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SUMMARY

Adult stem cells reactivate from quiescence to main-
tain tissue homeostasis and in response to injury.
How the underlying regulatory signals are integrated
is largely unknown. Drosophila neural stem cells
(NSCs) also leave quiescence to generate adult
neurons and glia, a process that is dependent on
Hippo signaling inhibition and activation of the
insulin-like receptor (InR)/PI3K/Akt cascade. We
performed a transcriptome analysis of individual
quiescent and reactivating NSCs harvested directly
from Drosophila brains and identified the conserved
STRIPAK complex members mob4, cka, and PP2A
(microtubule star, mts). We show that PP2A/Mts
phosphatase, with its regulatory subunit Widerborst,
maintains NSC quiescence, preventing premature
activation of InR/PI3K/Akt signaling. Conversely, an
increase inMob4 andCka levels promotes NSC reac-
tivation. Mob4 and Cka are essential to recruit PP2A/
Mts into a complex with Hippo kinase, resulting in
Hippo pathway inhibition. We propose that Mob4/
Cka/Mts functions as an intrinsic molecular switch
coordinating Hippo and InR/PI3K/Akt pathways and
enabling NSC reactivation.

INTRODUCTION

Brain homeostasis and damage repair depend on the generation

of new neurons and glia by neural stem cells (NSCs). In adult

brains, most NSCs are found to be quiescent but can enter pro-

liferation if prompted by extrinsic and intrinsic stimuli. The bal-

ance between quiescence and reactivation is critical for the

maintenance of an NSC reservoir (Cavallucci et al., 2016; Chaker

et al., 2016).Mechanistic insight underlyingNSCquiescence and

reactivation remains limited—in particular, how regulatory sig-

nals are integrated.
Cel
This is an open access article under the CC BY-N
In the model organism Drosophila, embryonic NSCs give rise

to the larval functional CNS. Similar to mammals, NSCs become

quiescent at the end of embryogenesis and reactivate postem-

bryonically to generate neurons and glia of the adult brain (Tru-

man and Bate, 1988). Quiescence entry is regulated by Hox

proteins, temporal transcription factors, and levels of the home-

odomain transcription factor Prospero (Otsuki and Brand, 2019;

Lai and Doe, 2014; Tsuji et al., 2008). NSCs are kept quiescent by

the canonical Hippo pathway, whereby its core kinases Hippo

and Warts prevent the transcriptional co-activator Yorkie from

entering the nucleus and triggering growth (Ding et al., 2016;

Poon et al., 2016). This signaling can be modulated by niche

glia cells via the upstream regulators Crumbs and Echinoid,

expressed in both glia and NSCs (Ding et al., 2016). NSC reacti-

vation involves cell size increase, from 4 to 5 mm during

quiescence, followed by entry into division (Ding et al., 2016;

Chell and Brand, 2010; Prokop and Technau, 1991; Truman

and Bate, 1988). NSCs continue to enlarge, reaching up to

10–15 mm when proliferating (Prokop and Technau, 1991; Tru-

man and Bate, 1988). Nutrition stimulates reactivation (Britton

and Edgar, 1998): dietary amino acids in the young larvae induce

a systemic signal that triggers blood-brain barrier glia to secrete

Drosophila insulin-like peptides (dILPs), a process that depends

on gap junction proteins and synchronized calcium pulses

(Spéder and Brand, 2014). dILPs activate the insulin-like recep-

tor (InR)/phosphoinositide 3-kinase (PI3K)/Akt cascade in neigh-

boring NSCs, promoting quiescence exit (Sousa-Nunes et al.,

2011; Chell and Brand, 2010). The conserved heat shock protein

38/90 chaperone associates with InR to promote reactivation,

and Spindle matrix proteins, including Chromator, function

downstream of InR/PI3K/Akt signaling in this process (Huang

and Wang, 2018; Li et al., 2017).

We performed a small-scale transcriptome analysis using

single quiescent and reactivating NSC samples obtained

directly from live Drosophila brains. Members of the evolu-

tionary conserved striating-interacting phosphatase and kinase

(STRIPAK) complex (Shi et al., 2016; Ribeiro et al., 2010) were

identified and validated: monopolar spindle-one-binder family

member 4 (Mob4); connector of kinase to AP-1 (Cka), which is
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the sole Drosophila Striatin protein; and the catalytic subunit of

protein phosphatase 2A (PP2A; Drosophila Microtubule Star

[Mts]). STRIPAK contains multiple components, some of which

are mutually exclusive, and STRIPAK members are part of a va-

riety of regulatory proteins that can direct the pleiotropic PP2A to

specific targets (Shi et al., 2016; Ribeiro et al., 2010; Virshup,

2000). In Drosophila and mammals, a STRIPAK-PP2A complex

containingMob4 and Ckawas reported to inhibit Hippo signaling

(Zheng et al., 2017; Couzens et al., 2013; Ribeiro et al., 2010).We

show that PP2A/Mts, with its regulatory subunit Widerborst

(Wdb), contributes to NSC quiescence via the inactivation of

Akt, an essential component of the InR/PI3K/Akt signaling

cascade. Conversely, NSC reactivation requires Mob4 and

Cka, which are necessary within STRIPAK for Mts association

to Hippo and subsequent Hippo pathway inhibition. These find-

ings suggest a mechanism coordinating Hippo and InR/PI3K/Akt

signaling in NSCs, enabling the transition from quiescence to

proliferation.

RESULTS

Transcriptome Analysis of Reactivating NSCs:
Identification of Mob4, Cka, and PP2A/Mts
To identify the mechanisms regulating NSC reactivation, we per-

formed a small-scale analysis comparing single-cell transcrip-

tomes of quiescent and reactivating NSCs fromDrosophila larval

brains. By combining grh-Gal4 with UAS-CD8-GFP transgenic

lines, cell membranes of approximately one-third of all NSCs

(Chell and Brand, 2010) were specifically labeled in vivo. NSCs

were individually harvested from 17 h after larval hatching (ALH)

brains, when both quiescent (small; diameter 4–5 mm) (Ding

et al., 2016; Chell and Brand, 2010) and reactivating (enlarged)

cells can be easily distinguished. Of the enlarged NSCs, only

non-dividing cells without any progeny were harvested. Cells

were removed from the second and third thoracic segments of

the ventral nerve cords (VNCs), minimizing potential differences

from spatial positioning and avoiding retrieving a mix of type I

and II NSCs, as the latter are absent from VNCs. Using our sin-

gle-cell transcriptome protocol (Liu and Bossing, 2016; Bossing

et al., 2012), cDNA from each NSCwas readily obtained. Quanti-

tative real-time PCRs confirmed that quiescent and reactivating

cells expressed the NSC markers deadpan (dpn) and asense

(ase), with higher levels in the latter. Single NSC transcriptomes

were compared in pairs (three reactivating versus quiescent

NSCpairs) onwhole-genomeDrosophilamicroarrays (Figure 1A).

We used a limma moderated paired t test (Ritchie et al., 2015) to

shortlist potential candidates, since the limited sample size did

not support false discovery rate (FDR) correction. We identified

196 genes with consistent fold expression changes across all 3

replicates (p < 0.05), of which 145 are upregulated and 51 are

downregulated (Figure 1B; Table S1; see Method Details). For

quality control, we performed quantitative real-time PCR using

independent single NSC samples on a subset of candidates

classed mainly into nervous system development and neurogen-

esis Gene Ontology categories. Up- or downregulated expres-

sion for all 18 candidates tested in reactivating versus quiescent

NSCs was confirmed, including echinoid (ed) and ras homolog

enriched in brain (rheb), which are known tomaintain NSC quies-
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cence and promote reactivation, respectively (Ding et al., 2016;

Sousa-Nunes et al., 2011) (Figures 1B and 1C).

Using FlyAtlas data (Chintapalli et al., 2007), we noted that

our dataset (p < 0.05) is mostly enriched in genes expressed

in the larval CNS, whereas among adult tissues, the highest

enrichment is seen for genes expressed in ovaries, supporting

reported gene sets associated with both NSC and germline

stem cell maintenance and growth (Yan et al., 2014) (Fig-

ure S1A; Table S2). Most genes have highly conserved mouse

(63%) and human orthologs (66%), and only 10% have no

mammalian counterpart (Figure S1B; Table S1). When

comparing the 175 mouse orthologs identified (single best

matches) with transcripts found by previous studies as differen-

tially expressed in quiescent versus activated mouse embry-

onic (Martynoga et al., 2013) or adult NSCs (Llorens-Bobadilla

et al., 2015; Codega et al., 2014) and other stem cell types (Fu-

kada et al., 2007; Venezia et al., 2004), we observed that the

overlap is always highest (17–21 targets, 10%–12%) with any

of the studies examining NSC transcriptomes (Figure S1C;

Table S3). These results suggest that our small-scale single-

cell transcriptome analysis generated high-quality data

exposing conserved genes that are potentially involved in

NSC reactivation. The analysis reveals transcripts encoding

for some of the core STRIPAK complex members: mob4 and

cka upregulated in reactivating versus quiescent NSCs,

whereas mts, encoding the catalytic subunit of PP2A, downre-

gulated (Figures 1C and 1D; Table S1). STRIPAK is involved in a

variety of cellular functions (Shi et al., 2016), but it has no

known role in NSC reactivation. To functionally test the compo-

nents identified, we focused initially on Mob4.

