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Böttger et al. show the presence of

histologically and molecularly distinct

sub-populations of small-cell lung cancer

(SCLC) in advanced mouse models. They

demonstrate that the heterogeneity of

SCLC is responsible for the differential

sensitivity to cisplatin and identify

metabolic circuitries that likely contribute

to cisplatin resistance.

mailto:c.jimenez@vumc.nl
mailto:a.berns@nki.nl
https://doi.org/10.1016/j.celrep.2019.05.057
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.05.057&domain=pdf


Cell Reports

Article
Tumor Heterogeneity Underlies
Differential Cisplatin Sensitivity
in Mouse Models of Small-Cell Lung Cancer
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SUMMARY

Small-cell lung cancer is the most aggressive type of
lung cancer, characterized by a remarkable response
to chemotherapy followed by development of resis-
tance. Here, we describe SCLC subtypes in Mycl-
and Nfib-driven GEMM that include CDH1-high
peripheral primary tumor lesions and CDH1-nega-
tive, aggressive intrapulmonarymetastases. Cisplatin
treatment preferentially eliminates the latter, thus
revealingastrikingdifferential response.Usingacom-
bined transcriptomic and proteomic approach, we
find amarked reduction in proliferation andmetabolic
rewiring following cisplatin treatment and present ev-
idence foradistinctivemetabolicandstructuralprofile
defining intrinsically resistant populations. This offers
perspectives for effective combination therapies that
might also hold promise for treating human SCLC,
given the very similar responseof bothmouse andhu-
man SCLC to cisplatin.
INTRODUCTION

Small-cell lung cancer (SCLC) is themost aggressive type of lung

cancer, with dismal prognosis for patients (Gazdar et al., 2017;

Semenova et al., 2015). It is characterized by early and wide-

spread metastatic dissemination and, strikingly, a remarkable

response to platinum-based chemotherapy followed almost

invariably by development of resistant disease. The first-line

therapy for SCLC has not changed over several decades, and

there is no effective second-line therapy to date (Farago and

Keane, 2018; Koinis et al., 2016; Rossi et al., 2018). Importantly,

mechanisms underlying initial sensitivity and subsequent resis-

tance of SCLC cells are not understood, and SCLC remains a

recalcitrant cancer (Ujhazy and Lindwasser, 2018; Yang et al.,

2015).
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It has beenwell documented that one of the likely cells of origin

of SCLC is a rare neuroendocrine (NE) cell (Gazdar et al., 1980;

Park et al., 2011; Sutherland et al., 2011). NE cells are located

throughout the pulmonary tree and can be found either as single

cells or in clusters called NE bodies (Kumar et al., 2017; Kuo and

Krasnow, 2015). Because human SCLC is often diagnosed late

in the course of the disease, computed tomography (CT) scans

of SCLC patients often reveal a bulky central mass with lymph

node (LN) involvement, whichmakes the identification of primary

tumor origin difficult. In addition, early metastatic spread of

SCLC guides the treatment decision toward chemotherapy

rather than resection, leading to sparsity of biological material

for analysis (Gazdar et al., 2017). In this context, mouse models

provide unique tools that allow dissection of SCLC initiation, pro-

gression, and drug response (Semenova et al., 2015).

The first mousemodel of SCLCwas based on conditional inac-

tivation of key tumor suppressors Rb1 and Trp53 (RP mice),

which are mutated in almost all SCLC tumors (George et al.,

2015; Meuwissen et al., 2003). The tumors closely resemble the

human disease in both their histopathology andmetastatic signa-

ture (Meuwissen et al., 2003). A number of laboratories have

developed additional models in which tumor development is

driven by deletion of other relevant tumor suppressors, such as

Pten and Rbl2, or by the expression of other oncogenes, such

as Mycl, cMyc, and Nfib (Mollaoglu et al., 2017; Semenova

et al., 2016; Wu et al., 2016).

We have recently generated and described twomousemodels

of SCLC, overexpressing Mycl and Nfib (Huijbers et al., 2014;

Semenova et al., 2016), following our finding that Mycl and Nfib

oncogenes are frequently amplified and/or overexpressed in

RP mouse tumors (RPM and RPF mice, respectively). We and

others also showed that these oncogenes are frequently overex-

pressed in human SCLC (Denny et al., 2016; George et al., 2018;

Semenova et al., 2016). In line with this, forced overexpression of

Mycl or Nfib gave rise to accelerated tumor development in

mouse models of SCLC (Huijbers et al., 2014; Semenova et al.,

2016). Importantly, overexpression of these oncogenes also

altered the tumor growth pattern and tumor heterogeneity profile.
5–3358, June 11, 2019 ª 2019 Netherlands Cancer Institute. 3345
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Figure 1. Tumor Heterogeneity in Mouse Models of SCLC

(A) Representative H&E staining of RP control lung (n = 13mice). Upper right inset shows an area of the central tumorwith two tumor populations in close proximity

(scale bar, 50 mm). Lower right inset shows an alveolar lesion, lower left, a bronchial lesion (scale bar, 20 mm). LN, lymph node; T, thymus.

(B) Representative H&E staining of RPF lung (n = 17 mice) with large central and disseminating lesions.

(legend continued on next page)
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In this study we characterize tumor heterogeneity and drug

response in these models and provide evidence that hetero-

geneity underlies cisplatin sensitivity and may explain both

the remarkable initial sensitivity and subsequent resistance to

chemotherapy that is frequently observed in SCLC patients.

RESULTS

Tumor Heterogeneity in SCLC Mouse Models
Our laboratory has established several mouse models of SCLC,

including Rb1/Trp53 (RP, control, Rb1flox/flox;Trp53flox/flox), Rb1/

Trp53/Mycl (RPM, Rb1flox/flox;Trp53flox/flox;CAG < Lox66Mycl-

LucLox71 >), and Rb1/Trp53/Nfib (RPF, Rb1flox/flox;Trp53flox/flox;

CAG < Lox66Nfib-LucLox71 >). Upon Cre-mediated recombina-

tion, Rb1 and Trp53 are both deleted, whereas either Mycl or

Nfib is expressed along with luciferase by the CAG promoter

introduced into the ColA1 locus. As described previously, all

mouse models develop SCLC with tumor cells expressing

markers of NE differentiation (Huijbers et al., 2014; Meuwissen

et al., 2003; Semenova et al., 2016).

Here, we set out to explore the extent of tumor diversity and

heterogeneity that arises in these models when these genes

are switched in a range of cell types in lung by intratracheal injec-

tion of Adeno-CMV-Cre virus.

In the lungs of RP animals, we frequently identified bulky tumor

masses in the central hilar area, aswell as a few lesionswithin the

bronchial, bronchiolar, and alveolar space (Figure 1A). Central

tumor constituted the majority (mean 93%) of the total tumor

burden (Figure 1L). The tumor cells grew in a sheet-like arrange-

ment and frequently invadedmediastinal LNs (Figure 1A). Further

analysis of the central compartment revealed frequent juxtaposi-

tion of what appeared to be two distinct tumor populations

readily distinguishable by the expression of E-cadherin (CDH1)

(Figures 1A and 1D). CDH1hi cells were mostly NFIBlo CGRPhi,

while CDH1neg cells were invariably NFIBhi CGRPlo (Figures

S1A and S1B). All tumors, irrespective of genotype, initially ex-

pressed high levels of CDH1 (Figure S1C), and only later, in the

course of tumor development, did CDH1neg populations appear.

We therefore consider CDH1hi lesions to be primary, giving rise

to CDH1neg intrapulmonary metastasis. Of note, lesions found

in the bronchial and bronchiolar tree and within the alveolar

space were always CDH1hi and also represented primary tumors

(Figure 1D and data not shown).

