Supplementary data for

Alternative $\sigma^{I}/anti-\sigma^{I}$ factors represent a unique form of bacterial $\sigma/anti-\sigma$ complex

Zhen Wei^{1,2,3,4}, Chao Chen^{1,2,3}, Ya-Jun Liu^{1,2,3}, Sheng Dong^{1,2,3}, Jie Li^{1,2,3,4}, Kuan Qi^{1,2,3,4}, Shiyue Liu^{1,2,3,4}, Xiaoke Ding^{1,2,3}, Lizett Ortiz de Ora⁵, Iván Muñoz-Gutiérrez⁶, Yifei Li^{1,2,3}, Hongwei Yao⁷, Raphael Lamed⁵, Edward A. Bayer⁶, Qiu Cui^{1,2,3}, Yingang Feng^{1,2,3,*}

¹ CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

² Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

³ Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess

Technology, Chinese Academy of Sciences, Qingdao 266101, China

⁴ University of Chinese Academy of Sciences, Beijing 100049, China

⁵ Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel

⁶ Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel

⁷ High-Field Nuclear Magnetic Resonance Center, Xiamen University, 422 South Siming Road, Xiamen 361005, China

* To whom correspondence should be addressed. Mail address: 189 Songling Road, Laoshan District, Qingdao 266101, China. Tel.: +86-532-80662706. E-mail: <u>fengyg@qibebt.ac.cn</u>

Present address: Lizett Ortiz de Ora, Department of Chemistry, University of California, Irvine, California, USA; Iván Muñoz-Gutiérrez, Outreach Research Training and Minority Science Programs, School of Biological Sciences, University of California, Irvine, California, USA; Yifei Li, Vonsun Pharmatech (Suzhou) Co., Ltd., Room 213, Building A4, No 218 Xinghu Street, Suzhou industrial park, Suzhou, Jiangsu, 215000, China.

Table of Contents

Figure S1. Sequence alignments of the eight pairs of $RsgI_N(A)$ and $SigI_C(B)$ from *C*. *thermocellum*.

Figure S2. The ¹H-¹⁵N HSQC spectrum of RsgI1_N with peak assignments.

Figure S3. The NMR titrations of RsgI1N and SigI1 domains.

Figure S4. Mass spectrometry results for RNAP component identification of the purified *C. thermocellum* RNAP.

Figure S5. The ${}^{1}\text{H}-{}^{15}\text{N}$ HSQC spectrum of the RsgI1_N-Sig1I_C complex with peak assignments.

Figure S6. Structure comparison of $RsgI1_N$ in free form and in the $RsgI1_N$ -SigI1_C complex.

Figure S7. The ¹H NMR spectra of RsgI1_N mutants.

Figure S8. NMR titrations for mutated sites that contributed to specific recognition of $RsgI1_N$ for $SigI1_C$.

Table S1. Primer sequences and restriction enzymes used for protein expression constructs in this study.

Table S2. Specific primer sequences for plasmid mutagenesis used in this study.

Table S3. Sequence identities among different pairs of $RsgI_N$ or $SigI_C$.

Table S4. Structural statistics of $RsgI1_N$ and the $SigI1_C$ - $RsgI1_N$ complex.

Table S5. Numbers of identical residues in the interfaces of the RsgI_N-SigI_C complexes.

Table S6. Intermolecular interactions in the structure of the $SigI1_C$ -RsgI1_N complex and the structural model of the $SigI2_C$ -RsgI2_N complex.

Figure S1. Sequence alignments of the eight pairs of RsgI_N (A) and SigI_C (B) from *C*. *thermocellum*. The sequences of RsgI_N and SigI_C from *Bacillus subtilis* (BsRsgI_N and BsSigI_C, respectively) are also shown at the bottom of the alignments. Secondary structures of the SigI1_C-RsgI1_N complex are indicated at the top of the sequences. Red-highlighted frames indicate residues that are identical, while blue frames represent conserved residues. Residues involved in the interactions between SigI1_C and RsgI1_N are indicated by filled triangles. Positively charged residues for potential promoter binding are indicated by open circles.