Loss of Mob4 Prevents NSC Reactivation
Mob4 is highly expressed in themammalian andDrosophilaCNS

(Schulte et al., 2010; Baillat et al., 2001). After validating the dif-

ferential expression of mob4 detected in NSCs (Figure 1C), we

examined its protein levels. Immunostaining of NSCs highlighted

with membrane-tagged GFP and Deadpan (Dpn) together with

Mob4 antibodies in 17 h ALH brains, revealed higherMob4 levels

in reactivating (enlarged) versus quiescent (small) NSCs (Figures

2A–2C). To investigate the potential function of Mob4 in NSC re-

activation, we first examined mob4 null mutants (mob4EYDL3,

hereafter mob4DL3), of which 10% survive to third-instar stages

(Schulte et al., 2010). NSC (Dpn+) membranes labeled with

anti-Discs large (Dlg) and mitosis with anti-phospho-histone H3

(pH3) antibodies enabled the scoring of size (maximum diame-

ters) and proliferation. In newly hatched larvae (1 h ALH), no

differences are detected between NSCs of mob4 mutants and

controls in either brain lobes or VNCs (Figures 2D, 2G, 2J,

S2A, S2D, and S2G). All NSCs are quiescent, with the exception

of four mushroom body NSCs (MbNSCs) per brain lobe that

continuously proliferate from embryonic stages (Ito and Hotta,

1992). However, as early as 4 h ALH, while NSCs in controls start

to enlarge, those inmob4mutants remain small. No NSCmitosis

re-entry is detected in either group (Figures 2E, 2H, 2J, S2B,

S2E, and S2G). At the end of the first-instar larval stage (24 h

ALH), when many NSCs in controls are enlarged and dividing,

the reduction in both NSC size and proliferation in mutants is

striking, with the only mitotic NSCs corresponding to MbNSCs



Figure 1. Single-Cell Transcriptome Analysis of Reactivating NSCs

(A) Workflow: individual quiescent (Q) and reactivating (R) NSCs expressing CD8-GFP driven by grh-Gal4 were harvested from 17 h ALH CNSs, their mRNA

reverse transcribed, and resulting cDNA amplified. Quantitative real-time PCRs confirmed higher ase and dpn expression in reactivating versus quiescent NSCs

(normalized fold change [log2FC]; n = 3 NSC reactivating/quiescent pairs; error bars: SEMs; Student’s t test, **p < 0.01). NSC transcriptomes were compared on

whole-genome microarrays (reactivating versus quiescent; three pairs) and a subset of identified targets validated by quantitative real-time PCRs. ALH, after

larval hatching; BL, brain lobe; VNC, ventral nerve cord. Scale bars: 10 mm.

(B) Distribution of identified transcripts according to average fold change expression (x axis; log2FC) and p value (y axis; limma moderated t test; �log10 p value;

p < 0.05). See also Table S1 and Figure S1.

(C) Normalized expression levels in reactivating versus quiescent NSCs obtained by quantitative real-time PCR for a subset of targets (log2FC; n = 3 NSC

reactivating/quiescent pairs; error bars: SEMs; Student’s t test; ***p < 0.001). The results validate the data from the microarray analysis. Most of the targets

selected are classified under ‘‘nervous system development’’ and ‘‘neurogenesis’’ GO terms.

(D) STRING-based interaction network of a Drosophila PP2A-STRIPAK complex reported to inhibit Hippo signaling (Zheng et al., 2017; Liu et al., 2016; Ribeiro

et al., 2010), highlighting (pink) the components identified in our transcriptome analysis and functionally characterized in this study.
(Figures 2F, 2I, 2J, S2C, S2F, and S2G). 5-Ethynyl-20-deoxyuri-
dine (EdU) incorporation assays monitoring entry into S phase

confirmed that NSCs in mob4 CNSs are not able to re-enter

the cell cycle (Figures S2H–S2J). NSC reactivation defects in

mob4 mutants were similarly observed in brain lobes and

VNCs. We focused subsequent studies on brain lobes.

Since niche glial cells are involved in NSC reactivation (Sousa-

Nunes et al., 2011; Chell and Brand, 2010) and Mob4 is ubiqui-

tous in the larval CNS (Schulte et al., 2010), we next tested

whether Mob4 action is cell autonomous. We ectopically ex-

pressedmob4 specifically in NSCs or in glia ofmob4mutants us-

ing insc-Gal4 and repo-Gal4 drivers, respectively. NSCs were

analyzed at 18 h ALH, when mitotic reactivation is ongoing.

Re-introduction of Mob4 in NSCs of mob4 mutants rescued

both NSC size growth and division to the levels observed in con-

trols (Figures 2K–2M and 2P). We observed a small increase in

NSC size and division when Mob4 was expressed from glia,

but levels are markedly lower than in controls (Figures 2M–2P).

Finally, we inhibited Mob4 specifically in NSCs by expressing

mob4-RNAi (Schulte et al., 2010) using insc-Gal4, resulting in a

significant, albeit small, reduction in NSC size and a decrease
in NSC division at 18 h ALH (Figures S2K–S2M). We conclude

that Mob4 functions primarily cell autonomously to promote

NSC reactivation.

Overexpression of Mob4 or Its Human Ortholog
Accelerates NSC Reactivation
Mob4 is highly conserved (78% identical at the amino acid level)

to its human ortholog MOB4 (hMOB4, also known as Phocein),

and ubiquitous expression of hMOB4 fully rescues the lethality

of mob4 null larvae (Schulte et al., 2010). To determine whether

increasing Mob4 or hMOB4 levels can promote NSC reactiva-

tion, we overexpressed these specifically in NSCs using insc-

Gal4. Simultaneous expression of membrane-tagged GFP

allowed for NSC size examination, and divisions were labeled

with pH3 antibodies. At 6 h ALH, NSCs in controls have yet to

re-enter mitosis. At this stage, Mob4 or hMOB4 overexpression

results in a premature NSC size increase. No re-entry into divi-

sion was seen upon Mob4 overexpression, but hMOB4 induced

a minor but significant increase (Figures 3A–3C and 3G). At 18 h

ALH, no difference in NSC size was detected upon Mob4 over-

expression, but more NSCs were found in mitosis compared to
Cell Reports 27, 2921–2933, June 4, 2019 2923



Figure 2. Loss of Mob4 Prevents NSC Mitotic Reactivation

(A–C) Mob4 is upregulated in reactivating versus quiescent NSCs. Examples of quiescent (small, A) and reactivating (enlarged, B) NSCs in 17 h ALH CNSs

(VNC thoracic region) labeled with grh-Gal4 driving CD8-GFP (GFP, green), Mob4 (red), and Dpn (blue). Mob4 channel also shown in monochrome. Dashed lines:

cell bodies. (C) Mob4 protein quantification in reactivating normalized to quiescent NSCs (reactivating NSCs: n = 50, 8 BLs, 8 brains; quiescent NSCs: n = 50,

8 BLs, 8 brains; error bars: SEMs).

(D–J) NSC enlargement and division are impaired inmob4DL3mutants.Wild-type (WT; D, 1 h ALH; E, 4 h ALH; F, 24 h ALH) andmob4DL3 brain lobes (G, 1 h ALH; H,

4 h ALH; I, 24 h ALH). NSCs (Dpn, red), cell membranes (Dlg, green), and divisions (pH3, blue). Yellow arrowheads: quiescent NSCs; white arrowheads: re-

activated NSCs. Mushroom body NSCs (MbNSCs; dashed circles) are large and do not enter quiescence. At 1 and 4 h ALH, there are no NSC divisions, except in

MbNSCs.

(J) Quantification of NSC diameters (1 h ALH:WT n = 359NSCs, 10 BLs, 5 brains;mob4DL3 n = 415 NSCs, 10 BLs, 7 brains; 4 h ALH:WT n = 1,121 NSCs, 14 BLs, 7

brains;mob4DL3 n = 552NSCs, 10BLs, 5 brains; 24 h ALH:WT n = 799NSCs, 10BLs, 7 brains;mob4DL3 n = 395NSCs, 18BLs, 9 brains) and proliferation (1 h ALH:

WT n = 24 BLs, 12 brains;mob4DL3 n = 20 BLs, 12 brains; 4 h ALH: WT n = 24 BLs, 12 brains;mob4DL3 n = 24 BLs, 12 brains; 24 h ALH: WT n = 24 BLs, 12 brains;

mob4DL3 n = 24 BLs, 12 brains).

(legend continued on next page)
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Figure 3. Overexpression of Mob4 or hMOB4 Increases NSC Growth and Division

(A–G) NSC-specificmob4 or humanMOB4 (hMOB4) overexpression leads to premature NSC enlargement andmitosis entry. Brain lobes of control (A and D, insc-

gal4 > CD8-GFP) andmob4 (B and E, insc-gal4 > CD8-GFP, mob4) or hMOB4 (C and F, insc-gal4 > CD8-GFP, hMOB4) overexpressing brains at 6 and 18 h ALH.

NSCs in green (GFP) and red (Dpn), and divisions in blue (pH3). Dashed circles: MbNSCs; yellow arrowheads: quiescent NSC examples; white arrowheads:

prematurely enlarging (B and C) and dividing NSC examples (D–F). Anterior up. Scale bars: 10 mm.

(G) Quantification of NSC diameters (6 h ALH: insc-gal4 > CD8-GFP n = 1,467 NSCs, 20 BLs, 15 brains; insc-gal4 > CD8-GFP, mob4 n = 639 NSCs, 10 BLs,

5 brains; insc-gal4 > CD8-GFP, hMOB4 n = 508 NSCs, 7 BLs, 5 brains; 18 h ALH: insc-gal4 > CD8-GFP n = 1,399 NSCs, 18 BLs, 15 brains; insc-gal4 > CD8-GFP,

mob4 n = 1,004 NSCs, 13 BLs, 9 brains; insc-gal4 >CD8-GFP, hMOB4 n = 533NSCs, 7 BLs, 5 brains) and proliferation (6 h ALH: insc-gal4 >CD8-GFP n = 56 BLs,

28 brains; insc-gal4 > CD8-GFP, mob4 n = 22 BLs, 11 brains; insc-gal4 > CD8-GFP, hMOB4 n = 28 BLs, 14 brains; 18 h ALH: insc-gal4 > CD8-GFP n = 32 BLs,

16 brains; insc-gal4 > CD8-GFP, mob4 n = 30 BLs, 15 brains; insc-gal4 > CD8-GFP, hMOB4 n = 20 BLs, 10 brains).

Wilcoxon rank-sum tests; ***p < 0.001; p > 0.05: ns.

See also Figure S3.
controls. hMOB4 ectopic expression increased NSC size and

induced a similar increase in the number of dividing NSCs as

seen upon Mob4 overexpression (Figures 3D–3G). We next

tested whether Mob4 overexpression leads to NSC overprolifer-

ation. Scoring of NSC divisions in late larval brain lobes (94 h

ALH) revealed no differences from controls, indicating that

Mob4 overexpression effects are restricted to the NSC reactiva-

tion process (Figures S3A–S3C). Finally, since NSC reactivation

depends on nutritional stimulus (Britton and Edgar, 1998), we

inquired as to whether Mob4 overexpression in NSCs could

induce reactivation under diet-restriction conditions. In larvae

reared in the absence of dietary amino acids, NSCs overex-

pressing Mob4 remained quiescent (Figures S3D–S3F). We

conclude that increased Mob4 levels accelerate NSC reactiva-

tion, and this function may be evolutionary conserved. Yet,

Mob4 is not sufficient to bypass the extrinsic nutrition stimulus

required for NSC reactivation.
(K–P) Mob4 expression in NSCs, but not in glia, rescues NSC reactivation in mo

expressing Mob4 in NSCs (L,mob4DL3, insc-gal4 > mob4),mob4DL3 (M),mob4DL3

gal4) at 18 h ALH.

