waters) and cyanobacteria 

(freshwater) and is the etiological agent of paralytic shellfish poisoning resulting from 

consuming contaminated shellfish (457). Microcystins are hepatoxins produced by cyanobacteria 

(458).  

Virulence: 

Pathogens possess a number of virulence factors that directly or indirectly assist them in infecting 

and surviving within its host. Genes within this category include those for surface attachment, that 

aid in the avoidance of the host’s immune response, such as capsules (459), type III secretion 

systems that are involved in the transfer of toxins or effectors into hosts cells (460), invasins, which 

break down host defenses, siderophores for scavenging for Fe from within the host, and toxins. 

Because most virulence factors can have other functions other that aiding pathogenicity, all 

selected sequences were confirmed to have come from microorganisms that are known to be 

pathogens or opportunistic pathogens. Toxins and hemolysins are always considered to be 

virulence factors, so all of these selected sequences were included regardless of origin. Many of 

the genes included in this category were selected from the virulence factor database (Virulence 

Factors of Pathogenic Bacteria; http://www.mgc.ac.cn/VFs/main.htm). 

Toxins and hemolysins damage host cells. Genes within the toxin subcategory include cytolethal 

distending toxins A, B and C, toxin B, murine toxin, shiga toxin IA and IIA, exfoliative toxins A, 

B and D, epsilon toxin, RTX toxin A and diphtheria toxin. Hemolysin included sequences for 

hemolysin III, thermostable direct hemolysin-related hemolysin, heat-labile hemolysin, 

thermostable hemolysin, adenylate cyclase hemolysin, TlyC family hemolysin, VHH/TLH 

hemolysin, hemolysin A and B and hemolysin II. 

Adhesins are cellular components that aid in attachment of bacterial cells to the host cell  (461). 

Genes within the adherence subcategory include adhesin A, sialic acid-binding adhesin, adhesin 

Aha1, Dr adhesin, AFA-III adhesin, P fimbrial adhesin PapG, autotransporter adhesin, adhesin 
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protein HpaA, adhesin MafA, MafB2, adhesin B, type V secretory pathway adhesin AidA, 

fimbrial adhesin FimH, pilus adhesin HifE, collagen adhesin Cna, collagen-binding adhesin 

Cnm, adhesin P1, adhesin Hia, F17 fimbrial adhesin protein and adhesin 20 K. 

Two bacterial structures that are also involved in adherence are pili and fimbriae. Pili play roles 

in mobility, surface attachment, and conjugation in bacteria(462, 463). The major protein subunit 

of pili, pillin (464), was chosen to represent pili. Sequences within this gene family include type 

IV pilin PilA, type IV pili biogenesis protein PilE, MSHA pilin protein MshABCD, V10 pilin, 

fimbrial protein EcpC, fimbrial protein pilin FimTU and toxin-coregulated pilin subunit 

precursor TcpA. Another protein involved in attachment are fimbriae, short proteinaceous 

appendages present in many Gram-negative and some Gram-positive bacteria (465). Sequences 

within this gene family included adhesin F41, F18 fimbrial adhesin FedEF, K88 fimbrial protein 

FaeG, fimbrial subunit F17A, S fimbrial adhesin major subunit SfaA and AC/I pili. 

Among the virulence factors that protect bacterial cells from the host immune response are those 

that protect against phagocytosis (antiphagocytosis subcategory). Bacterial capsules reduce the 

host immune responses (459) and disguise the bacterial cell. Sequences within this group include 

CapABCD (capsule biosynthesis), KpsF (polysialic acid capsule expression), KpsC (capsule 

polysaccharide export), KpsS (capsule polysaccharide export), LipAB (capsule polysaccharide 

modification), YwsC (capsule biosynthesis), HcsB (capsule polysaccharide modification), GfcE 

(capsule polysaccharide biosynthesis/export), SiaB (capsule biosynthesis) and PhyAB (capsule 

polysaccharide export). 

Colonization factors allow bacteria to bind and colonize on host cells (466). This subcategory 

includes colonization factors, AcfA (accessory colonization factor), TcfA (tracheal colonization 

factor), antigen 1 and antigen b (colonization factors), CsfA and CsaB (major fimbriae subunits), 

CsuA1 and CsuA2 (CS14 major fimbrial subunits) and CsbA (CS17 fimbriae major subunit). 

Sortases are a family of proteases and transpeptidases found in Gram-positive bacteria. They are 

needed for anchoring of surface proteins to the cell wall and adhesion to and colonization of host 

cells and tissues (467, 468). Sortase sequences are for srtABCDF. 