The tumor cells constituting intrapulmonarymetastasis showed

classical small-cell morphology, with coarse nuclear chromatin,

minimal cytoplasm, and high mitosis (Figures 1A and 1G). They

filled lymph vessels, identified by podoplanin (PDPN) staining
(C) Representative H&E staining of RPM lung (n = 17 mice), showing central and

(D–F) CDH1 staining of RP (D), RPF (E), andRPM (F) lungs, demonstrating the hete

(G) H&E staining showing intrapulmonary metastasis lesions within peri-vascula

sheath growth pattern.

(H) Peri-vascular and peri-bronchiolar space of the lung of a non-tumor-bearing

(I) Peri-vascular and peri-bronchiolar space of the lung of a tumor-bearing anim

vessels. LN, lymph node. Scale bars for (G)–(I), 100 mm.

(J and K) Quantification of bronchiolar (J) and alveolar (K) lesions.

(L) Percentage of total tumor area within the lung occupied by the central tumor

See also Figure S1.
(Figures S1D and S1E), and grew in a sheath arrangement

within peri-vascular and peri-bronchiolar areas, disseminating

within intra- as well as inter-lobular spaces (Figure 1G and

data not shown). Noticeably, compared with a healthy lung,

peri-vascular/peri-bronchial areas in the lungs of SCLC tumor-

bearing mice often showedmarked edematous changes (Figures

1H and 1I).

In the RPF model, as in RP, the main tumor burden was repre-

sented by a central compartment with amean of 97% (Figure 1L).

At the same time, we observed a shift toward CDH1neg/NFIBhi

intrapulmonary metastasis in the centrally located tumors,

showing more abundant sheath structures (Figure 1E and data

not shown). Interestingly, quantification of bronchiolar lesions

showed a clear increase, with an average of seven in RPF mice

compared with two in RP control lesions per lung section (Fig-

ure 1J). In contrast, the number of alveolar lesions was similar

to that of control (Figure 1K).

The central tumor compartment in RPM animals was qualita-

tively similar to that in the RP control, often displaying both

CDH1hi and CDH1neg populations (Figures 1C and 1F). However,

in contrast to both RP and RPF mice, it represented on average

only 56% of the total tumor burden (Figure 1L). Instead, in addi-

tion to central lesions, RPM lungs presented with numerous

independently arising primary lesions found at all levels of the

bronchial and bronchiolar tree and within the alveolar space (Fig-

ures 1C and 1F). Themost prominent increase (7 times compared

with both RP and RPFmice) was observed in the number of alve-

olar lesions (Figures 1K, 2A, and 2B). The differential effects of

Nfib and Mycl on the bronchiolar and alveolar lesions suggest

that the cells from which they originate are different, thereby

further expanding the number of cells of origin of SCLC.

Alveolar space lesions consisted of cells with relatively rich

cytoplasm and fine nuclear chromatin and often formed orga-

nized nests and/or pseudo-glandular structures (Figure 2C).

They displayed reduced proliferation compared with intrapulmo-

nary metastasis and were less invasive, showing clear lesion de-

marcations (Figures 2D and 2E). They were ASCL1 positive and

predominantly CDH1hi/CGRPhi/NFIBlo (Figures 2F–2I and S1F).

Thus, we identified substantial heterogeneity in all mouse

models of SCLC, with NFIB promoting progression of central pri-

mary lesions to disseminated intrapulmonary metastasis and

causing an increase in the number of bronchiolar lesions and

with MYCL stimulating tumor initiation and progression at multi-

ple locations along the pulmonary tree. Interestingly, only Mycl

overexpression gave rise to a large increase in the number of

alveolar lesions. Noticeably, these lesions had rather consis-

tently high ASCL1 but low NEUROD1 expression (Figure S2B).
numerous peripheral lesions.

rogeneity of positive (brown) and negative (blue) populations among the SCLCs.

r and peri-bronchiolar space of the lung of RP animals; arrowheads indicate

animal.

al showing edematous change; arrowheads indicate tumor cells within lymph

compartment.
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Figure 2. MYCL Promotes Development of NE Lesions in the Alveolar Space
(A) Part of a bronchial tree in an RP mouse (n = 13 mice) showing several bronchial lesions.

(B) Part of a bronchial tree in an RPM mouse (n = 17 mice) showing multiple bronchial and alveolar lesions.

(C) Alveolar lesion showing pseudo-glandular structures.

(D) Ki67 staining showing proliferating cells within alveolar lesion and within the adjacent intrapulmonary metastasis lesion.

(E) Magnification of the area within (D).

(F) ASCL1 staining of alveolar lesion.

(G–I) CDH1 (G), CGRP (H), and NFIB (I) staining of three alveolar lesions in close proximity to intrapulmonary metastasis lesions (sequential sections).

Scale bar for (A), (B), (D), and (G)–(I), 500 mm. Scale bar for (C), 20 mm. Scale bar for (E) and (F), 50 mm. See also Figure S1.
Differential Sensitivity of Tumor Population to Cisplatin
Treatment
To test the sensitivity of these tumor populations to chemo-

therapy, we treated RPM mice with cisplatin, a prominent

component of first-line therapy for SCLC patients. We chose

the RPM model because it presented with the broadest tumor

heterogeneity. In two independent experiments, a total of 15

animals were treated with cisplatin (Cis-RPM) and 13 with

vehicle (V-RPM). We used bioluminescence imaging (which be-

comes co-expressed uponMycl transgene activation) to decide

on the start of treatment: when the bioluminescence signal

reached 13 105 relative luciferase units, a level that corresponds

to a significant tumor burden (data not shown), cisplatin was
3348 Cell Reports 27, 3345–3358, June 11, 2019
given intravenously once every 2 weeks at a dose of 6 mg/kg.

Treatment was continued until animals developed breathing

problems, which was on average after 3 cycles; Table S1). We

next analyzed the lungs of vehicle- and cisplatin-treated animals

with a panel of lineage and/or differentiation markers (Fig-

ure S2A), which did not show any substantial difference upon

cisplatin treatment. However, this analysis revealed a significant

reduction, and in several cases a complete absence, of the

CDH1neg/NFIBhi/CGRPlo intrapulmonary metastasis population

(Figures 3A and 3B). In contrast, the CDH1hi central com-

partment and, most strikingly, the peripheral bronchial and

alveolar lesions seemed unaffected (Figures 3A and 3B). We

quantified this by calculating the relative pulmonary tumor



Figure 3. Differential Sensitivity of Distinct Tumor Populations to Cisplatin Treatment

(A) Representative CDH1 staining of RPM lung treated with vehicle (n = 13 mice).

(B) Representative CDH1 staining of RPM lung treated with cisplatin (n = 15 mice).

(C) Quantification of the area of the lung occupied by CDH1-negative tumor.

(D) Survival curves for vehicle- and cisplatin-treated RPM animals; time 0 is set at the day of the first treatment.

(E) Representative CDH1 staining of RPF lung treated with vehicle (n = 9 mice).

(F) Representative CDH1 staining of RPF lung treated with cisplatin (n = 11 mice).

(G) Quantification of the area of the lung occupied by CDH1-negative tumor.

(H) Survival curves for vehicle- and cisplatin-treated RPF animals; time 0 is set at the day of the first treatment.

(I and J) Magnification of (I) an intrapulmonary metastasis (Ipm; vehicle-treated animal) and (J) a repopulating (Rep; cisplatin-treated animal) tumor.

(K) Image of cisplatin-treated RPF lung showing predominantly alveolar lesions (Al) after treatment.

Scale bar for (I) and (J), 500 mm. See also Figure S2 and Table S1.
burden represented by the CDH1neg population (Figure 3C).