(P) Quantification of NSC diameters (insc-gal4 n = 219 NSCs, 3 BLs, 3 brains;mob

7 brains;mob4DL3, repo-gal4 >mob4 n = 310NSCs, 6 BLs, 6 brains; repo-gal4 n =

insc-gal4 >mob4 n = 20 BLs, 10 brains;mob4DL3 n = 10 BLs, 10 brains;mob4DL3,

ALH.

Wilcoxon rank-sum tests; **p < 0.01, ***p < 0.001; p > 0.05: non-significant (ns).

See also Figure S2.
Mob4 Regulates InR/PI3K/Akt and Hippo Signaling
Activity in NSCs
The Hippo pathway maintains NSCs in quiescence (Ding et al.,

2016; Poon et al., 2016), whereas activation of InR/PI3K/Akt

signaling cascade triggers reactivation (Sousa-Nunes et al.,

2011; Chell and Brand, 2010). To assess how Mob4 function re-

lates to both pathways, we first examined their activity in the

absence of Mob4. Upon activation, insulin receptors recruit

PI3K to the cell membrane to convert phosphoinositol(4,5)P2

(PIP2) into phosphoinositol(3,4,5)P3 (PIP3), which in turn recruits

the Akt protein kinase through its pleckstrin homology (PH)

domain, becoming activated by phosphorylation. This process

can be monitored using a PH domain-GFP fusion protein (PH-

GFP) binding PIP3 (Britton et al., 2002). We confirmed strong

membrane-bound accumulation of PH-GFP in reactivated

NSCs (Figures 4A and 4A’) (Chell and Brand, 2010). In contrast,

NSCs inmob4mutants showweak and diffused PH-GFP signals
b4DL3 mutants to control levels. Brain lobes of control (K, insc-gal4), mob4DL3

expressing Mob4 in glia (N,mob4DL3, repo-gal4 > mob4), and control (O, repo-

4DL3, insc-gal4 >mob4 n = 669, 10 BLs, 5 brains;mob4DL3 n = 520 NSCs, 7 BLs,

339, 5 BLs, 5 brains) and proliferation (insc-gal4 n = 12 BLs, 12 brains;mob4DL3,

repo-gal4 >mob4 n = 57 BLs, 29 brains; repo-gal4 n = 28 BLs, 14 brains) at 18 h

BLs, brain lobes. Anterior up. Scale bars: 10 mm.

Cell Reports 27, 2921–2933, June 4, 2019 2925



Figure 4. InR/PI3K/Akt Pathway Activation or Hippo Signaling Inhibition Rescues NSC Reactivation in mob4 Mutants

(A–C) InR/PI3K/Akt signaling is strongly reduced inmob4NSCs. Expression of pleckstrin homology (PH) domain-GFP fusion (GFP, green) does not accumulate at

NSC membranes ofmob4mutants as in controls. Brain lobes of control (A) andmob4DL3 mutants (B) at 24 h ALH. NSCs in red (Dpn) and divisions in blue (pH3).

GFP channel also shown in monochrome (A’ and B’). Inset displays higher magnification (B’). Yellow arrowheads: quiescent NSC examples; white arrowheads:

reactivated NSC examples.

(C) Phospho-Akt (pAktS505) is reduced inmob4mutant brains, while total Akt levels are comparable to those in controls (24 h ALH brain extracts; b-actin: loading

control). Quantification of protein signals (bottom; error bars: SEMs; n = 3 independent assays; Student’s t tests; *p < 0.05; p > 0.05: ns.

(D–E’) Hippo signaling remains active in mob4 NSCs. In contrast to controls, NSCs in mob4 mutants show no ban activity, except in MbNSCs (dashed circles).

ban-activity sensor, in which decreased GFP signal (green) reflects increased ban activity, in brain lobes of control (D and D’) andmob4DL3 mutants (E and E’) at

24 h ALH. NSCs in red (Dpn) and divisions in blue (pH3). GFP channel also shown in monochrome (D’ and E’). Inset showing higher magnification (E’).

(F–K) NSC-specific expression of rheb activating InR/PI3K/Akt signaling and ofwarts (wts)-RNAi or hippo (hpo)-RNAi inactivating Hippo signaling can rescue NSC

reactivation in mob4 mutants. Brain lobes of control (F, insc-gal4), mob4DL3 (G), mob4DL3 expressing Rheb in NSCs (H, mob4DL3, insc-gal4 > rheb), mob4DL3

expressingwts-RNAi in NSCs (I,mob4DL3, insc-gal4 > wtsRNAi), andmob4DL3 expressing hpo-RNAi in NSCs (J,mob4DL3, insc-gal4 > hpoRNAi) at 18 h ALH. NSCs

in red (Dpn), cell membranes in green (Dlg), and divisions in blue (pH3). Anterior up. Scale bars: 10 mm and 17 mm in insets.

(K) Quantification of NSC diameters (insc-gal4 n = 286 NSCs, 4 BLs, 3 brains;mob4DL3 n = 524 NSCs, 7 BLs, 7 brains;mob4DL3, insc-gal4 > rheb n = 466 NSCs, 6

BLs, 5 brains;mob4DL3, insc-gal4 > wtsRNAi n = 543 NSCs, 8 BLs, 5 brains;mob4DL3, insc-gal4 > hpoRNAi n = 531 NSCs, 8 BLs, 5 brains) and divisions (insc-gal4

n = 12 BLs, 12 brains; mob4DL3 n = 10 BLs, 10 brains; mob4DL3, insc-gal4 > rheb n = 28 BLs, 14 brains; mob4DL3; insc-gal4 > wtsRNAi n = 20 BLs, 10 brains;

mob4DL3, insc-gal4 > hpoRNAi n = 60 BLs, 30 brains).

Wilcoxon rank-sum tests; *p < 0.05, **p < 0.01, ***p < 0.001.
(Figures 4B and 4B’). We also observed reduced phosphorylated

Akt levels in mob4 whole CNS lysates compared to controls,

whereas total Akt levels were equivalent (Figure 4C). To examine

Hippo signaling, we tested the activity of bantam (ban) microRNA

that promotes NSC size growth and division (Ding et al., 2016). In

quiescent NSCs, active Hippo signaling prevents ban transcrip-
2926 Cell Reports 27, 2921–2933, June 4, 2019
tion (Ding et al., 2016). We used a ban GFP-sensor system, in

which GFP signal reduction reflects an increase in ban activity

(Brennecke et al., 2003). No GFP is observed in control reacti-

vated NSCs demonstrating ban activity (Ding et al., 2016) (Fig-

ures 4D and 4D’). However, the GFP signal is detected in the

NSCs of mob4 mutants, indicating the absence of ban activity



and Hippo pathway activation (Figures 4E and 4E’). We next

tested whether activating InR/PI3K/Akt cascade or inhibiting

Hippo pathways in the NSCs of mob4 mutants could rescue re-

activation defects. Stimulation of target of rapamycin (TOR)

signaling by Rheb overexpression activates the InR/PI3K/Akt

cascade, promoting premature NSC exit from quiescence (Li

et al., 2017; Sousa-Nunes et al., 2011). Overexpressing Rheb

in the NSCs ofmob4mutants led to NSC size increase and divi-

sion re-entry (Figures 4F–4H, and 4K). To inhibit Hippo signaling,

we used RNAi against warts (wts) or hippo, which induce earlier

NSC reactivation (Ding et al., 2016). In mob4 brains, expression

ofwts-RNAi or hippo-RNAi in NSCs induced cell size growth and

mitosis re-entry (Figures 4F, 4G, and 4I–4K). We conclude that

the InR/PI3K/Akt signaling cascade is inhibited, while the Hippo

pathway stays active in NSCs upon the loss of Mob4, consistent

with NSCs in mob4 mutants being unable to exit quiescence.

Activation of InR/PI3K/Akt or inhibition of Hippo pathways can

restore reactivation. However, the rescues are partial, with the

NSC size and proliferation increase observed in mob4 mutant

brains not reaching control levels (Figures 4F–4K). The results

contrast with the effect of expressing rheb, hippo-RNAi, or

wts-RNAi in a control background, where NSC growth and

division surpass control levels (Li et al., 2017; Ding et al., 2016;

Sousa-Nunes et al., 2011) and may also reflect insufficient

activation or inactivation of the respective signals and/or regula-

tion of both pathways that are essential for effective NSC

reactivation.

Mob4 and Cka Cooperate to Reactivate NSCs and
Assemble a PP2A-Hippo Complex
Our analysis of single NSC transcriptomes also identified the

STRIPAK scaffold protein Cka, which is expressed throughout

the CNS (Shi et al., 2016; Chen et al., 2002). Similar to Mob4,

we found cka transcript and protein upregulated in reactivating

versus quiescent NSCs (Figures 1C and S4A–S4C). To examine

its function, we overexpressed Cka specifically in NSCs and

observed premature NSC enlargement at 6 h ALH (Figures 5A,

5B, and 5G), as well as increased NSC size and divisions at

18 h ALH (Figures 5D, 5E, and 5G). Conversely, the expression

of cka-RNAi resulted in a small but significant reduction in NSC

size and decreased NSC mitosis at 18 h ALH (Figures S4D–

S4F). Next, we simultaneously overexpressed Mob4 and Cka

in NSCs and observed stronger effects compared to those

upon single Mob4 or Cka overexpression (Figures 5A–5G; see

also Figures 3B, 3E, and 3G).