The type III secretion system is widespread among Gram-negative pathogens. This secretion 

system transports effector molecules into host cells (469). Sequences in this subcategory include 
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the translocation protein PscU, type III secretion proteins HrcCJQRTUV, EscRV, RhcV, RscU, 

SsaR, BasJ, BsaQ, FlhA and HrpEJQ, type III secretion component proteins HrpE, PsaN, 

SctCRU and SpaPS, type III secretion invasion protein InvA, type III secretion system ATP 

synthases FliI/YscN, HrcN, SsaN and SctN, type III secretion inner membrane protein YscR, 

type III secretion inner membrane channel proteins YscV and BcrD, type III secretion pathway 

protein LcrD/SctV, type III secretion system apparatus proteins VcrD2, EpaP and SsaV, type III 

secretion FHIPEP protein, type III secretion outer membrane protein and type III secretion 

effector delivery regulator. 

Invasins are proteins that damage host cell membranes and allow pathogens to invade the cell 

(470). Invasin genes included in the invasion subcategory include Inv1 and 2, InvAE, IbeA, 

IagB, CipA, IpaB, HilA, SipAB, YopH, OrgA (oxygen-regulated), IipB (invasion and 

intracellular persistence protein) and p60 (invasion-associated protein).  

Other virulence proteins included sequences from CrfA, SrfB, EsaA, EssB, pGP2-D and IpgD, 

surface-exposed virulence protein BigA, iron-regulated outer membrane virulence protein IrgA, 

adherence and virulence protein A and virulence proteins S and Q. 

Organism-specific categories 

Virus 

Bacteriophages are an important part of the microbial community yet how this community changes 

in relation to environmental factors has not been studied in-depth. In the environment, these viruses 

are important to the turnover of nutrients by lysis of their hosts, the exchange of genetic 

information between hosts and to genetic drift by severely depleting or killing off particular strains 

of a host organism within a local area. Viruses of photosynthetic eukaryotic microorganisms can 

be important in both environmental and industrial settings. In the environment, they are involved 

in the turnover of nutrients and population control, especially in bloom situations of toxin 

producing organisms.  

Gene selection for this group included identifying genes necessary for different points in the 

bacteriophage “life cycle”: replication, infection (host identification, genome injection) structural 
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components, and lysis of host organism as well as those that identify specific viral groups (genus 

or family). Proteins related to viral infection (tail fibers), replication (polymerases), and 

escape/lysis of the host cell (holins) as well as virion structural components (capsid/coat proteins) 

were selected to cover bacteriophages (prokaryotic hosts) and viral genera or families that infect 

fungi (mycoviruses) and other protists or who contain members that are known to be soil (e.g. 

Tobravirus) or water transmitted (e.g. Adenoviridae).  

Genes covered in this section include transmission proteins are those that aid in the dispersal of 

the virus by its vector. These would include Tobravirus transmission protein (471) and Benyvirus 

p31 transmission protein (472). Movement proteins are involved in cell-to-cell movement of the 

virus (473). Silencer proteins are those that help to quell the host’s response to infection allowing 

the virus to replicate (474). Killer toxins are found in some mycoviruses. This toxin gives the 

virus’s host an ecological advantage by killing off competing sister strains that do not harbor the 

virus and the associated toxin and resistance genes. Collagen fibers form an important part of the 

viral capsid for the Mimiviradae and the virophage. Mimicyp and viral p450 represent genes that 

researchers believe are of interest and were previously not known to exist in viral genomes. 

Bacillariodnavirus is a relatively recent addition to protist viruses. 

Other functional genes were submitted for specific virus groups (genera or species) rather than 

solely by function. A description of these follows. 

Adenovirus (Adenoviridae) (475) genes include Adenoviridae_fiber for capsid fibers, which play 

an important role in the recognition and binding of the target receptor on the host cell (476). 

Adenoviridae_hexon is the major capsid protein of the virus coat and a regular target used in 

PCR detection of this virus type (477-482). Adenoviridae_protease is used for poly protein 

processing and is another common PCR target for this virus family (478). 

Astroviridae (483) are covered by Astroviridae_capsid, the major capsid protein that is one of the 

two main targets used for virus detection (484) and Astroviridae_RdRp, the RNA dependent 

RNA polymerase, the main target for detection of Astroviruses (485). 

Hepeviridae (486) are covered by the Hepeviridae_capsid, the major capsid protein is a regular 

target for pcr detection of this viral group (487, 488) and Hepeviridae_pORF1, which contains 
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several nonstructural proteins including RdRp and part of this orf has been used as a marker for 

viral detection(489). 

Caliciviridae (490) are covered by RdRp_Caliciviridae and VP1capsid_Caliciviridae (491), both 

of which have been used for viral detection of this group. 