Despite these changes, treatment of RPM mice did not result

in a significant survival benefit (Figure 3D).

Treatment of NFIB-Expressing RPF Mice Results in
Significant Survival Benefit and Development of
Resistant Tumor with Altered Phenotype
We reported previously that themajority of high-grade humanNE

tumors expressed high levels of NFIB, highlighting the relevance

of the RPFmousemodel for understanding SCLC behavior in pa-

tients (Semenova et al., 2016). As mentioned earlier, RPF mice
show a prominent expansion of the CDH1neg/NFIBhi/CGRPlo

tumor population (Semenova et al., 2016). Therefore, in view of

the results obtained following the treatment of RPM cohort, we

anticipated a better response to treatment of RPF animals, as

they present with the ‘‘sensitive’’ tumor phenotype. To test this,

we treated RPF animals following a schedule identical to that of

RPM treatment. Eleven RPF animals were treated with cisplatin

and 9 with vehicle. As hypothesized, and in contrast to the RPM

cohort, cisplatin treatment conveyed a significant survival benefit

(Figure 3H), suggesting that NFIB-expressing tumors responded

better to treatment. Histopathological evaluation of the tumors in
Cell Reports 27, 3345–3358, June 11, 2019 3349
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both vehicle- and cisplatin-treated groups showed that vehicle-

treated RPF (V-RPF) mice presented with mostly CDH1neg or

CDH1lo tumors (Figures 3E and 3G). Interestingly, as was the

case for RPM animals, the majority of tumors in cisplatin-treated

lungs were CDH1hi (Figures 3F, 3G, and 3K). Moreover, we

observed two tumor phenotypes in the cisplatin-treated cohort.

One phenotype was represented by CDH1hi tumor that displayed

an intrapulmonary metastasis-like growth pattern (termed repo-

pulating lesion [RPF-Rep]), a tumor population that in all

vehicle-treated cases was invariably CDH1neg (Figure 3F). The

second phenotype corresponded to peripheral nodular bronchi-

olar and alveolar CDH1hi lesions (RPF-Al) (Figure 3K).

Transcriptomic and Proteomic Analyses of NFIB-
Expressing Tumors
We next performed in-depth gene expression analyses of

vehicle- and cisplatin-treated tumor populations that arose in

RPF mice. Two separate comparative analyses were carried

out. In the first, vehicle-treated central lesions (V-RPF) were

compared with cisplatin-treated RPF-Rep lesions (Cis-RPF-

Rep) that had repopulated the corresponding regions in V-RPF

mice, with the aim of unraveling biological processes associated

with cisplatin resistance. In the second, differences between the

two distinct cisplatin-resistant tumor populations, Cis-RPF-Rep

and Cis-RPF-Al, were compared. Both RNA and proteins were

extracted from defined areas of paraffin-embedded, immuno-

histochemically characterized lung tumor samples of five

vehicle-treated and seven cisplatin-treated (four Cis-RPF-Rep

and three Cis-RPF-Al) mice (Figure S3A). RNA sequencing

(RNA-seq) identified 15,462 genes in total, 5,143 of which were

also identified at the protein level using tandemmass spectrom-

etry (5,686 unique proteins were identified in total) (Figure S3B).

Unsupervised hierarchical cluster analysis using normalized

spectral counts for identified proteins demonstrated that each

of the three tumor populations (V-RPF, Cis-RPF-Rep, and Cis-

RPF-Al) was characterized by a distinct proteome profile. With

the exception of three outlier samples likely due to experimental

fluctuations in protein input as judged by gel images (Fig-

ure S3C), all samples clustered according to experimental con-

dition: cisplatin-treated clustered away from vehicle-treated
Figure 4. Cisplatin-Treated RPF Samples Display Reduced Proliferatio

(A) Representative images (CDH1 staining) of samples used for Cis-RPF-Rep vers

analyzed, see Figure S3A).

(B) Functional interaction cluster of significantly (p < 0.01) differentially expressed

Cis-RPF-Rep versus V-RPF associated with Cdh1 (STRING database). Node co

confidence of STRING interaction (thinnest = high confidence [R0.7], thickest =

correspond to proteins that are significantly (p < 0.01) differentially expressed

normalization and differential expression analysis).

(C) Common gene sets significantly (FDR q value < 0.05, normalized enrichment s

versus V-RPF comparison (GSEA_HALLMARKS). NES values of protein andRNA a

and RNA enrichment graphs can be found in Figure S5B.

(D) Network analysis of differentially expressed genes (DEGs; unadjusted p <

HYPOXIA, XENOBIOTIC_METABOLISM, and GLYCOLYSIS (‘‘metabolism’’) and E

respectively. Marked in boldface type are genes that were significantly differentia

protein level and node size FC at the RNA level.

(E) Most discriminatory genes in Cis-RPF-Rep versus V-RPF comparison. All gene

(RNA, right plot) are colored in light blue (UP in vehicle-treated) or light red (UP in

marked with dark blue and red dots) are the 15 most highly differentially express

See also Figures S3–S5 and Tables S2, S3, and S4.
samples, and within the treated cohort, RPF-Al clustered sepa-

rately from RPF-Rep tumor samples (Figure S3D). At the RNA

level, unsupervised hierarchical cluster analysis using normal-

ized read counts separated vehicle-treated from cisplatin-

treated populations, but there was no further separation be-

tween RPF-Rep and RPF-Al within this treated sample group

(Figure S3E).

Cisplatin-Treated Samples Display Reduced
Proliferation and a Metabolic Switch
In a search for gene expression profiles associated with cisplatin

resistance, we first compared vehicle-treated samples (V-RPF)

with cisplatin-treated repopulating lesions (RPF-Rep) (Figure 4A).

Differentially expressed genes (DEGs) with p values < 0.01 were

selected. In total, 274 and 601 DEGs were identified at the

protein and RNA levels, respectively (Figure S4A). Of 274 differ-

entially expressed proteins, 101 were more abundant in the

cisplatin-treated RPF-Rep population. Among these, Cdh1 was

1 of the 10 genes with increased abundance at both the RNA

and protein levels (Figure S4A). With a 5-fold increase in abun-

dance following cisplatin treatment, Cdh1 was also among the

top 15 most strongly enriched proteins (Figure 4E), in line with

the differential staining pattern observed in immunohistochem-

ical analysis. Intriguingly, along with Cdh1 (fold change [FC]

5.0), epithelial marker proteins Epcam (2.7), Krt8 (2.5), Krt18

(2.5), and Krt19 (1.8) were significantly enriched at the protein

level and formed a high-confidence functional interaction cluster

(STRING interaction score R 0.7) (Figures 4B and S4B). Immu-

nohistochemical analysis using an anti-wide-spectrum keratin

(KWS) antibody further supported the observation of a shift

toward an epithelial phenotype in the cisplatin-treated lung

cancer population (Figure S4C). To gain further functional

insight into the cisplatin resistance profile, an unbiased gene

set enrichment approach was used. Following ranking of all

identified genes on the basis of a combined p value and FC

score, significantly enriched HALLMARK gene sets were identi-

fied (false discovery rate [FDR] q value < 0.05, normalized

enrichment score [NES]R 2.5). Besides an increase in coagula-

tion and interferon response, likely a direct consequence of

cisplatin treatment, the most striking change observed at both
n and a Metabolic Switch

us V-RPF comparison (for images of all five V-RPF and four Cis-RPF-Rep mice

proteins (determined using beta-binomial test on normalized spectral counts)

lor corresponds to fold change (FC) at the protein level and edge thickness to

highest confidence [R0.9]). Gene names in boldface type (Cdh1 and Krt18)