STRIPAK negatively regulates Hippo signaling via the dephos-

phorylation of Hippo kinase by PP2A phosphatase (Couzens

et al., 2013; Ribeiro et al., 2010). We examined whether the

STRIPAK componentsMob4 andCka are essential for mediating

the association of PP2A to Hippo. Co-immunoprecipitations

(coIPs) were conducted on S2R+ cell lysates expressing FLAG-

tagged Hippo or control FLAG-NTAN, plus Myc-tagged Mts. In

addition, we performed RNAi targeting mob4 and/or cka, which

effectively depletes the respective proteins (Figure S5A), using

RNAi as a control against DsRed targeting red fluorescent pro-

tein. FLAG-Hippo co-immunoprecipitates Myc-Mts, as reported

(Ribeiro et al., 2010), and no association is found with FLAG-

NTAN. However, depletion of Mob4, Cka, or both impairs
Hippo/Mts binding, with the latter nearly abolishing association

(Figures 5H and 5I). We verified that the inhibition of Mob4 and

Cka results in increased Hippo activation, as reported (Zheng

et al., 2017; Ribeiro et al., 2010), and that chemical inhibition of

PP2A with okadaic acid targeting PP2A, and to a lesser extent

PP1 (Takai et al., 1992), leads to Hippo hyperphosphorylation

as a positive control (Figure S5B). We conclude that Mob4 and

Cka cooperate to promote NSC reactivation and are both

required for the association of PP2A to Hippo, leading to its inac-

tivation, which is consistent with the Hippo pathway remaining

active in NSCs upon mob4 loss (Figures 4D–4E’).

PP2A Inactivates Akt Independently of STRIPAK Cka
and Mob4 Members and Maintains Quiescent NSCs
If PP2A/Mts would only function in NSCs to inactivate Hippo

signaling via STRIPAK, then a prolonged NSC quiescence could

be anticipated uponMts inhibition. However, PP2A is also awell-

established negative regulator of the insulin receptor signaling

cascade, including by the dephosphorylation of Akt (Padmanab-

han et al., 2009; Vereshchagina et al., 2008; Janssens and Goris,

2001). Using S2R+ cells, we observed that Mts inhibition with

okadaic acid increases Akt phosphorylation, regardless of

RNAi-mediated depletion of cka andmob4 (Figure S6A). In addi-

tion, in S2R+ cells expressing hemagglutinin (HA)-tagged Mts

andMyc-tagged Akt,Mts co-immunoprecipitates with Akt. How-

ever, unlike for Mts/Hippo interaction, the depletion of cka and

mob4 does not disturb Mts/Akt association, nor does it disturb

the levels of phosphorylated Akt with or without insulin stimula-

tion (Figures S6A–S6C). Next, we examined whether impaired

Mts function affects NSC reactivation. Since mts null mutants

(mtsXE-2258) are embryonic lethal (Snaith et al., 1996), we

analyzed transheterozygotes harboring an mts hypomorphic

allele surviving to pupal stages (mts299) (Wang et al., 2009) and

mtsXE-2258. Reactivating NSCs in mts299/mtsXE-2258 mutants

shows a mild increased cell size as compared to controls (Fig-

ures 6A–6C). To knock down mts specifically in NSCs, we ex-

pressed a dominant-negative mts mutant (mts-DN) lacking the

N-terminal region of the phosphatase domain (Hannus et al.,

2002). Premature NSC size increase and entry into division

were observed (Figures 6D, 6E, 6G, 6H, and 6J), strengthening

the results using mts transheterozygotes. We then examined

whether the regulatory PP2A subunit Wdb, shown to modulate

Akt downstream of InR/PI3K/Akt signaling in both vertebrates

and invertebrates (Rodgers et al., 2011; Padmanabhan et al.,

2009; Vereshchagina et al., 2008), may also function in NSCs.

Similar to mts-DN, expression of a truncated wdb mutant form

acting as a dominant negative (wdb-DN) (Hannus et al., 2002)

leads to increased NSC size growth at 6 h ALH and a higher num-

ber of mitotic NSCs at 18 h ALH (Figures 6D, 6F, 6G, 6I, and 6J).

Next, we ascertained whether PP2A/Mts inhibition affects pAkt

levels. A premature increase in pAkt is seen in NSCs expressing

mts-DN, which indicates abnormal InR/PI3K/Akt activation (Fig-

ures 6K–6L’). In this condition, a moderate but significant reduc-

tion of ban activity (indicated by ban-GFP sensor signal increase)

is also observed (Figures 6M–6O). The results suggest that the

inhibition of Mts can promote Hippo signaling activity in NSCs,

but the effect is insufficient, possibly due to the availability

of endogenous Mob4/Cka levels at this stage, or otherwise
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Figure 5. Cka and Mob4 Cooperate to Pro-

mote NSC Reactivation and Are Required

for PP2A/Hippo Interaction

(A–G) NSC-specific cka or cka and mob4 double

overexpression leads to premature enlargement

and increased mitotic NSCs. Double over-

expression results in stronger effects (see also

Figure 3). Brain lobes of control (A and D, insc-

gal4 > CD8-GFP), cka (B and E, insc-gal4 > CD8-

GFP, cka), and double cka and mob4 (C and F,

insc-gal4 > CD8-GFP, cka, mob4) overexpressing

brains at 6 and 18 h ALH. NSCs in green (GFP) and

red (Dpn), and divisions in blue (pH3). Dashed

circles: MbNSCs; yellow arrowheads: quiescent

NSCs; white arrowheads: prematurely enlarging

(B and C) and dividing NSCs (D–F). Anterior up.

Scale bars: 10 mm.

(G) Quantification of NSCdiameters (6 h ALH: insc-

gal4 > CD8-GFP n = 1,106 NSCs, 15 BLs, 10

brains; insc-gal4 >CD8-GFP,mob4 n = 639NSCs,

10 BLs, 5 brains; insc-gal4 > CD8-GFP, cka

n = 332 NSCs, 5 BLs, 5 brains; insc-gal4 > CD8-

GFP, cka, mob4 n = 284 NSCs, 8 BLs, 8 brains;

18 h ALH: insc-gal4 > CD8-GFP n = 1,717 NSCs,

19 BLs, 14 brains; insc-gal4 > CD8-GFP, mob4

n = 1,004NSCs, 13BLs, 9 brains; insc-gal4 >CD8-

GFP, cka n = 554 NSCs, 8 BLs, 4 brains; insc-

gal4 > CD8-GFP, cka, mob4 n = 400 NSCs, 6 BLs,

4 brains) and divisions (6 h ALH: insc-gal4 >

CD8-GFP n = 56 BLs, 28 brains; insc-gal4 > CD8-

GFP, mob4 n = 22 BLs, 11 brains; insc-gal4 >

CD8-GFP, cka n = 18 BLs, 9 brains; insc-gal4 >

CD8-GFP, cka, mob4 n = 20 BLs, 10 brains; 18 h

ALH: insc-gal4>CD8-GFP n = 70 BLs, 38 brains;

insc-gal4 > CD8-GFP, mob4 n = 30 BLs, 15

brains; insc-gal4 > CD8-GFP, cka n = 18 BLs, 9

brains; insc-gal4 > CD8-GFP, cka, mob4 n = 20

BLs, 10 brains). Wilcoxon rank-sum tests,

***p < 0.001; p > 0.05: ns. See also Figure S4.

(H and I) Depletion of Mob4 and/or Cka inhibits

PP2A/Mts association to Hippo.

(H) CoIP assays using S2R+ cells expressing Myc-Mts and FLAG-Hippo or control FLAG-NTAN, in addition to RNAi against mob4 and/or cka or control DsRed

(see also Figure S5). Lysates and FLAG-purified immunoprecipitates analyzed by western blot with indicated antibodies.

(I) Quantification of relative binding of Myc-Mts to FLAG-Hippo shown as a mean of the ratio between Myc-Mts and FLAG-Hippo signal intensities relative to

control (DsRed RNAi) levels (n = 3 independent assays; error bars: SEMs; Student’s t tests; *p < 0.05 and **p < 0.01).
dominated by InR/PI3K/AKT activation, with the final outcome

being premature NSC reactivation. Our data indicate that

PP2A/Mts may play a dual role in early postembryonic NSCs:

first with Wdb to target Akt contributing to quiescence mainte-

nance and second with STRIPAK components Mob4 and Cka

targeting Hippo signaling to promote reactivation (Figure 6P).

DISCUSSION

Neural replenishment depends on the ability of NSCs to tightly

control the balance between quiescence and proliferation (Tian

et al., 2018; Chaker et al., 2016; Cheung and Rando, 2013).

Recent advances in profiling quiescent and activated NSCs are

increasing our understanding of these cell states. Most ap-

proaches have relied on brain tissue dissociation, cell sorting,

and culturing procedures (Llorens-Bobadilla et al., 2015; Codega

et al., 2014; Martynoga et al., 2013). Here, we reveal a transcript

profile of single quiescent versus reactivating NSC samples
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obtained directly from live brains. The analysis of identified indi-

vidual cells taken directly from living tissues at desired time

points allows us to precisely examine the transcriptional control

at the crossroads of crucial cell fates. Due likely to the reduced

sample number and single-cell cDNA amplification variability

(Tung et al., 2017; Macaulay and Voet, 2014) (Pearson’s r corre-

lations obtained: quiescent NSCs 0.75 < r < 0.81, mean: 0.77; re-

activating NSCs 0.58 < r < 0.67, mean: 0.61), our analysis did not

support FDR correction. However, the identified genes meeting

significance (limma moderated t test, p < 0.05) show consistent

expression changes across replicates, and the regulation of all of

the targets testedwas independently validated. The high conser-

vation with mammalian genes and partial overlap with orthologs

reported to be differentially expressed in mouse quiescent

versus activated NSCs suggest that our dataset is also a valu-

able resource for mammalian NSC research.

Adult NSCs must orchestrate extrinsic signals according to

the organism’s status with intrinsic factors to transit between



Figure 6. Inactivation of PP2A Phosphatase

Results in Premature NSC Reactivation

(A–C) PP2A/mts hypomorphic mutants show pre-

mature NSC size growth. Brain lobes of WT (A)

and mts299/mtsXE2258 mutants (B) at 18 h ALH.

NSCs in red (Dpn), cell membranes in green (Dlg),

and divisions in blue (pH3). Arrowheads: NSC

examples.

(C) Quantification of NSC diameters (WT n = 362

NSCs, 5 BLs, 3 brains; mts299/mtsXE2258 n = 324

NSCs, 6 BLs, 5 brains) and divisions (WT n = 25

BLs, 13 brains; mts299/mtsXE2258 n = 36 BLs, 27

brains). Wilcoxon rank-sum tests; ***p < 0.001;

p > 0.05: ns.

(D–J) NSC-specific expression of dominant-nega-

tive (DN) forms of PP2A catalytic subunit Mts or

regulatory subunit Wdb results in premature

NSC size growth and an increased number of

mitotically reactivated NSCs. Brain lobes of con-

trol (D and G, insc-gal4 > CD8-GFP), mts-DN

(E and H, insc-gal4 > CD8-GFP, mts-DN), and

wdb-DN (F and I, insc-gal4 > CD8-GFP, wdb-DN)

expressing brains at 6 and 18 h ALH. NSC in green

(GFP) and red (Dpn), and divisions in blue (pH3).