Polyomaviridae (492) are covered by Polyomaviridae_capsid, a common target for this viral 

group (493, 494) and Polyomaviridae_LT_ag, a large T-antigen that serves multiple purposes in 

the polyomavirus life cycle including regulation of gene expression, DNA replication and 

maintenance of the infection (495). 

Reoviridae are covered by VP7_Gserotype_Rotavirus, an outer capsid antigens that is commonly 

used for serotyping (496, 497), VP6_Rotavirus, which encodes for a protein used to define 

subtypes within the VP7-VP4 types (498), VP4_Pserotype_Rotavirus, an outer capsid antigens 

that is commonly used for serotyping. and Enterotoxin_Rotavirus, an enterotoxin linked to the 

cellular cascade that triggers diarrhea (499). 

Picornavirales and Picobirnaviridae (500-502) are both covered by Picobirnaviridae_RdRp (503, 

504). 

Coronaviridae (505) is covered by Coronaviridae_M_protein, which plays an important role on 

virus assembly (506) and Coronaviridae_spike, a glycoprotein that helps determine host 

specificity and aids in entry into the host cell (507). 

Protozoan: 

Protists are key members of environmental food webs by linking different trophic levels together 

through detritivory and predation of lower levels and serving as food sources for higher levels. 

They also make significant contributions to primary production. Photosynthetic protists are among 

the primary aquatic species responsible for primary production and play important roles in the 

biogeochemical cycling of carbon (C), nitrogen (N) and phosphorus (P) (508, 509). Several genes 

were selected as phylogenetic markers for various non-fungal protozoan groups. These included 

actin, cytochrome oxidase subunit 1, glyceraldehyde 3-phosphate dehydrogenase, heat shock 
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protein 70, heat shock protein 90, elongation factor 1 alpha, polyubiquitin, and tubulin, based on 

a review of literature (510). Other genes such as trichocyst matrix protein were selected since some 

protists possess exocytotic organelles that are believed to perform defensive functions (511-513). 

Movement proteins such as the paraflagellar rod, a feature of kinetoplastid protozoa and necessary 

for their movement, were also included. These proteins may possibly also play other roles in 

pathogenesis (514). Attempts were made to cover as many members of the non-fungal protists as 

possible with genes that have previously been used for phylogenetic purposes by other researchers. 

Multiple genes were submitted when possible to ensure optimal coverage of the protistal groups. 

Oomycetes are plant pathogens that produce a wide variety of avirulence and effector proteins 

that aid in pathogenesis: (515-518) Protease and glucanase inhibitors and are also believed to aid 

in maintaining infection (519, 520). The necrosis-inducing protein, involved in host cell death, is 

also important in the infection process (521). Oomycetes also produce a number of enzymes to 

help break down host cellular components including pectinases, cutinases and amylases (522, 

523). Cercozoa (524) are known to express trehalose synthase in infected plant tissues (525). 

Functional genes covered for protists are listed below.  

Heterotrophic protists need a variety of carbon degradation enzymes for the breakdown of 

macromolecules. However, little work on this area been done in relation to most protistal groups, 

exceptions being the gut symbionts of termites and some ciliates. Covered genes include 

cellulases (526) and xylanase (527). 

Carbon fixation is represented by Rubisco, the most important enzyme for carbon fixation in 

photosynthetic eukaryotes (528-530). 

Nitrogen cycling included ammonium transporter, glutamate dehydrogenase, glutamate synthase, 

glutamine synthetase, nitrate reductase, nitrate transporter, nitrite reductase, and nitrite 

transporter (531-533).  

Sulfur cycling genes included APS kinase, APS reductase, ATP sulfurylase, cysteine synthase, 

serine acetyltransferase, sulfate transporter, sulfite reductase (534, 535). Several genes related to 
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protistan sulfur assimilation, such as sulfate transporters and cysteine synthase (535, 536), were 

also selected for addition. 

Silicon is an important element to a number of protists, including amoebas and diatoms and is 

used as the base element for the formation of protective shells or other structures (537-540). 

Silaffins are one of the important organic molecules associated with biosilica formation in 

diatoms, and the only one for which reliable sequences are known. It has been speculated that 

silaffins and the other biomolecules are involved in the deposition and patterning of the silica 

(541). Silicon transporters are needed for uptake of dissolved silicon (542). Genes for silicon 

biosynthesis (1 gene) used in the production of internal and external skeletons and a silicic acid 

transporter (1 gene) for internal enrichment of silicon(543) were included.  