Figure S2. The ¹H-¹⁵N HSQC NMR spectrum of RsgI1_N with peak assignments. Resonance peaks for backbone and side chain amide groups were labeled with one-letter code for amino acid residue type followed by the sequence position. Side chain NH₂ resonance peaks of Asn and Gln were labeled in blue with an accompanying δ and ε , respectively, and were connected by a horizontal line. Resonance peaks corresponding to the side chain NH_{ε} of Arg were labeled with an accompanying ε in magenta. The resonance peaks of Arg side chains were folded into the spectrum from their original ¹⁵N chemical shifts by adding a spectrum width of 30 ppm.

Figure S3. NMR titrations of RsgI1_N and SigI1 domains. (A) ¹H-¹⁵N HSQC spectra of RsgI1_N titrated with different ratios of SigI1_N. (B) ¹H-¹⁵N HSQC spectra of SigI1_N titrated with different ratios of RsgI1_N. (C) ¹H-¹⁵N HSQC spectra of RsgI1_N titrated with different ratios of SigI1_C. (D) ¹H-¹⁵N HSQC spectra of SigI1_C titrated with different ratios of RsgI1_N. (E) ¹H-¹⁵N HSQC spectra of RsgI1_N in complex with SigI1_C titrated with SigI1_N. (F) ¹H-¹⁵N HSQC spectra of SigI1_N titrated with SigI1_N titrated with SigI1_N.

RNA polymerase, α subunit

MIEIEKPKIE	CVVCSEDNR <mark>M</mark>	GKFVVEPLER	GYGITLGNSL	RRILLSSLPG	VAVTSI KIDG	VLHEFSTIPG	VIEDVTEIIL	NIK <mark>ELSLNFH</mark>	GEGPKVIYID
AEGEGEVKAK	DIKADADVEI	LNPEHKIATL	SGDHRLYMEM	TIDKGRGYVS	AEKNKHPGQP	IGVIPVDSIF	TPVHKVNYTV	ENTRVGQVTD	YDKLTLEVWT
NGSIKPDEAI	SLGAKILSEH	LNLFIDLSDN	AK NAEIMVEK	EETKK <mark>EKVLE</mark>	MTIEELDLSV	RSYNCLKRAG	INTVEDLISR	TEEDMMKVRN	LGR <mark>KSLEEVV</mark>
NKLKALGLSL	APSED								

RNA polymerase, β subunit

MVHPVKLGRN	VRMSYSK <mark>IDE</mark>	VIDMPNLIEI	QK NSYEQFLK	EGFKEVFKDV	NPITDYTGNL	ILEFVDYSLD	EPPKYSVDEC	KERDATYAAP	LKVKVRLINK
ETGEVKEQEI	FMGDFPLMTE	TGTFIINGAE	R <mark>VIVSQLVR</mark> S	PGIYYAMKID	KAGKQLFSNT	VIPNR <mark>GAWLE</mark>	YETDSNDVLS	VR IDRTRKLP	LTVLVR <mark>ALGY</mark>
GTDLEITELF	GEDERILATI	QKDSTKTEEE	GLLEIYKRLR	PGEPPTVESA	KALLHGLFFD	PKRYDLAKPG	RFKFNKKLSI	AAR <mark>IHGFIAG</mark>	ENIKDPDTGE
IIVAEGETIS	REKAETIQNA	GVNTVILRVD	GK NVKVIGND	MVDIKR <mark>YVDF</mark>	DPKEIGINEK	VKRDVLMEIL	EEYKGKGDDA	IKKALQER <mark>ID</mark>	DLIPK HITKE
DIISSISYII	GLSYGIGSTD	DIDHLGNRRL	RSVGELLQNQ	FRIGLSRMER	VVRERMTIQD	LDVVTPQALI	NIRPVAAAIK	EFFGSSQLSQ	FMDQTNPLAE
LTHKRR <mark>LSAL</mark>	GPGGLSR ERA	GFEVRDVHHS	HYGRMCPIET	PEGPNIGLIG	SLSTYARVNE	YGFIETPYRK	VSKEEPGKVT	NEIVYLTADE	EDEYIIAQAN
EPLDEEGRFI	SNKVVCRYKE	EFIEVDPSKI	DFMDVSPKQI	VSVATSMIPF	LENDDANRAL	MGANMQRQAV	PLIK <mark>TESPIV</mark>	GTGIEYR AAR	DSGVVILAKN
PGVVEKVTAN	EIIIR TKDGK	RDTYKLLKYM	RSNQGTCINQ	RPIVK <mark>KGEEV</mark>	EAGDVIADGP	STDNGEIALG	KNVLVGFMTW	EGYNYEDAIL	ISER <mark>LVKDDV</mark>
FTSIHIEEYE	AEARDTKLGP	EDITREIPNV	SEDALKDINS	EGIIR IGAEV	R <mark>AGDILVGKV</mark>	TPKGETELTA	EER LLRAIFG	EKAREVR <mark>DTS</mark>	LRVPHGESGI
VVDVK IFTRE	NGDELAPGVN	KLVRVYVAQK	RKISVGDKMA	GRHGNKGVIS	RILPVEDMPF	LPDGTPLDIV	LNPLGVPSRM	NIGQVLEVHL	GYAAKALGWK
VATPVFDGAT	EEDIVQTLRK	AGLAEDGKSI	LYDGRTGEPF	ENRVTVGYMY	MLK LAHLVDD	KIHARSTGPY	SLVTQQPLGG	KAQFGGQRFG	EMEVWALEAY
GAAYTLQEIL	TVKSDDVVGR	VKTYEAIVKG	ENVPEPGIPE	SFKVLIK <mark>ELQ</mark>	SLCLDVKVYS	EEQEEIAIKE	SVEDDLEELN	VNIEGR EDEV	NFNEFNDIGE
EITDEDLEVE	DFDLQDLNDD	DINPDDTIDA	ELDDNLFDDD	FDDTFDDDDL					