on both protein and RNA level (for RNA-seq data, DESeq2 was used for

core [NES]R 2.5) enriched at both the protein and RNA levels in Cis-RPF-Rep

nalyseswere averaged for representative purposes (av. NES); separate protein

0.05), on the basis of proteins contributing to core enrichment of gene sets

2F_TARGETS, G2M_CHECKPOINT, and MITOTIC_SPINDLE (‘‘proliferation’’),

lly expressed at both the RNA and protein levels. Node color reflects FC at the

s with p values < 0.01 and�5R FCR 5 (protein, left plot) or�2.5R FCR 2.5

cisplatin-treated RPF-Rep), respectively. Highlighted with proteins names (and

ed genes in each direction (by p value after FC filtering).
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the RNA and protein levels was a metabolic switch, as high-

lighted by an enrichment in gene sets HYPOXIA, XENOBIOTIC_

METABOLISM, and GLYCOLYSIS (Figures 4C, S5A, and S5B),

and represented by DEGs such as Pdk1, Aldoc, Slc25a1, and

Gss (p < 0.05) (Figure 4D, left panel). Altered expression of key

metabolic components and, concomitant with this, a switch in

cellular energy homeostasis have been suggested as a common

mechanism for response and adaptation to cisplatin therapy in

various cancer types (Morandi and Indraccolo, 2017). In this

context, the recent finding that Slc25a1 plays a key role in the

drug-induced metabolic switch that enables tumor cells to

become resistant to cisplatin (Fernandez et al., 2018) is of partic-

ular interest and in agreement with our observations. Further-

more, it has been shown that cell-cell contacts mediated by

proteins such as CDH1 can upregulate PI3K/AKT signaling (De

Santis et al., 2009), and activation of the PI3K survival pathway

is associated with both glycolysis and platinum resistance.

Staining for p-AKT showed variable and sometimes intense

regional staining, with a tendency to be higher in cisplatin-treated

samples (Figure S2A). RNA-seq analysis showed a more

convincing difference, with AKT-activated oncogenic gene sig-

natures AKT_UP_MTOR_DN.V1_UP and AKT_UP.V1_UP signifi-

cantly enriched (Figure S5C).

Inversely, 173 of the 274 differentially expressed proteins were

significantly less abundant in the cisplatin-treated RPF-Rep pop-

ulations. Proliferation marker Mki67 was among the 62 genes

with decreased abundance at both the RNA and protein levels

following cisplatin treatment (Figures S4A). More than a quarter

of these 62 genes (26%) were cell cycle- and proliferation-asso-

ciated genes. Accordingly, E2F-TARGETS, G2M_CHECKPOINT,

and MITOTIC_SPINDLE were the three most negatively enriched

gene sets (Figures 4C and 4D, right panel; Figures S5A and

S5B), in line with cisplatin’s inherent mode of action as a DNA-

binding and proliferation-impairing agent. In further support,

levels of mitotic marker phospho-histone H3 (p-HH3) were

reduced in the RPF-Rep population in immunohistochemical

analysis (Figure S4C).

In addition to the marked reduction in abundance of many

proliferation-associated genes, another noteworthy observation

was that the 2 genes with the strongest reductions in abundance

in the cisplatin-treated population, doublecortin/Dcx at the pro-

tein and ephrin-A5/Efna5 at the RNA level (Figure 4E), are both

neuronal lineage markers. In addition to being the most differen-

tially expressed protein, Dcx was also among the top 15 genes

most strongly reduced at the RNA expression level (Figure 4E,

right panel). Moreover, a wide set of neuronal differentiation
Figure 5. Comparison of the Two Cisplatin-Treated RPF Populations H
(A) Representative images (CDH1 staining) of samples used for RPF-Al versus

analyzed, see Figure S3A).

(B) Most discriminatory genes in RPF-Al versus RPF-Rep comparison (determined

with p values < 0.01 and�2.5R fold change (FC)R 2.5 (protein, left plot) or�2R

in RPF-Al), respectively. Highlighted with proteins names (and marked with dark b

direction (by p value after FC filtering).

(C) Expression plots of the 5 most differential genes on protein (top row) and RNA

not significant).

(D) Highly differentially expressed proteins (p < 0.01 at the protein and/or RNA

oxidation-reduction (left), actin-binding and cytoskeleton (middle), and basemen

See also Figure S6 and Tables S2 and S3.
and migration-associated genes such as Ncam1, Zeb1 (both

RNA and protein level), drebrin/Dbn1, Ephb2, Rufy3 (protein), ne-

trin-1 receptor/Dcc, neuroligin-1/Nlgn1,Robo1, contactinsCntn3

and Cntn4, and semaphorins Sema5b and Sema6d (RNA) were

significantly less abundant in the cisplatin-treated lung tumors

(Figures S4D and S4E), suggesting that cisplatin causes tumors

to shift toward less pronounced neuronal phenotype.

Comparison of the Two Cisplatin-Treated Populations
Highlights a Unique Alveolar Lesion Identity
Asmentioned earlier, we observed two distinct ‘‘resistant pheno-

types’’ in cisplatin-treated RPF lungs, RPF-Rep and RPF-Al. We

therefore set out to investigate what distinguishes these two

tumor populations at the molecular level (Figures 5A and S6A).

The substantial number of highly DEGs (p < 0.01) between

RPF-Al and RPF-Rep on protein and RNA level (172 and 149,

respectively), as well as the unsupervised separation of these

two populations on the basis of protein expression (Figure S3D),

indicate that they are distinct subtypes. Of 172 significantly

differentially expressed proteins, 102 were more abundant in

the RPF-Al population. Strikingly, stem cell marker Aldh1a1

was one of the most discriminatory proteins (Figures 5B, left,

and Figure 5C, top panel), and part of a highly connected cluster

of metabolic proteins (Figure 5D). Immunohistochemical analysis

using anti-ALDH1A1 antibody confirmed that it was indeed ex-

pressed more abundantly in RPF-Al compared with RPF-Rep

(Figure S6B). Interestingly, ALDH1A1 was also strongly ex-

pressed by alveolar lesions found in RPM lungs. Alveolar lesions

from both RPM vehicle- and cisplatin-treated lungs showed

equally high levels of ALDH1A1 (Figure S6B).

Metabolic proteins not only included additional members of

the aldehyde dehydrogenase family (Aldh1a7, Aldh3b1, Ald6a1,

and Aldh2) but also key metabolic enzymes such as Pdhb,

Ldhb, and several cytochrome P450 (Cyp2f2, Cyp2s1, and

Cyp4b1) and glutathione S-transferase (Gsta3, Gstm1, Gstm2,

and Gstp3 at the RNA level) family members. Of note, together

with Aldh1a1 (FC 2.6), Cyp2f2 (FC 6.7) and Gsta3 (FC 3.0) were

among the five most highly differentially expressed proteins (Fig-

ure 5C, top panel), with Cyp2f2 additionally being among the top

five genes with the most significant increases in RNA level in

RPF-Al compared with RPF-Rep (Figure 5C, bottom panel).

This suggests a radically different metabolic wiring of alveolar

compared with repopulating lesions and could explain the

apparent intrinsic resistance of alveolar lesions to cisplatin, as

many of these differentially expressed proteins are enzymes

involved in drug metabolism. Targeting these highly expressed
ighlights a Unique Alveolar Lesion Identity
RPF-Rep comparison (for images of all three RPF-Al and four RPF-Rep mice

using beta-binomial test for protein and DESeq2 for RNA-seq data). All genes

FCR 2 (RNA, right plot) are colored in light blue (UP in RPF-Rep) or light red (UP

lue and red dots) are the 15 most highly differentially expressed genes in each

level (bottom row), respectively (*p < 0.01, **p < 0.001, and ***p < 0.0001; n.s.,

level) form three highly interactive functional clusters: metabolic process and

t membrane, focal adhesion, and ECM interaction (right).
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metabolic enzymes may be a suitable strategy to overcome

cisplatin resistance, as has previously been demonstrated for

Aldh1a1 in non-small-cell lung cancer (NSCLC) (MacDonagh

et al., 2017).