Dashed circles: MbNSCs; yellow arrowheads:

quiescent NSC examples; white arrowheads:

prematurely enlarging (E and F) and mitotically

reactivated NSCs (G–I).

(J) Quantification of NSC diameters (6 h ALH: insc-

gal4 > CD8-GFP n = 219 NSCs, 5 BLs, 5 brains;

insc-gal4 > wdb-DN n = 208 NSCs, 5 BLs, 5

brains; insc-gal4 > mts-DN n = 203 NSCs, 5 BLs, 5

brains; 18 h ALH: insc-gal4 > CD8-GFP n = 541

NSCs, 8 BLs, 5 brains; insc-gal4 > CD8-GFP, wdb-

DN n = 373 NSCs, 5 BLs, 5 brains; insc-gal4 >

CD8-GFP, mts-DN n = 323 NSCs, 5 BLs, 5 brains)

and divisions (6 h ALH: insc-gal4 > CD8-GFP

n = 16 BLs, 8 brains; insc-gal4 > CD8-GFP, wdb-

DN n = 20 BLs, 10 brains; insc-gal4 > CD8-GFP,

mts-DN n = 14 BLs, 7 brains; 18 h ALH: insc-gal4 >

CD8-GFP n = 42 BLs, 21 brains; insc-gal4 > CD8-

GFP, wdb-DN n = 22 BLs, 12 brains; insc-gal4 >

CD8-GFP, mts-DN n = 20 BLs, 10 brains). Wil-

coxon rank-sum tests; **p < 0.01, ***p < 0.001;

p > 0.05: ns.

(K–O) NSC-specific expression of mts-DN results in

the increased expression of phosphorylated Akt, as

well as a decrease in ban activity. (K–L’) Brain lobes

of control (K and K’, insc-gal4 > CD8-GFP) and

mts-DN (L and L’, insc-gal4 > CD8-GFP, mts-DN)

expressing brains at 6 h ALH. NSCs in green

(GFP) and red (Dpn), and pAktS505 (blue). pAktS505

also shown in monochrome; insets showing higher

magnifications (K’ and L’).

(M–O) ban-activity sensor, in which a decrease in

GFP signal (green) reflects an increase in ban ac-

tivity, in brain lobes of control (M and M’) and

mts-DN expressing brains (N and N’) at 6 h ALH.

NSCs in red (Dpn) and Mts-DN (HA-tag, blue). GFP

channel also shown in monochrome; insets showing

higher magnification (M’ and N’).

(O) GFP signal (ban-activity sensor) quantification

in NSCs expressing mts-DN normalized to control

NSCs (n = 84 mts-DN NSCs, 19 BLs, 14 brains;

n = 46 control NSCs, 8 BLs, 5 brains; error bars:

SEMs; Wilcoxon rank-sum test; **p < 0.01). Ante-

rior up. Scale bars: 10 mm and 17 mm in insets.

(legend continued on next page)
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quiescence and proliferation. As in mammals, Drosophila

NSCs are dependent on niche signals relaying external stimuli

for both quiescence and reactivation (Tian et al., 2018; Chaker

et al., 2016). In response to a nutritional cue, niche glia cells

activate InR/PI3K/Akt signaling in NSCs to promote reactiva-

tion (Sousa-Nunes et al., 2011; Chell and Brand, 2010). Niche

glia cells also contribute to quiescence by maintaining

Hippo signaling activation in NSCs (Ding et al., 2016). In mam-

mals, the insulin and insulin-like growth factor pathway also

plays a major role in adult NSC reactivation (Renault et al.,

2009; Kippin et al., 2005; Arsenijevic et al., 2001), and

while regulation of the Hippo pathway has not yet been impli-

cated in this process, Hippo signaling maintains liver progen-

itors in quiescence and is indispensable for skin and intestinal

regeneration (Wang et al., 2017; Zhou et al., 2009). Here, we

show that Mob4, Cka, and PP2A phosphatase, identified in

our transcriptome analysis, regulate NSC quiescence to reac-

tivation states, and we propose that they function as an

intrinsic integration mechanism of InR/PI3K/Akt and Hippo

signals.

We detected the catalytic subunit of PP2A, Mts, downregu-

lated at the transcript level in reactivating versus quiescent

NSCs.Mtsmaintains NSCs in quiescence, preventing premature

phosphorylation of Akt, a key component of the InR/PI3K/Akt

signaling cascade. PP2A substrate specificity depends on the

choice from a variety of regulatory subunits (Shi et al., 2016). In

Drosophila, the regulatory subunit Wdb was shown to physically

interact and negatively regulate Akt in ovaries (Vereshchagina

et al., 2008), and has also been implicated in the inhibition of in-

sulin signaling, controlling organism growth and metabolic regu-

lation (Fischer et al., 2015). Wdb orthologs in Caenorhabditis el-

egans (PPTR1) and mammals (B56b) also dephosphorylate Akt

to modulate InR/PI3K/Akt, indicating a conserved role (Rodgers

et al., 2011; Padmanabhan et al., 2009).We demonstrate that the

inhibition of Mts or of Wdb leads to similar premature NSC reac-

tivation effects, suggesting that Wdb/Mts function together to

maintain quiescence. PP2A has been linked to cellular quies-

cence in different contexts. In the developing Drosophila eye

and wing, PP2A/Wdb contributes to a quiescent state upon ter-

minal cell differentiation (Sun and Buttitta, 2015); in cycling hu-

man cells, PP2A is also required for stable quiescence, a func-

tion that is dependent on the B56g subunit (Naetar et al.,

2014). Thus, PP2A may also have an evolutionary conserved

function in maintaining quiescence in NSCs, modulating the

InR/PI3K/Akt signaling cascade. PP2A is a pleiotropic phospha-

tase. In proliferating Drosophila NSCs, it contributes to apical-

basal polarity and prevents excess self-renewal at later larval

stages. Here, Wdb was shown to play no role and instead Twins,

a B55 subunit ortholog, regulated PP2A/Mts action (Chabu and

Doe, 2009; Krahn et al., 2009; Ogawa et al., 2009; Wang et al.,

2009).

In contrast toMts, we found that Mob4 and Cka upregulated in

reactivating versus quiescent NSCs. Both are scaffold proteins
(P) A model of action of STRIPAKMob4/Cka/PP2A members: in quiescent NSCs,

ensuring that InR/PI3K/Akt signaling is maintained switched off. Hippo signaling

promoting NSC size growth and entry into division; both are required to direct Mts

(Sousa-Nunes et al., 2011; Chell and Brand, 2010).
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of STRIPAK, a large molecular complex that is highly conserved

from fungi to humans containing PP2A (Shi et al., 2016). We

demonstrate that the loss of Mob4 or Cka impairs NSC reactiva-

tion, while their overexpression can accelerate it. Furthermore,

ectopic expression of human Mob4 also induced premature

NSC size growth and mitosis entry, suggesting a conserved

function. In cultured S2 cells, Mob4 was shown to focus spindle

fibers duringmitosis (Trammell et al., 2008). OurMob4 analysis in

NSCs exposed a function in cell size growth before mitosis and

additionally showed that MbNSCs, which do not enter quies-

cence, continue dividing in the absence of Mob4, indicating

that the role of Mob4 in NSC reactivation is independent of

that reported in spindle fibers.

STRIPAK/PP2A associates with Hippo in Drosophila and

mammalian cells, and restricts Drosophila Hippo kinase activity

via dephosphorylation (Liu et al., 2016; Couzens et al., 2013; Ri-

beiro et al., 2010). Previous reports revealed cross-talk inhibition

between Hippo and InR/PI3K/Akt pathways in both mammalian

and Drosophila tissues (Straßburger et al., 2012; Tumaneng

et al., 2012). We demonstrate that Mob4 and Cka are both

required for the physical association of Mts to Hippo and its sub-

sequent inhibition, as reported (Ribeiro et al., 2010). We also

show that upon loss ofMob4, theHippo pathway consistently re-

mains switched on in NSCs, and InR/PI3K/Akt signaling is in-

hibited. Finally, we determined that the inhibition of Mts can

enhance Hippo signaling in NSCs but that the effect is overcome

by premature activation of InR/PI3K/Akt, resulting in earlier NSC

reactivation, despite Hippo activity. Our data suggest that as the

levels of STRIPAK members Mob4 and Cka increase in NSCs, a

complex with Hippo kinase assembles recruiting PP2A/Mts pro-

tein to inactivate Hippo signaling. This may function as an

intrinsic molecular switch to turn off Hippo signaling and allow

the InR/PI3K/Akt cascade to turn on (Figure 6P). Given their large

and versatile composition, it is not surprising that STRIPAK com-

plexes are assigned to an increasing number of functions and

linked to clinical conditions, including autism and cancer (Shi

et al., 2016). It will be important to determine whether and how

STRIPAK proteins contribute to regulating the reactivation of

other stem cells.
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Transcriptome data This paper GEO: GSE128646

Experimental Models: Cell Lines
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Gift from B. Edgar (Britton

and Edgar, 1998)
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D. melanogaster: bantam GFP-sensor line,

ban-sensor (db20)

Gift from S.M. Cohen

(Brennecke et al., 2003)

N/A

D. melanogaster: mtsXE225839 mutant:

mtsXE2258/CyO, P{sevRas1.V12}F1 and

mts299 mutant

Gifts from H. Wang (Wang

et al., 2009)

BDSC: 5684; FlyBase:FBst0005684

N/A for mts299

D. melanogaster: Gal4 line under the control

of insc: w[*]; P{w[+mW.hs] = GawB}insc[Mz1407]