RNA polymerase, β ' subunit

MFELNNFDSI	RIGLASPEKI	REWSRGEVK <mark>k</mark>	PETINYRTLK	PERDGLF CER	IFGPQKDWEC	HCGKYKRIRY	KGIVCDRCGV	EVTRSKVRRE	RMGHIELAAP
VSHIWYFKGI	PSR <mark>MGLLLDM</mark>	SPRALEKILY	FAAYVVIDPG	<mark>QTPLSK</mark> KQIL	SEKEYRDSLE	KFGPKFRAGM	GAEAVR <mark>ELLQ</mark>	EINLDELSAE	LREEIK QSTG
QKRVRAIK <mark>RL</mark>	EVVEAFRQSQ	NKPEWMILDV	IPVIPPELRP	MVQLDGGR <mark>FA</mark>	TSDLNDLYRR	VINRNNRLK <mark>R</mark>	LLDLGAPDII	VR NEKR MLQE	AVDALIDNGR
RGRPVTGPGN	RPLKSLSDML	KGKQGR <mark>FRQN</mark>	llgk rvdysg	R <mark>SVIVVGPEL</mark>	K IYQCGLPKE	MALELFKPFV	MK <mark>KLVNDGLA</mark>	HNIK <mark>SAKRMV</mark>	ERVRNEVWDV
LEEVIKEHPV	LLNR APTLHR	LGIQAFEPVL	VEGRALKLHP	LVCTAYNADF	DGDQMAIHVP	LSAEAQAEAR	FLMLSANNLL	KPQDGKPVAV	PTQDMVLGSY
YLTILKEGAK	GEGRVFTSMD	EAVMAYDNGE	IELHSKIKVR	MKRVVDGVEK	SKIIETTLGR	LIFNEAIPOD	LGFVDRSDPD	KIFDLEVDFL	VGKNELK KII
DKSIKVHGTT	KTAILLDKIK	ELGFKYSTK <mark>G</mark>	AITISISDMV	IPEVKAK <mark>YIK</mark>	ETEEKIEK <mark>I</mark> IT	KQYKR <mark>GLISD</mark>	EERYNSVIAA	WTEASENITR	ALINNLDRFN
PVYMMSQSGA	RGNINQIKQL	AGMRGLMADT	SGK <mark>TIEFPIK</mark>	ANFREGLTVM	EFFISTHGAR	KGLADTALRT	ADSGYLTRRL	VDVSQDVIVR	ETDCGTR <mark>KGI</mark>
EVTDIKDGNE	VIEELSERII	GRYPVGNIVH	PETGEIIVEA	gr mitdqdae	KIVKAGIKKV	RIRSVLTCHS	EYGVCAKCYG	ANLATGEECN	VGEAVGIIAA
QSIGEPGTQL	TMR <mark>TFHTGGV</mark>	AGEDITQGLP	RVEELFEARK	PK <mark>GLAIISEI</mark>	KGTVK ISETK	KKR <mark>EIVVTSE</mark>	DGETRSYLIP	YGSR <mark>IKVSDG</mark>	DQVEAGDELT
EGSVNPHDIL	K IKGVEAVQT	YLVHEVQKVY	RMQGVDINDK	HIEVIVR <mark>Q</mark> ML	RK <mark>VKVEDPGD</mark>	TSLLPGGLVD	VFDFEEENAK	AIAEGKKPAV	AKR <mark>ALLGITK</mark>
AALATDSFLS	AASFQETTRV	LTEAAIK <mark>GKV</mark>	DPLVGLKENV	IIGKLIPAGT	GMSRYKDITI	STVTE			