Besides this marked elevation in metabolic gene expression in

RPF-Al, we found profound differences in the expression of

structural components, specifically those involved in actin-bind-

ing and cytoskeleton, as well as basement membrane, focal

adhesion, and ECM interaction (Figure 5D). Both core structure

components of basement membranes, such as type IV collagen

(Col4a1) and laminin (Lama3, Lama5, Lamb1, and Lamc1) as well

as bridging adaptor proteins, such as perlecan (Hspg2) and nido-

gen (Nid1), were highly differentially expressed (p < 0.01) and

increased in RPF-Al versus RPF-Rep. This is in line with the

morphological differences seen on microscopic images, with

alveolar lesions showing more compact, organized nests with

pseudo-glandular structures, compared with the spatially and

morphologically distinct sheath-like organization of the repopu-

lating lesions. Furthermore, it is interesting to note that several

members of the protocadherin family, specifically members of

the protocadherin-beta gene cluster (Pcdhb), were significantly

less abundant in RPF-Al compared with RPF-Rep (Figure 5B,

right panel; Figure S6C). Pcdhb12, Pcdhb21, and Pcdhb6 were

among the top 15 genes with the most significant decreases in

RNA levels in RPF-Al compared with RPF-Rep (Figure 5B, right),

with 2 additional members (Pcdhb20 and Pcdhb13) also being

significantly decreased at p < 0.01, and a further 4 (Pcdhb15,

Pcdhb5, Pcdhb8, and Pcdhb11) at p < 0.05 (Figure S6C). These

cell adhesion molecules, which constitute a subfamily of non-

classic cadherins, are thought to play a role in the establishment

and function of specific neuronal cell-cell connections. In

contrast to the neuronal differentiation andmigration-associated

genes that are less abundant in both cisplatin-treated RPF-Rep

and RPF-Al compared with V-RPF samples (e.g., Dcx, Ncam1;

Figures S4D and S4E), the expression levels of the Pcdhb

gene cluster appear to be specifically lower in the RPF-Al sample

cohort (Figure S6C).

Taken together, our proteo-transcriptomic data show that

cisplatin-treated RPF mouse lung tumors display reduced prolif-

eration and altered metabolism and highlight a shift from a

neuronal to an epithelial phenotype. On the basis of uniquemeta-

bolic and structural properties, the RPF-Rep and RPF-Al tumors

have distinct identities reflecting different cells of origin.

SCLC Heterogeneity in Mouse Models as Underlying
Mechanism of Differential Sensitivity to Cisplatin
Our combined immunohistochemical and gene expression data

analyses point to tumor heterogeneity in SCLC as an important

underlying mechanism of differential sensitivity to cisplatin treat-

ment. Centrally located early lesions, initially expressing high

levels of CDH1 and refractory to cisplatin, progress to highly pro-

liferative CDH1-negative, NFIB-high lesions that are cisplatin

sensitive. The regions with cisplatin responsive tumor cells are

then replaced by CDH1-positive (Cis-RPF-Rep) tumors that are

(or have become) refractory to cisplatin. In contrast, the periph-

eral bronchiolar and alveolar lesions show intrinsic cisplatin

resistance (Figure 6). In RPM mice, the cisplatin-sensitive

compartment constitutes only a small fraction of the tumor
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mass (Figure 6A), and therefore cisplatin treatment causes only

partial regression (Figure 6B). Importantly, in line with the

frequent Nfib activation in human SCLC and on the basis of

our observations, the cisplatin-sensitive tumor compartment at

presentation is likely the predominant one in RPF animals (Fig-

ure 6C). When exposed to chemotherapy, the sensitive NFIB-

positive compartment may be effectively eliminated (Figure 6D),

reflecting the initially good response, but leaving behind a ‘‘mi-

nor’’ resistant primary tumor compartment. Ongoing chemo-

therapy regimen may prevent re-establishment of the sensitive

tumor but will not limit the proliferation of resistant tumor cells,

or expansion of the intrinsically resistant population, explaining

lack of chemotherapy response at later stages (Figure 6E).

DISCUSSION

SCLC is a recalcitrant disease with an urgent need for more

effective treatment approaches. To date, the intrinsic complexity

of SCLC as well as a lack of tumor material has limited our ability

to develop effective treatment modalities. Analysis of available

patient material, patient-derived xenografts (PDXs), circulating

tumor cells-derived explants (CDXs), and genetically engineered

mouse models (GEMMs) provides growing evidence for exten-

sive intrinsic and acquired heterogeneity in SCLC (Borromeo

et al., 2016; Calbo et al., 2011; Drapkin et al., 2018; Gazdar

et al., 2015; George et al., 2015; Huang et al., 2018; Lim et al.,

2017; Pozo et al., 2018; Shue et al., 2018; Zhang et al., 2018).

This is further complicated by evidence for trans-differentiation

and existence of combined SCLC-NSCLC (Niederst et al.,

2015; Sequist et al., 2011; Zhao et al., 2018).

SCLC is characterized by a relatively good response to first-line

therapy. Unfortunately, after an initial response, the majority of

patients soon relapse with resistant disease. Despite concerted

efforts of the international scientific and clinical community, no

unequivocal underlying resistance mechanism has been found.

However, some more effective drug combinations to treat

SCLC have recently been described, such as the combination

of standard chemotherapy together with inhibitors affecting

replication stress response genes such as CHK1 and ATR (Doerr

et al., 2017; Sen et al., 2017), that showed enhanced synergy in

SCLC overexpressing MYC (Nagel et al., 2019). In addition,

chemotherapy resistance mechanisms associated with the

frequently observed loss of Schlafen11 (SLFN11) expression

could be restored by EZH2 inhibition (Gardner et al., 2017),

although this was not observed in a set of SCLC PDX models

(Drapkin et al., 2018). However, it might require a functional im-

mune system to benefit from SLFN11 expression (Mezzadra

et al., 2019). Promising progress is being made with immuno-

therapy strategies showing a durable response in a small subset

of patients (Hellmann et al., 2018). Our data generated in animal

models support the notion that SCLC patients present with

heterogeneous tumors, which at the time of diagnosis already

consist of chemotherapy-sensitive and resistant tumor sub-pop-

ulations. The CDH1-negative, cisplatin-sensitive population may

be completely eliminated by cisplatin treatment, followed by sub-

sequent expansion of pre-existing resistant cells. Alternatively,

cisplatin may elicit a change in expression in the CDH1-negative

tumor cells (i.e., a reduction in replication rate that contributes to



Figure 6. Schematic Representation of SCLC Heterogeneity in Mouse Models as Underlying Mechanism of Differential Sensitivity to

Cisplatin

Our results suggest that the outcome of cisplatin treatment might depend on the ratio between CDH1-positive resistant primary (brown) and CDH1-negative

intrapulmonary metastasis (blue) compartments within SCLC lesions.

(A and B) In RPM mice, in which CDH1-positive compartment is on average predominant (A), the regression of CDH1-negative population following cisplatin

treatment (B) is not sufficient to guarantee a longer survival.

(C and D) In RPF mice, the sensitive CDH1-negative central compartment (C) responds to cisplatin, and consequently its regression (D) is associated with a

significant survival advantage.