Photosynthesis is covered by chlorophyll, the major pigment involved in eukaryotic 

photosynthesis (544) and carotenoids, which act as accessory pigments in photosynthesis and as 

photoprotectants (545). 

Energy processes are represented by carbamate kinase, which is involved in the energy 

metabolism for a few pathogenic protists, such as Giardia (546, 547). 

What little is known about metal cycling in protists has mostly been aimed at metal resistance in 

relation to contamination though industrial activities (548, 549) and includes cadmium (550) and 

copper metallothionein (549). Other genes covered include the paraflagellar rod (551), which plays 

an important part in motilitiy in certain protitst including some important pathogens (514). 

Trichocysts are believed to be an important part of the defense mechanism for some protest groups 

such as Paramecium to avoid predation (511). Vanadium bromoperoxidase is an essential enzyme 

for the production of halogenated metabolites. These metabolites can include antibiotics and other 

bioactive compounds (552).  

Fungi 

Fungi are important to the environment and to numerous human activities. In the environment, 

they help in the turnover of nutrients by degrading a number of large organic molecules, 

transporters of inorganic nutrients as mycorrhizal symbionts to most land plants, and as 
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pathogens. To humans, fungi are an important source of food and many other products especially 

industrially useful enzymes. However, they can also cause a number of economically important 

diseases that affect humans, livestock, or agriculturally important crop plants. 

The genes chosen for inclusion fell into several general categories: Organic remediation, carbon 

degradation, metal resistance, antifungal resistance, virulence and biogeochemical cycles of iron, 

sulfur, nitrogen, and phosphorous. The significance of these categories was described above. 

Specific fungal genes include cyanide dehydratase (553), needed to detoxify cyanide produced 

by cyanogenic plants during successful infection; enniatin synthase (554, 555), an important 

virulence gene, scytalone dehydratase (556) is a disease determinant in Magnaporthe grisea, an 

important rice pathogen, and a potassium uptake protein Trk_fungi (557). Chitin is a 

polysaccharide present in many organisms including fungi. Chitin synthase was added as chitin 

is an important biomolecule in fungi (558, 559). 

Bacterial phylogeny 

The phylogenetic marker gyrB was included to act as a phylogenetic marker, since it can be used 

for identification at the species/strain levels (560). The more commonly used 16S rRNA gene 

has a slower evolution rate, making it difficult to discern closely related strains. This gene was 

divided into several sets based on phylogenetic groups and included gyrB_Arch (archaea), 

gyrB_Actinobacteria, gyrB_Firmicutes, gyrB_G_proteobacteria, gyrB_Proteobacteria, and 

gyrB_Bact_other. 

Other Categories 

Energy generation 

Photosynthetic. Prokaryotes that utilize light either for carbon fixation or other metabolic 

processes form an important part of the microbial world especially in aquatic environments. 

Prokaryotic pigments can have a wide range of function including photosynthesis, photoactive 

protein pumps and pathogenesis (545, 561, 562). Genes for a number of different photoactive 

systems, with emphasis on photosynthesis, were submitted. These will help our understanding of 

prokaryotic metabolism in surface environments especially those organisms that fix carbon 



 37 

dioxide either as their main source of carbon, or as a backup source when fixed organic carbon 

becomes scarce. In pathogenic organisms these pigments may be involved in virulence 

mechanisms (562). Genes for the biosynthesis of pigments such as bacteriochlorophyll (16, 

magnesium protoporphyrin IX methyltransferase), chlorophyll (9, magnesium-protoporphyrin IX 

chelatase), bilins (4, phycocyanobilin:ferredoxin oxidoreductase), carotenoids (22, lycopene beta 

cyclase), and rhodopsins (1, bacteriorhodopsin) were selected due to their association with or 

involvement in photosynthesis and thus impact upon primary production (563-566). Carotenoids 

are also economically important as antioxidants and have beneficial health effects for humans 

and other animals. 

Bacteriochlorophyll is involved in photosynthesis (567). Carotenoids can be involved in both 

photosynthesis and as photoprotectants (568). Phycobilins are involved in photosynthesis for a 

few groups of organisms (565, 569, 570). Proteorhodopsin is a light-driven proton pump and is 

theorized to have a range of physiological functions (571, 572). 

Electron transfer. Microorganisms generate energy by “coupling the flow of electrons in 

membranes to the creation of an electron motive force” (573). The electrons travel from low to 

high potential via electron carriers. Prokaryotes use a variety of electron transfer pathways. 

Genes representing several cytochrome and hydrogenase genes were selected. Cytochromes are 

heme-containing proteins used to shuttle electrons (574). Hydrogenases catalyze the reversible 

oxidation of hydrogen, providing reducing ability or acting as an electron sink (575). 
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