Bloomington Drosophila

Stock Center

BDSC: 8751; FlyBase:FBst0008751

D. melanogaster: Gal4 line under the control

of repo: w[1118]; P{w[+m*] = GAL4}repo/TM6, tb

Gift from A. Hidalgo N/A

D. melanogaster: UAS line expressing CD8-GFP:

y[1] w[*]; P{w[+mC] = UAS-mCD8::GFP.L}LL5,

P{UAS-mCD8::GFP.L}2

Lee and Luo, 1999 BDSC: 5137; FlyBase:FBst0005137

D. melanogaster: UAS line expressing dicer2:

UAS-dicer2

Ding et al., 2016 N/A

Oligonucleotides

Primer: Anchored polyT AAGCAGTGGTATCAAC

GCAGAGTACT(26)VN

Bossing et al., 2012 N/A

Primer: SM AAGCAGTGGTATCAACGCAGAG

TACGCrGrGrG

Bossing et al., 2012 N/A

Primer: Nested AAGCAGTGGTATCAACGCAGAGT Bossing et al., 2012 N/A

Primers used for RT-qPCR See Table S4 N/A

dsRNA targeting sequence mob4: Forward: TAATAC

GACTCACTATAGGGagatgtggaagtacgagcacctg

Schulte et al., 2010 N/A

dsRNA targeting sequence mob4: Reverse: TAATACG

ACTCACTATAGGGagatgcgagaagatgcgatacac

Schulte et al., 2010 N/A

dsRNA targeting sequence cka: Forward: TAATACG

ACTCACTATAGGGatacgggtccagttctgtgc

This paper N/A

dsRNA targeting sequence cka: Reverse: TAATACG

ACTCACTATAGGGtgttgtaggccaccacgata

This paper N/A

dsRNA targeting sequence DsRed: Forward: TAATAC

GACTCACTATAGGGgccgatgaacttcaccttgt

This paper N/A

dsRNA targeting sequence DsRed: Reverse: TAATAC

GACTCACTATAGGGcgaggacgtcatcaaggagt

This paper N/A

Recombinant DNA

Plasmid: 12XCSL DsRedExpressDL Hansson et al., 2006 Addgene plasmid #47683

Plasmid: Flag-NTAN Gift from P. Ribeiro (Ribeiro

et al., 2010)

N/A
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Plasmid: Flag-Hippo Gift from P. Ribeiro (Ribeiro

et al., 2010)

N/A

Plasmid: Myc-Mts Gift from P. Ribeiro (Ribeiro

et al., 2010)

N/A

Plasmid: HA-Mts Gift from P. Ribeiro (Ribeiro

et al., 2010)

N/A

Plasmid: Myc-Akt Gift from W. Hongyan

(Li et al., 2014)

N/A

Software and Algorithms

R/Bioconductor Limma Ritchie et al., 2015 https://bioconductor.org/packages/release/

bioc/html/limma.html

STRING v10.5 Szklarczyk et al., 2015 https://string-db.org/cgi/input.pl?sessionId=

QMsQ2cmXKFYZ&input_page_show_

search=on

FlyAtlas Chintapalli et al., 2007 http://flyatlas.org/atlas.cgi

DIOPT – DRSC Integrative Ortholog Prediction Tool Hu et al., 2011 https://www.flyrnai.org/cgi-bin/DRSC_

orthologs.pl
CONTACT FOR REAGENT AND RESOURCES SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Claudia

Barros (claudia.barros@plymouth.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila strains and husbandry
Drosophila stocks obtained from the Bloomington Drosophila Stock Center are:mob4EYDL3 (36331) (Schulte et al., 2010) rebalanced

over CyO, P(GAL4-twi.G)2.2; UAS-mob4RNAi (36488) (Schulte et al., 2010); UAS-mob4 (36329) (Schulte et al., 2010); UAS-hMOB4

(36330) (Schulte et al., 2010); UAS-cka-eGFP (53756); UAS-wdb-DN (UAS-wdb.95-524.HA; 55053) (Hannus et al., 2002); UAS-

wtsRNAi (41899) (Ding et al., 2016); UAS-hpoRNAi (33614) (Ding et al., 2016) and UAS-ckaRNAi (28927). Other stocks used are: Wild-

type Oregon-R (kind gift from M. Akain); UAS-rheb (Blomington 9689) (Sousa-Nunes et al., 2011) (kind gift from R. Sousa-Nunes);

grh-Gal4 (Chell and Brand, 2010) (kind gift from A.H. Brand); UAS-mts-DN (UAS-mts.dn181-HA) (Hannus et al., 2002) (kind gift

from S. Eaton); PH-GFP (tGPH) (Britton and Edgar, 1998) (kind gift from B. Edgar); ban-sensor (db20) (Brennecke et al., 2003)

(kind gift from S.M. Cohen),mts299 andmtsXE2258 (Wang et al., 2009) (kind gifts from H. Wang). NSC-specific RNAi and overexpres-

sion assays were performed using insc-Gal4 (w1118; p{GAWB}inscMZ1407) and glial-specific expression assays used repo-Gal4

(w1118; p{GAWB}repo/TM6b, iab-lacZ). grh-Gal4 driver was recombined with UAS-CD8-GFP. For rescue experiments, insc-Gal4

and repo-Gal4 drivers were recombined or combined with the mob4EYDL3 mutant strain. For other assays, the insc-Gal4 driver

was recombined withUAS-CD8-GFP and/or combinedwithUAS-dicer2 (Ding et al., 2016). Fly lines were kept in standardDrosophila

fly food. Egg collections and larvae rearing were performed on agar juice plates (21 g agar, 200ml of grape juice per l of water) sup-

plemented with yeast paste. Egg lays were collected in either 30min or 1h time-windows. For nutritional deprivation experiments,

freshly hatched larvae were transferred to agar plates prepared with amino-acid free media (5% sucrose, 1% agar in phosphate

buffered saline, PBS).

S2R+ cell culture, transfection and drug treatment
S2R+ cells (kind gift from B. Houdsen) were maintained in 25- or 75-cm2 T-flasks at 25�C in Schneider0s Medium (GIBCO) with 10%

heat-inactivated FBS (One Shot, GIBCO) and antibiotics. For transient transfections, 1.6x106 cells/well were seeded in 6-well plates.

Effectene transfection reagent (Quiagen) was used to transfect 1 mg and/or 2 mg of each appropriate plasmid and/or dsRNA, respec-

tively, following manufacturer guidelines. Cells were incubated 72 hours before harvest. Plasmids used are Flag-NTAN, Flag-Hippo,

Myc-Mts, HA-Mts (kind gifts from P. S. Ribeiro) and Myc-AKT (kind gift from W. Hongyan). For okadaic acid experiments, cells were

transfected as above, incubated 70 hours and treated with 50 nM okadaic acid (CST) or 0.005%DMSO (vehicle; Corning) for 2 hours

prior harvest.
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METHOD DETAILS

NSC transcriptome analysis
Single NSC harvest, mRNA isolation, cDNA generation and microarray hybridization were performed essentially as previously

described (Bossing et al., 2012). Single quiescent (small; 4-5mm) and reactivating (enlarged) NSCs were individually removed from

freshly dissected 17 ALH CNS expressing membrane-tagged GFP specifically in NSCs (grh-Gal4, UAS-CD8-GFP). Samples with

any trace of non-fluorescent material were rejected. Each single cell was expelled in its own Eppendorf tube containing annealing

mix: 0.3 mL anchored polyT primer (50-AAGCAGTGGTATCAACGCAGAGTACT(26)VN-3
0, 10pM), 0.3 mL SM primer (50-AAGCAGTGG

TATCAACGCAGAGTACGCrGrGrG-30, 10pM), 0.4 mL RNase inhibitor (Superase, Ambion) and 2 mL Lysis Mix (10% Nonidet P-40,

0.1M DTT in DEPC-treated ultrapure water), and processed in less than 20 min. Each sample was spun (14000rpm, 1min, 4�C),
primers annealed (3min, 70�C) and snap-frozen in dry ice/ isopropanol. 1.5 mL of mix 1 (1 mL Invitrogen first strand buffer, 0.5 mL

10mM dNTPs) and 0.5 mL of mix 2 (3 mL Invitrogen Superscript II reverse transcriptase, 0.5 mL Ambion Superase RNase inhibitor)

were added per sample. Samples were thawed during centrifugation (14000rpm, 1 min, 4�C) and reverse transcribed (37�C,
90min), followed by enzyme thermal inactivation (65�C, 10 min). RNA was digested in 2 mL digestion mix (0.7 mL Roche RNase

H buffer, 0.5 mL Roche RNase H, 0.8 mL ultrapure water) for 20min at 37�C, followed by enzyme thermal inactivation (65�C,
15 min). For cDNA PCR amplification, 2 mL of nested primer (50-AAGCAGTGGTATCAACGCAGAGT-30), 2 mL dNTPs (10mM), 5 mL

Roche buffer, 0.5 mL Roche Long Expand polymerase and 34.5 mL of ultrapure water were added. PCR program: one cycle (95�C
3min, 50�C 5min, 68�C 15min) followed by 25 cycles (95�C 20 s, 60�C 1min, 68�C 7min). 3 pairs of NSC quiescent/ reactivating sam-

ples showing clear banding patterns on agarose gels were sent for microarray analysis (FlyChip, University of Cambridge). 1 mg of

each sample were Klenow-labeled using BioPrime DNA Labeling System (Invitrogen) in the presence of Cy3- or Cy5-dCTP

(GE Healthcare) for 2 hours 37�C. Unincorporated dye and nucleotides were removed using AutoSeq G-50 columns (GE Healthcare),

following manufacturer instructions. Cy3- and Cy5-labeled pairs of samples were combined with salmon sperm DNA as blocking

agent and co-hybridized (16 hours, 51�C) in a HybStation hybridization station (Digilab Genomic Solutions) on long oligonucleotides

FL003 microarrays (International Drosophila Array Consortium; Gene Expression Omnibus accession number GPL14121). Post-hy-

bridization washes were performed according to Full Moon Biosystems protocols. Detailed protocols for labeling, hybridization and

washing can be requested from the Cambridge Systems Biology Centre UK (https://www.sysbiol.cam/ac.uk/CSBC). Arrays were

scanned at 5 mm resolution (GenePix scanner, Axon Instruments) using optimized PMT gain settings for each channel.

RT-qPCR validation of selected genes was done using SYBRGreen on a StepOnePlus thermal cycler (Applied Biosystems) and

primers indicated in Table S4. ribosomal protein 49 (rp49) was used as internal calibrator for all reactions. Single NSC cDNA samples

used were obtained as described above. Candidates validated were also selected based on their Gene Ontology (GO) Nervous sys-

tem development and Neurogenesis classification (STRING v10.5) (Szklarczyk et al., 2015).

Tissue-specific expression of identified targets was performed using FlyAtlas (Chintapalli et al., 2007). Gene orthology analysis

used DIOPT (DRSC Integrative Ortholog Prediction Tool) (Hu et al., 2011). Protein-protein interaction network of Drosophila

PP2A-STRIPAK components was performed using STRING (v10.5) (Szklarczyk et al., 2015) with experimental-based data only as

source, and as previously described (Zheng et al., 2017; Liu et al., 2016; Ribeiro et al., 2010).