(E) This positive response to cisplatin is followed by subsequent growth of resistant populations, similar to what is seen in patients. Resistant tumormay represent

peripheral lesions, frequently present in RPM mice, and/or central lesions that repopulate the empty peri-vascular/peri-bronchial space left behind following

elimination of the sensitive population. The targeting of metabolic pathways (yellow rectangles) active in the resistant populations, in combination with cisplatin

treatment, may offer an opportunity to eradicate recalcitrant SCLC.
cisplatin resistance and may lead to concomitant re-expression

of CDH1). Although we cannot formally exclude this, we consider

this unlikely, as the CDH1-negative compartments observed in

RPMmice, which look indistinguishable from the CDH1-negative

intrapulmonary metastasis in RPF mice, are initially effectively

depleted by cisplatin treatment. Furthermore, we would expect

that upon treatment with cisplatin, tumors in RPF mice would

only very transiently become CDH1-positive. That is not what
we observe. Whereas CDH1 expression in the setting of our

autochthonous models seems to serve as a marker for chemo-

therapy resistance, this is not observed in cell lines or in PDX

models of SCLC, where even the opposite is described (Drapkin

et al., 2018; Allison Stewart et al., 2017). We have no conclusive

explanation for this. Possibly, in vitro propagated cells or PDX

lines still do not reflect the primary tumor, or the association of

CDH1 expression with chemotherapy exposure is accidental.
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Human biopsies of SCLC show great variability of CDH1 expres-

sion (Semenova et al., 2016), but to determine its associationwith

chemotherapy resistance will require a careful comparison of

human SCLC biopsies that were obtained before and after

chemotherapy.

However, our transcriptome and proteome analyses do pro-

vide further insight into this acquired chemotherapy resistance,

such as a marked reduction in proliferation, as well as a pro-

nounced shift in the metabolic program. In addition, whereas

cisplatin-sensitive tumors show a clear pro-neuronal expression

signature, resistant tumor cells show reduced expression of

migration and neuronal differentiation-associated genes and

an increase in epithelial differentiation proteins.

Analysis of RPM mice highlighted a broad topological and

histopathological diversity of NE tumors that can arise in

mouse lung. Of particular interest are tumors located in the

bronchiolar and alveolar region. They represent well-differenti-

ated NE lesions distinct from classical SCLC. They are also

different from the lesions recently described by Huang et al.

(2018), indicating that SCLC might include even more distinct

subtypes. More peripherally located lesions have recently

also been reported by Yang et al. (2018) in a mouse model of

SCLC based on the inactivation of Rb1, Trp53, and p130.

Future work is needed to reveal whether the tumors they

described share common denominators with tumors we

observed here and to what extent the different driver lesions

engineered into these models are responsible for the distinct

tumor characteristics. Because the alveolar lesions explored

in more detail here were rare in untreated RPF mice, we could

not collect pre-treatment alveolar lesions and therefore were

unable to perform a direct comparison between treated and

untreated cases. However, on the basis of histopathological

evaluation of alveolar lesions in both RPF and RPM cohorts,

they appeared unaffected by treatment, suggesting that they

represent an intrinsically cisplatin-resistant NE tumor subtype.

Comparison between Cis-RPF-Rep and Cis-RPF-Al, which

are both cisplatin resistant, revealed for each unique metabolic

and structural profiles that might aid in a search for corre-

sponding tumor subtypes in patients and may be valuable for

the design of therapeutic strategies against specific sub-popu-

lations of SCLC. For example, the alveolar lesions of RPF mice

displayed increased expression of genes involved in redox

reactions and drug detoxification, opening up the intriguing

possibility of targeting these intrinsically cisplatin-resistant

populations with additional oxidative stress and reactive oxy-

gen species (ROS)-inducing agents.

In conclusion, using mouse models of SCLC has permitted

us to carefully dissect SCLC tumor initiation, tumor heteroge-

neity, and drug responses, leading to the characterization of

additional SCLC subtypes that exhibit differential expression

patterns and drug-resistant profiles. What we observe in the

mouse with regard to drug resistance aligns well with what is

observed in the vast majority of human SCLC, with its initially

good chemotherapy response followed by massive resistance.

Given this similar behavior these mouse models can help us

better understand the complexity and plasticity of SCLC and

develop more effective therapies for this aggressive cancer

type.
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Ki67 Abcam Cat# ab15580; RRID: AB_443209

Anti-Cytokeratin, wide-spectrum/KWS Agilent Cat# Z0622; RRID: AB_2650434

Anti-phospho-Histone H3 (Thr3), clone JY325 Merck Millipore Cat# 04-746; RRID: AB_1163442

Podoplanin Abcam Cat# ab11936; RRID: AB_298718

MASH1/ASCL1 BD Biosciences Cat# 556604; RRID: AB_396479

ALDH1A1 Abcam Cat# ab23375; RRID: AB_2224009

NEUROD1 Proteintech Cat# 12081-1-AP

Phospho-Akt (Ser473) Cell Signaling Technology Cat# 4060; RRID: AB_2315049

Anti-4E-BP1, phospho (Thr37 / Thr46) Cell Signaling Technology Cat# 2855; RRID: AB_560835

Bacterial and Virus Strains

Ad5-CMV-Cre Viral Vector Core Facility,

University of IOWA Health Care

N/A

Chemicals, Peptides, and Recombinant Proteins

Cyclosporin A Sigma-Aldrich Cat# 30024

Cisplatin Accord Healthcare Ltd Dutch drug database ZI# 15683354

Neo-clear� Merck Millipore Cat# 109843

Sequencing Grade Modified Trypsin Promega Cat# V5111

Deposited Data

Mass spectrometry proteomics data This study ProteomeXchange: PXD010680

RNA-seq data This study European Nucleotide Archive:

PRJEB28270

Experimental Models: Organisms/Strains

Mouse: Rb1flox/flox;Trp53flox/flox Meuwissen et al., 2003 N/A

Mouse: Rb1flox/flox;Trp53flox/flox;CAG < Lox66Mycl-LucLox71 > Huijbers et al., 2014 N/A

Mouse: Rb1flox/flox;Trp53flox/flox;CAG < Lox66Nfib-LucLox71 > Semenova et al., 2016 N/A

Software and Algorithms

Living Image acquisition and analysis software PerkinElmer N/A

AxioVision 4 software Carl Zeiss Vision N/A

MaxQuant version 1.5.4.1 Cox and Mann, 2008 http://www.coxdocs.org

TopHat, version 2.1.0 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/

index.shtml

GraphPad Prism, versions 6 and 7.04 GraphPad Software www.graphpad.com

Perseus software (version 1.6.1.3) Tyanova et al., 2016 http://www.coxdocs.org

GSEA 3.0 Mootha et al., 2003; Subramanian

et al., 2005

www.broadinstitute.org/gsea

STRING tool (version 10.5) Szklarczyk et al., 2017 www.string-db.org

Cytoscape (version 3.4.0) Shannon et al., 2003 www.cytoscape.org

DAVID tool (version 6.8) Huang et al., 2009 david.ncifcrf.gov

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

IVIS Spectrum In Vivo Imaging System PerkinElmer N/A

Zeiss Axioskop2 Plus microscope Carl Zeiss Microscopy N/A

Zeiss AxioCam HRc digital camera Carl Zeiss Vision N/A

Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer Thermo Fisher Scientific N/A

Ultimate 3000 nanoLC Thermo Fisher Scientific N/A

HiSeq 2000 Sequencing System Illumina N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Anton

Berns (a.berns@nki.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In Vivo Mouse Studies
All animals were maintained on an FVB background (backcrossed from strains generated from 129 Ola ESCs). Either RPM or RPF

mice were randomly assigned to the experimental cisplatin or vehicle group, 5 weeks upon receiving the adenoviral injection. On

average, mice were aged 11.3 weeks (SD ± 4.5) at virus injection. Male and femalemice were represented equally in the experimental

cohorts and were group-housed (maximum 4 mice per cage), in individually ventilated cages (IVC) with standard enrichment. The

study was performed in accordance with the Dutch and European regulations on care and protection of laboratory animals. All animal

experiments were approved by the institute’s Animal Ethical Committee.

METHOD DETAILS

Lung tumor induction
Mice from the different cohorts were treated with Cyclosporin A (Sigma-Aldrich) orally in the drinking water 1week prior to adenovirus

administration and 2-3 weeks following infection. Viral Ad5-CMV-Cre particles (20 ml, 13 109; Viral Vector Core Facility, University of

IOWAHealth Care) were injected intratracheally. Mice were monitored daily for signs of illness and culled upon respiratory distress or

excessive weight loss (> 20% of initial weight).

Imaging of tumors
In vivo bioluminescence imaging was performed and quantified as described by Hsieh et al. (2005) on a cryogenically cooled IVIS

Spectrum system using Living Image acquisition and analysis software (both PerkinElmer). Luciferase units are photons/second

x cm2 x sr.

Cisplatin treatment
Tumor growth was monitored via weekly bioluminescence imaging. Treatment was initiated when signal within the thorax area

reached 1 3 105 relative luciferase units. Animals were injected with cisplatin (Accord Healthcare Ltd) at 6 mg/kg i.v. once every

two weeks.

Histology and immunohistochemistry
Animals were sacrificed when they acquired respiratory distress. Tissues and organs were collected and fixed in EAF fixative

(ethanol/acetic acid/formaldehyde/saline at 40:5:10:45 v/v) and embedded in paraffin. Sections were prepared at 2 mm thickness

from the paraffin blocks and stained with hematoxylin and eosin (HE) according to standard procedures. For immunohistochemistry

(IHC), 4 mm-thick sections were made on which the following antibodies were applied: Synaptophysin/SYP (Abcam, ab32127),

E-cadherin/CDH1 (Cell Signaling Technology, 3195), NFIB (Thermo Fisher Scientific, PA5-28299), CGRP (Sigma-Aldrich, C8198),

Ki67 (Abcam, ab15580), keratin wide-spectrum/KWS (Agilent, Z0622), phospho-histone H3/p-HH3 (Millipore, 04-746), Podopla-

nin/PDPN (Abcam, ab11936), ASCL1 (BD Biosciences, 556604), ALDH1A1 (Abcam, ab23375), NEUROD1 (Proteintech, 12081-1-

ap), phospho-AKT (Cell Signaling Technology, 4060) and phospho-4EBP1 (Cell Signaling Technology, 2855). The sections were

reviewed with a Zeiss Axioskop2 Plus microscope (Carl Zeiss Microscopy) and images were captured with a Zeiss AxioCam HRc

digital camera and processed with AxioVision 4 software (both from Carl Zeiss Vision).
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Tandem mass-spectrometry
EAF sections of 10 mm thickness were cut from the paraffin blocks, with reference slides for HE- and CDH1-staining being taken at

regular intervals during cutting. Blank EAF-fixed sections (103 10 mm) of mouse lung were deparaffinized using Neo-clear� (3 times

5 minutes) and rehydrated by subsequent 3-minute incubations in 100%, 80% (v/v) and 70% (v/v) ethanol, and finally water. Subse-

quently, tumor areas were scraped from the slide using a needle, according to the demarcated HE- and CDH1-stained reference

slides. Scraped tumor tissues were lysed in Tris-HCl buffer (pH 8.0), vortexed, sonicated and, after the addition of 2% (w/v) SDS,

heat-incubated for 90 min while shaking (1400 rpm). Cell debris was removed by centrifugation for 20 minutes at 16.000 x g, and

resulting clear lysate was supplemented with 4X LDS sample buffer and DTT for subsequent SDS-polyacrylamide gel

electrophoresis.

Protein lysates were separated on pre-cast 4%–12% gradient gels using the NuPAGE SDS-PAGE system (Invitrogen, Carlsbad,

CA). Gels were fixed in 50% ethanol/3% phosphoric acid solution, stained with Coomassie brilliant blue G-250 and then washed and

dehydrated in 50mMammoniumbicarbonate (ABC) (once) and 50mMABC/50%acetonitrile (ACN) twice. Gel laneswere cut into five

bands, with each band sliced further into approximately 1 mm3 cubes. Gel cubes were washed and dehydrated once in 50 mM ABC

and twice in 50 mM ABC/50% ACN. Subsequently, gel cubes were reduced in 10 mM DTT/50 mM ABC at 56�C for 1 h, the super-

natant was removed, and gel cubes were alkylated in 50 mM iodoacetamide/50 mMABC for 45 min at room temperature in the dark.

Next, gel cubes were washed with 50 mM ABC/50% ACN, dried in a vacuum centrifuge at 50�C for 10 min and covered with trypsin

solution (Promega, 6.25 ng/ml in 50 mM ABC). Following rehydration with trypsin solution and removal of excess trypsin, gel cubes

were covered with 50 mM ABC and incubated overnight at 25�C. Peptides were extracted from the gel cubes with 1% formic acid

(FA) (once) and 5% FA/50% ACN (twice). All extracts were pooled and stored at �20�C until use. Prior to LC-MS, the extracts were

concentrated in a vacuum centrifuge at 50�C, and volumes were adjusted to 50 mL with 0.05% FA, filtered through a 0.45 mm spin

filter, and transferred to LC autosampler vials.

Peptides (5 ml) were separated by an Ultimate 3000 nanoLC-MS/MS system (Thermo Fisher, Bremen, Germany), equipped with a

20 cm 3 75 mm ID fused silica column custom packed with 1.9 mm 120 A� ReproSil Pur C18 aqua (Dr Maisch GMBH, Ammerbuch-

Entringen, Germany). After injection, peptideswere trapped at 6 ml/min on a 10mm3 100 mm ID trap column packedwith 5 mm120A�

ReproSil Pur C18 aqua in 0.05%FA. Peptides were separated at 300 nl/min in a 10%–40%gradient (buffer A: 0.5%acetic acid, buffer

B: 80% ACN, 0.5% acetic acid) in 60 min (90-min inject-to-inject). Eluting peptides were ionized at a potential of +2 kVa into a Q

Exactive mass spectrometer (Thermo Fisher, Bremen, Germany). Intact masses were measured at resolution 70,000 (at m/z 200)

in the orbitrap using an AGC target value of 3E6 charges. The top 10 peptide signals (charge-states 2+ and higher) were submitted

to MS/MS in the HCD (higher-energy collision) cell (1.6 amu isolation width, 25% normalized collision energy). MS/MS spectra were

acquired at resolution 17,500 (at m/z 200) in the orbitrap using an AGC target value of 1E6 charges, a maxIT of 60ms, and an underfill

ratio of 0.1%. Dynamic exclusion was applied with a repeat count of 1 and an exclusion time of 30 s.

MS/MS spectra were searched against the SwissprotMus musculus reference proteome FASTA file (release August 2017, 25052

entries, canonical and isoforms) usingMaxQuant version 1.5.4.1 (Cox andMann, 2008). Enzyme specificity was set to trypsin, and up

to two missed cleavages were allowed. Cysteine carbamidomethylation (Cys, +57.021464 Da) was treated as fixed modification and

methionine oxidation (Met, +15.994915 Da) and N-terminal acetylation (N-terminal, +42.010565 Da) as variable modifications. Pep-

tide precursor ions were searched with a maximummass deviation of 4.5 ppm and fragment ions with a maximummass deviation of

20 ppm. Peptide and protein identifications were filtered at an FDR of 1% using the decoy database strategy. The minimal peptide

length was 7 amino acids. Proteins that could not be differentiated based onMS/MS spectra alone were grouped into protein groups

(default MaxQuant settings). Searches were performed with the label-free quantification option selected. Proteins were quantified by

spectral counting (Liu et al., 2004).