Immunohistochemistry and EdU incorporation
Immunohistochemistry assays were performed as previously described (Chell and Brand, 2010), with minor modifications. Briefly,

larval CNSs were dissected in PBS and fixed for 20 min in 4% formaldehyde/PBS with 5 mM MgCl2 and 0.5 mM EGTA or

10 mM MgCl2 and 1 mM EGTA (3rd instar larvae), followed by washes in PBS (2 3 10 min, 3 rinses between washes) and block for

1h in PBST (PBS, 1% Triton X-100) with 10% fetal bovine serum (FBS). Primary antibodies were incubated in PBST overnight or

for 2 nights at 4�C. CNSs were washed in PBST and secondary antibodies incubated 2h at room temperature, followed by PBST

washes and sequentially embedding in 50% and 70% glycerol before mounting in a 1:1 mix of 70% glycerol and Vectashield (Vector

Laboratories). Antibodies used are: rabbit anti-GFP (1:1000, kind gift from U. Mayor), chicken anti-GFP (1:500, Millipore), guinea pig

anti-Dpn (1:2000, kind gift from J. Knoblich), guinea pig anti-Mob4 (1:1000, kind gift from T. Littleton), mouse anti-Dlg (1:50, DSHB),

rabbit anti-pH3 (1:1000, Abcam), rabbit anti-Cka (1:1000, kind gift fromW. Du), rabbit anti-pAKTS505 (1:50, CST) and rat anti-HA clone

3F10 (1:1000, Roche). EdU incorporation assays were performed as previously described (Sousa-Nunes et al., 2011). Briefly, CNSs

were dissected in PBS and incubated in 10 mMEdU/PBS for 1h at room temperature. CNSswere fixed for 15min in 4% formaldehyde/

PBS and incorporated EdU detected using Click-iT EdU Imaging kit following manufacturer instructions (Invitrogen).

Image acquisition and processing
Images were obtained on a Leica SP8 confocal laser-scanning microscope using LAS X software. Quantifications were made using z

stacks of 1.5 mm step size, comprising whole brain lobes, VNCs or CNSs. Representative images shown are single optical sections,

with the exception of Figure 1A, which is a z-projection stack (3 steps, 0.5 mm each), and EdU incorporations, which are z-projection

stacks encompassing whole CNSs. Images were processed in Fiji v2.0 or Adobe Photoshop CS6 and assembled in Adobe Illustrator

CS6. NSC sizes (maximum diameters) (Chell and Brand, 2010), pH3 scorings, Mob4 and Cka signal intensities (pixel intensity/ NSC

maximum area), ban-GFP signal intensity (pixel intensity/ NSCmaximum area outlined by Dpn staining) and EdU voxel quantification

were performed using Fiji v2.0 or Adobe Photoshop CS6.
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dsRNA synthesis
For cka, mob4 and DsRed dsRNA, DNA templates of target genes were PCR amplified from larval genomic DNA or 12XCSL-

DsRedExpressDL plasmid (Addgene) to include the T7 promoter sequence on both ends. Primers used are: dsRNAmob4_Fwd:

50-TAATACGACTCACTATAGGGagatgtggaagtacgagcacctg-30(Schulte et al., 2010), dsRNAmob4_Rev: 50-TAATACGACTCACTA

TAGGGagatgcgagaagatgcgatacac-30(Schulte et al., 2010), dsRNAcka_Fwd: 50-TAATACGACTCACTATAGGGatacgggtccagttct

gtgc-30, dsRNAcka_Rev: 50-TAATACGACTCACTATAGGGtgttgtaggccaccacgata-30, dsRNADsRed_Fwd: 50-TAATACGACTCACTA

TAGGGgccgatgaacttcaccttgt-30, dsRNADsRed_Rev:
50-TAATACGACTCACTATAGGGcgaggacgtcatcaaggagt-30. The size of DNA bands was confirmed, purified using QIAquick Gel

Extraction Kit (QIAGEN) and used as template for dsRNA synthesis. In vitro transcriptions were performed using MEGAscript T7

kit (Invitrogen), incubated for 6 hours at 37�C and treated with TURBO DNase (Invitrogen) for 15 min at 37�C. RNA was precipitated

using LiCl precipitation solution (Invitrogen) and re-hydrated in ultrapure water. dsRNA was annealed by incubation at 65�C 30 min

and cooled down to room temperature.

Co-immunoprecipitations and western blotting
S2R+ cells were harvested and lysed in lysis buffer (25mM Tris, 0.15M NaCl, 1mM EDTA, 1% NP-40, 5% glycerol; pH 7.4) supple-

mented with protease inhibitor (Complete, EDTA-free; Sigma) and phosphatase inhibitors (cocktails B+C; Santa Cruz Biotech-

nology). Cell extracts were spun at 14000 rpm for 30 min at 4�C and proteins quantified (BCA protein assay, Pierce). Using the Pierce

Co-immunoprecipitation kit (Pierce), 20 mg of anti-Flag M2 (Sigma), anti-HA (3F10; Roche), or rat IgG (Sigma) were immobilized in

50 mL of AminoLink Plus Coupling resin slurry following manufacturer instructions. Protein lysates were incubated in the resin on a

rotator at 4�C overnight, washed 4 times with PBS and eluted following manufacturer instructions. Detection of proteins was per-

formed using standard SDS-PAGE and western blotting using ECL or ECL Plus chemiluminescent substrate (Pierce). Antibodies

used are: rabbit anti-Akt (1:500, CST), rabbit anti-pAktS505 (1:500, CST), rabbit anti-b-Actin (1:1000, CST), mouse anti-Flag clone

M2 (1:3000, Sigma), mouse anti-Myc clone 9E10 (1:500, Santa Cruz Biotechnology), rabbit anti-Cka (1:5000, kind gift from W.

Du), guinea pig anti-Mob4 (1:5000, kind gift from T. Littleton), rabbit anti-pMST1T183/pMST2T180 (1:500, CST), guinea pig anti-Hippo

(1:5000, kind gift from G. Halder) and rat anti-HA clone 3F10 (1:3000, Roche).

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptome data: all genes with raw signal intensity values below 150 were removed from the analysis, generating a matrix con-

taining 2455 genes. Quantile normalization (Bolstad et al., 2003) across all samples was performed using R/Bioconductor limma

package (Ritchie et al., 2015). Remaining genes were analyzed with limma, by fitting a linear model. Adjusting p-values with False

Discovery Rate (FDR) did not reach statistical significance. Instead, a limma moderated paired t test was employed. Targets with

expression fold changeswith associated p < 0.05 valueswere used for subsequent analysis, including expression validation. Expres-

sion of selected candidate genes assayed by RT-qPCR was quantified using the Livak method (Livak and Schmittgen, 2001).

Other statistics were performed using SigmaPlot Version 12.5 (Systat software): Shapiro-Wilk and equal variance tests used to

evaluate normality; Student0s t test applied when data fitted a normal distribution; Wilcoxon rank-sum test used for non-parametric

data; p < 0.05 considered significant. Data from Drosophila in vivo assays were obtained from a minimum of two biological replica

sets; sample numbers are indicated in figure legends. Cell culture/ biochemistry results derive from a minimum of three independent

assays. Histograms show mean ± standard error of the mean. Boxplots represent 25th and 75th percentiles, black line indicates

median, red line specifies mean, whiskers indicate 10th and 90th percentiles.

DATA AND SOFTWARE AVAILABILITY

Processed transcriptome data is shown in Table S1. Raw transcriptome data has been deposited in the Gene Expression Onmibus

(GEO) public database under ID code GSE128646.
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Supplemental Figures and Figure Text 
 

 
Figure S1, related to Figure 1. Tissue expression enrichment and orthology 
conservation of identified targets in transcriptome analysis. (A) Heatmap 

depicting identified larval and adult tissue-specific gene sets enriched by a minimum 

of 2-fold to expression in whole fly. gl: gland. Sperm: spermatheca; acc: accessory; 

TAG: thoracicoabdominal ganglion. See also Table S2. (B) Number of human and 

mouse orthologues (single best matches) of identified genes grouped by orthology 

score (DIOPT) (Hu, et al., 2011). See also Table S1. (C) Number of identified genes 

with mouse orthologues (single best matches) reported upregulated in quiescent or 

proliferating mouse embryonic or adult NSCs, skeletal muscle satellite stem cells 

(MuSCs) and hematopoietic stem cells (HSC). DIOPT score groups indicated. See 

also Table S3. The data used for the above assays comprise targets identified in our 

transcriptome analysis as up- or downregulated in reactivating (R) versus quiescent 

(Q) NSCs (limma moderated t-test, p<0.05). 

 

 

 

 

 

 

 



 
Figure S2, related to Figure 2. NSC reactivation defects upon Mob4 loss or 
inhibition. (A-G) NSC enlargement and division is impaired in mob4 mutant ventral 

nerve cords (VNCs). VNCs of WT (A, 1h ALH; B, 4h ALH; C, 24h ALH) and mob4∆L3 

(D, 1h ALH; E, 4h ALH; F, 24h ALH). NSCs in red (Dpn), cell membranes in green 

(Dlg), divisions in blue (pH3). Yellow and white arrowheads indicate quiescent and 

reactivated NSC examples, respectively. Scale bar: 10µm. Anterior up. (G) 

Quantification of NSC diameters (1h ALH: WT n=316 NSCs, 7 VNCs; mob4∆L3 

n=171 NSCs, 5 VNCs. 4h ALH: WT n=700 NSCs, 6 VNCs; mob4∆L3 n=331 NSCs, 5 

VNCs. 24h ALH: WT n=584 NSCs, 5 VNCs; mob4∆L3 n=88 NSCs, 8 VNCs) and 

proliferation (1h ALH: WT n=12 VNCs; mob4∆L3 n=12 VNCs. 4h ALH: WT n=12 

VNCs; mob4∆L3 n=12 VNCs. 24h ALH: WT n=12 VNCs; mob4∆L3 n=12 VNCs). (H-J) 

NSCs in mob4 mutant larval brains do not enter S-phase, except the MbNSCs. WT 

(H) and mob4∆L3 (I) CNSs at 24hph Edu-labelled (red). (J) Quantification of Edu+ 



voxels from CNSs, normalized to controls (WT n=7 CNSs, mob4∆L3 n=8 CNSs; error 

bars: s.e.m). Scale bar: 50µm. (K-M) NSC-specific expression of mob4-RNAi results 

in a small reduction in cell size and decreased number of NSCs in division. Brain 

lobes (BLs) of control (K, insc-gal4>CD8-GFP) and mob4-RNAi expressing brains (L, 

insc-gal4> CD8-GFP, mob4RNAi) at 18h ALH. NSCs in green (CD8-GFP, GFP) and 

red (Dpn), divisions in blue (pH3). Arrowheads: NSC examples. Anterior up. Scale 

bar: 10µm. (M) Quantification of NSC diameters (insc-gal4>CD8-GFP, n=684 NSCs, 

9 BLs, 9 brains; insc-gal4> CD8-GFP, mob4RNAi n=614 NSCs, 8 BLs, 8 brains) and 

divisions (insc-gal4>CD8-GFP, n=46 BLs, 23 brains; insc-gal4> CD8-GFP, mob4RNAi 

n=28 BLs, 14 brains). Wilcoxon rank sum tests, ***p<0.001, p>0.05: non-significant 

(ns). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S3, related to Figure 3. Mob4 overexpression does not lead to NSC 
overproliferation nor induces NSC reactivation under nutrition restriction. 
NSC-specific mob4 overexpression does not affect NSC proliferation in late larval 

brains (A-C) nor promotes reactivation of NSCs in larvae deprived of amino acids 

(sucrose-only diet; D-F). Brain lobes (BLs) of control (A, D, insc-gal4>CD8-GFP) and 

mob4 overexpressing brains (B, E, insc-gal4>CD8-GFP, mob4) at 94h (A, B) and 

18h ALH (D, E). NSCs in green (GFP) and red (Dpn), divisions in blue (pH3). 

Dashed line: central brain region. White arrowheads: dividing NSC examples. Yellow 

arrowheads: quiescent NSC examples. Dashed circles: MbNSCs. Scale bar: 10µm. 

Anterior up. (C) Quantification of NSC divisions (94h ALH: insc-gal4>CD8-GFP n=10 

BLs, 10 brains; insc-gal4>CD8-GFP, mob4 n=10 BLs, 10 brains). (F) Quantification 

of NSC diameters (18h ALH: insc-gal4>CD8-GFP n=200 NSCs, 6 BLs, 5 brains; 

insc-gal4>CD8-GFP, mob4 n=376 NSCs, 5 BLs, 5 brains) and divisions (18h ALH: 

insc-gal4>CD8-GFP n=22 BLs, 16 brains; insc-gal4>CD8-GFP, mob4 n=30 BLs, 16 

brains). Wilcoxon rank sum tests, p>0.05: non-significant (ns). 

 
 
 
 
 
 
 



 
Figure S4, related to Figure 5. Cka inhibition delays NSC growth and division. 
(A-C) Cka is upregulated in reactivating (R) compared with quiescent (Q) NSCs. 

Examples of quiescent (small; A) and reactivating (enlarged, B) NSCs in 17h ALH 

brains (VNC thoracic region) labelled with grh-Gal4 driving CD8-GFP (GFP, green), 

Cka (red) and Dpn (blue). Cka channel also shown in monochrome. Dashed lines: 

cell bodies. (C) Cka protein quantification in reactivating normalised to quiescent 

NSCs (n= 20 reactivating NSCs and n=20 quiescent NSCs, 20 BLs, 10 brains; error 

bars: s.e.m.; Wilcoxon rank sum test, *p<0.05). (D-F) NSC-specific expression of 

cka-RNAi results in reduced cell size and decreased number of NSCs in division. 

Brain lobes (BLs) of control (D, insc-gal4>CD8-GFP) and cka-RNAi expressing 

brains (E, insc-gal4> CD8-GFP, ckaRNAi) at 18h ALH. NSCs in green (CD8-GFP, 

GFP) and red (Dpn), divisions in blue (pH3). Arrowheads: NSC examples. Anterior 

up. Scale bar: 10µm. (F) Quantification of NSC diameters (insc-gal4>CD8-GFP, 

n=584 NSCs, 8 BLs, 4 brains; insc-gal4> CD8-GFP, ckaRNAi n=658 NSCs, 8 BLs, 4 

brains) and divisions (insc-gal4>CD8-GFP, n=17 BLs, 9 brains; insc-gal4> CD8-

GFP, ckaRNAi n=20 BLs, 10 brains). Wilcoxon rank sum tests, ***p<0.001. 
 
 
 
 
 
 
 
 



 
Figure S5, related to Figure 5. Inhibition of Mob4 and Cka increase Hippo 
phosphorylation. (A) Efficiency of mob4 and cka RNAi-mediated depletions used in 

Drosophila S2R+ assays. dsRNAs targeting mob4 or cka, but not DsRed control, 

lead to depletion of Mob4 and Cka proteins. Lysates analysed with indicated 

antibodies. b-Actin: loading control. Quantification of Mob4 and Cka signal intensities 

normalised to control (DsRed RNAi) levels (lower panel; n=3 independent assays; 

error bars: s.e.m; Student’s t-tests, ***p<0.001). (B) Mob4/ Cka depletion leads to 

increased levels of activated (phosphorylated) Hippo (pHippo) in S2R+ cells, 

consistent with published studies (Zheng, et al., 2017; Liu, et al., 2016; Ribeiro, et 

al., 2010). Drosophila S2R+ cells treated with dsRNAs targeting mob4 and cka or 

control DsRed, as well as in the presence of vehicle (0.0005% DMSO) or Okadaic 

acid (OA) as a positive control for hippo phosphorylation. Lysates analysed by 

western-blot with indicated antibodies. b-Actin: loading control. Note the total Hippo 

band mobility shift due to hyperphosphorylation in OA-treated samples. 

Quantification of pHippo levels shown as mean of the ratio between pHippo and total 

Hippo signal intensities relative to control (DsRed RNAi) levels (lower panel; n=3 

independent assays; error bars: s.e.m; Student’s t-tests, p*<0.05, p>0.05: non-

significant, ns).  
 
 
 
 
 



 
Figure S6, related to Figure 5. Inhibition of Mob4 and Cka does not affect Akt 
phosphorylation nor the association of PP2A/Mts to Akt. (A, B) Depletion of 

mob4 and cka has no effect in the levels of activated (phosphorylated) Akt (pAktS505) 

in S2R+ cells (A) with or without stimulation with Insulin (B). (A) Drosophila S2R+ 

cells treated with dsRNAs targeting mob4 and cka or control DsRed, as well as in the 

presence of Okadaic acid (OA) as a positive control for Akt phosphorylation or 

vehicle (V). Lysates analysed with indicated antibodies. b-Actin: loading control. 

Quantification of pAkt levels shown as mean of the ratio between pAkt and total Akt 

signal intensities relative to control (DsRed RNAi) levels (lower panel; n=3 

independent assays). (B) RNAi-mediated depletion of mob4 and cka, or control 

DsRed, in S2R+ cells treated with Insulin or vehicle. Lysates analysed by western-

blot with indicated antibodies. b-Actin: loading control. Quantification of pAkt levels 

shown as mean of pAkt/ Akt signal intensity ratios relative to control (DsRed RNAi) 

levels (right panel; n=3 independent assays). (C) Co-IP assays using S2R+ cells 



expressing Myc-Akt and HA-Mts, in addition to RNAi against mob4 and cka or 

control DsRed. Lysates and HA-purified immunoprecipitates analysed by western-

blot with indicated antibodies. Negative control co-IP performed using rat IgG instead 

of rat anti-HA antibody. Quantification of relative binding of Myc-Akt to HA-Mts 

shown as mean of the ratio between Myc-Akt and HA-Mts signal intensities relative 

to control (DsRed RNAi) levels (lower panel; n=3 independent assays). Error bars: 

s.e.m. Wilcoxon rank-sum tests, p>0.05: non-significant (ns).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 
 

Gene (Symbol) Forward Primer (5’®3’) Reverse Primer (5’®3’) Source 
ase CACCTACCAACTGCTGACG GCTGCTGCTGCTAATGTTG This paper 
dpn CGCTATGTAAGCCAAATGGATGG CTATTGGCACACTGGTTAAGATGG (Berger, et al., 

2012) 
rheb TGAGGTGGTGAAGATCATATACGAA GCCAGCTTCTTGCCTTCCT (Zitserman, et al., 

2012) 
cka GGAGACGGAAGGCGTCAT TCTCGTCGTCGGACATC This paper 
CG10903 GAGTCTCGGTTGATTTTGGACA TCTCCCAGAATGACATCCCCA This paper 
asf1 GGGCGACACATCTTTGTCTTC GCAGGTAAGCAGAACAATGGTAA This paper 
Gbeta13F TGGTGGCTATCTATCGTGCTG GCCCAAAAACGAGGTTACCTG This paper 
phax ATGATGGAACTGCACGCAAAT CAGGTGGTAAGGGGACTGG This paper 
NiPp1 ATGGCTAACAGCTACGACATACC TGTTGCGACCAAATAGATAGCAT This paper 
mob4 TGGGCACGATCAGATTCTCC CATCTTCTCGCACGCCTACT This paper 
crc GAAAACTGGGAGGATACGTGG GAGAGGTCTGAATGCCTTTGTC This paper 
bet3 ATGTCACGACAAGCCTCTCG GAGTGCTCCGTAGGTGAGT This paper 
ed GATGAGCTCCTGTTCTCCGG GTTGGAATCGCAATGGTCGG This paper 
pdp1 AATCCCCATTACCAGCGCAA GGCATTCCCATTCGATCCCT This paper 
how AACTTTGTCGGTCGCATTTT CGTCCTCCTTCTTCTTGTCG This paper 
p120ctn AACATGGACCTTTCATTGACGC ATATCCTGCTGCCGAAAATTGA This paper 
Rip11 TGGAGTCCGACGCACTGTA CAATGGTGACGAAGCAGTTGT This paper 
l(2)35Df CATCGAAAGAAGCTACATCCTCC GTGGGTTCGTCATCTGCATTAT This paper 
nito ACAAGAAGTTTGGCGATTTTAGC CTTCAGGCGTTCGGAAGCAA This paper 
mts TCCAGTTCCATAAGAGCCGC CACGATCGCAATGTGGTCAC This paper 
rp49 (calibrator) GCTAAGCTGTCGCACAAATG GTTCGATCCGTAACCGATGT (Kohyama-

Koganeya, et al., 
2008) 

	
Table S4, related to STAR Methods. Primers used for real-time quantitative 
PCR assays.  
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