RNA sequencing
RNA was isolated using Trizol, and cDNA libraries were sequenced on an Illumina HiSeq2000 to obtain 65-bp single-end sequence

reads. Reads were aligned to the mm10 mouse reference genome using TopHat (Kim et al., 2013), and gene counts were obtained

using HTSeq (Anders et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

Normalization and statistical analyses
For proteomics data, raw spectral counts were normalized on the sum of spectral counts for all identified proteins in a particular

sample, relative to the average sample sum determined with all samples. To find statistically significant differences in normalized

counts between sample groups, we applied the beta-binomial test (Pham et al., 2010), which takes into account within-sample

and between-sample variation. For both normalization and differential analysis of RNA-seq data, DESeq2 (Love et al., 2014) was

used. All downstream analyses were performed in R using the Bioconductor framework. The statistical methods used as well as

the p values defining significance are stated in all legends of figures referencing this data.
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Survival analysis
Kaplan-Meier survival curves were analyzed using the log-rank test. All p values were calculated using a nonparametric Mann-Whit-

ney test (statistical analyses were performed by GraphPad Prism, version 6).

Data visualization
Heatmaps were generated using Perseus software, version 1.6.1.3 (Tyanova et al., 2016), using z-score by column of normalized

spectral or read counts for protein and RNA data, respectively (euclidean distance, complete linkage). Expression plots were

made using GraphPad Prism (version 7.04), volcano plots using R (version 3.4.1). Overlapping genes were identified using the Venny

tool (version 2.1). For gene set enrichment analysis using GSEA 3.0 (Mootha et al., 2003; Subramanian et al., 2005), a rank metric

score based on combined fold-change and p values was used as input. Normalized enrichment score (NES) was used as the magni-

tude of enrichment, FDR q-value as a weighted measure of statistical significance. Network analysis was performed using STRING

tool, version 10.5 (Szklarczyk et al., 2015) and visualized using Cytoscape, version 3.4.0 (Shannon et al., 2003), employing Cytoscape

MCL cluster plugin. Gene ontology was analyzed using DAVID tool, version 6.8 (Huang et al., 2009).

DATA AND SOFTWARE AVAILABILITY

The accession number for the mass spectrometry proteomics data reported in this paper is ProteomeXchange: PXD010680. The

accession number for the RNA-seq data reported in this paper is European Nucleotide Archive (ENA): PRJEB28270.
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Figure S1. Related to Figures 1 and 2

Figure S1. Related to Figures 1 and 2.

(A), (B) NFIB and CGRP staining of the lung of RP mouse, respectively. Inset shows an area of the central tumor with 

two tumor populations in close proximity, scale bar 50 μm. (C) CDH1 staining of a representative lung of a tumor 

bearing mouse taken at an early time point (14 weeks) after tumor induction showing positive signal for all primary 

lesions. (D), (E) Podoplanin and synaptophysin staining respectively, showing NE cells within a lymph vessel. (F) NFIB 

stainig of an alveolar lesion. Scale bar for (D), (E), 20 μm. Scale bar for (F), 50 μm.



Figure S2. Related to Figure 3
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Figure S2. Related to Figure 3.

(A) Estimation of staining intensities of different antibodies on lungs of vehicle- and cisplatin-treated RPM and RPF

mice. Staining intensities are averaged across lesion types and therefore do not reflect the expression heterogeneity seen

for many of the markers (see Figure S2B). (B) Representative IHC stainings of ASCL1 and NEUROD1 in RPM and RPF

lungs, respectively. Insets show nuclear staining of ASCL1 in the SCLC cells of the advanced lesions from RPM lung

and of initial and advanced lesions from RPF lung, whereas the staining of NEUROD1 was largely absent (scale bar 50

μm).
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Figure S3. Related to Figures 4 and 5
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Figure S3. Related to Figures 4 and 5.

(A) CDH1 stainings of vehicle- and cisplatin-treated lung samples used for proteomic and transcriptomic analyses. Of

note, all circled tumor areas belonging to one lung were combined, resulting in a total of 5 V-RPF, 4 Cis-RPF-Rep and 3

Cis-RPF-Al samples. LN, lymph node (B) Total number of identified genes on RNA and protein level using RNA-Seq

and LC-MS/MS analysis, respectively. (C) Coomassie-staining and cutting scheme of protein samples separated by SDS-

polyacrylamide gel electrophoresis. (D), (E) Unsupervised hierarchical clustering of all identified genes using z-score

values of normalized spectral counts (LC-MS/MS analysis, (D)) and normalized reads (RNA-Seq analysis, (E)). Relative

protein abundancies (D) are shown from low (light blue) to high (orange), relative RNA levels (E) from low (dark blue)

to high (red).
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Figure S4. Related to Figure 4.

(A) Overview statistical filtering strategy Cis-RPF-Rep vs. V-RPF comparison and overlap of genes identified in

transcriptomic and proteomic analyses (differentially expressed genes determined using beta-binomial test on normalized

spectral counts for protein and DESeq2 for RNA-seq data). (B) Expression plots of Cdh1 and functionally connected

epithelial marker proteins that were significantly differentially expressed on protein level (p-value * < 0.05, ** < 0.01,

*** < 0.001). (C) Wide-spectrum keratin (KWS) and phospho-histone H3/p-HH3 (Ser10) stainings of V-RPF and Cis-

RPF-Rep samples (D) Expression plots of migration-associated genes of neuronal origin that were significantly

differentially expressed on both protein and RNA level. (E) Migration-associated genes of neuronal origin with highly

significant (p < 0.01) decrease in protein and/or RNA levels in Cis-RPF-Rep vs. V-RPF comparison.
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Figure S5. Related to Figure 4

Enriched HALLMARK gene sets Cis-RPF-Rep vs. V-RPF
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Figure S5. Related to Figure 4.

(A) Enrichment plots of gene sets significantly (FDR q-value<0.05, normalized enrichment score, NES ≥ 2.5) enriched

on both protein and RNA level (GSEA_HALLMARKS) in Cis-RPF-Rep vs. V-RPF comparison. (B) Gene sets

significantly (FDR q-value < 0.05, normalized enrichment score, NES ≥ 2.5) enriched on both protein and RNA level in

Cis-RPF-Rep vs. V-RPF comparison (GSEA_HALLMARKS). Figure 4C shows averages (av. NES) of the separate

protein and RNA NES values shown here. (C) Enrichment plots of oncogenic signature gene sets

AKT_UP_MTOR_DN.V1_UP and AKT_UP.V1_UP enriched on RNA level in Cis-RPF-Rep vs. V-RPF comparison.
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Figure S6. Related to Figure 5
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Figure S6. Related to Figure 5.

(A) Overview statistical filtering strategy Cis-RPF-Al vs. Cis-RPF-Rep comparison and overlap of genes identified in

transcriptomic and proteomic analyses (differentially expressed genes determined using beta-binomial test on normalized

spectral counts for protein and DESeq2 for RNA-seq data). (B) ALDH1A1 stainings of repopulating and alveolar

populations in RPF and RPM lung samples. (C) Expression plots of significantly differentially expressed Pcdhb

protocadherin genes (p-value * < 0.05, ** < 0.01, *** < 0.001).
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