RNA polymerase, ω subunit

MKEKK<mark>ERVSS MIEPSINSLL EKVDSRYTLV VATAKR</mark>AR**QL IDGANKLTNC ESDKPVTVAT NEINENKITY IR**TKSGIK

Figure S4. Mass spectrometry results for RNAP component identification of the purified *C*. *thermocellum* RNAP. The identified peptides in mass spectrometry are highlighted in green.

Figure S5. The ¹H-¹⁵N HSQC NMR spectrum of the RsgI1_N-Sig1I_C complex with peak assignments. Resonance peaks for backbone and side chain amide groups were labeled with oneletter code for amino acid residue type followed by the sequence position. Side chain NH₂ resonance peaks of Asn and Gln were labeled in blue with an accompanying δ and ε , respectively, and were connected by a horizontal line. Resonance peaks corresponding to the side chain NH_{ε} of Arg were labeled with an accompanying ε in magenta. The resonance peaks of Arg side chains were folded into the spectrum from their original ¹⁵N chemical shifts by adding a spectrum width of 34 ppm.

Figure S6. Structure comparison of $RsgI1_N$ in free form (light grey) and in the $RsgI1_N$ -SigI1_C complex (blue and yellow). The C-terminal difference caused by the interaction between V49 of $RsgI1_N$ and V167/L168 of SigI1_C is shown in detail.

Figure S7. The ¹H NMR spectra of RsgI1_N **mutants.** The proper folding of each mutant is verified by the well-dispersed peaks in both the low field (7.0-10.2 ppm) and the high field (-0.5-1.0 ppm) regions.

Figure S8. NMR titrations for mutated sites that contribute to specific recognition of RsgI1_N for SigI1_C. The ¹H-¹⁵N HSQC spectra of SigI1_C (left) and SigI2_C (right) without and with wild-type RsgI1_N, its mutants, or RsgI2_N (molar ratio 1:1) are shown in black and red, respectively. The free SigI2_C and SigI1_C have similar spectra, and only a few crowded peaks can be observed in the central region of the spectra. The addition of wild-type RsgI2_N into SigI1_C resulted in a well-dispersed spectrum, but the addition of wild-type RsgI1_N into SigI2_C resulted in only a slight change in the spectrum, thus indicating the specificity of the two RsgI factors. By adding the single, double, and triple mutants of RsgI1_N, the number of dispersed peaks successively increased in the spectrum

of SigI2_C, which indicates that the SigI2_C-RsgI1_N interaction is enhanced by these mutations. In contrast, upon the addition of these mutants, the spectrum of SigI1_C displayed successively less dispersed peaks but more crowded peaks, compared with the spectra of SigI1_C and the wild-type RsgI1_N. Therefore, the evidence supports the contention that these residues play important roles for specific σ^{I} /anti- σ^{I} factor recognition between the two complementary pairs of σ^{I} -anti- σ^{I} factors. The triple mutants of RsgI1_N, however, still failed to abolish the interaction with SigI1_C completely, and their interactions with SigI2_C were not as strong as that of the wild-type RsgI2_N,

Table S1. Primer sequences and restriction enzymes used for protein expression constructsin this study. The restriction enzyme sites in the primer sequences are underlined.

Recombinant plasmid	Primer sequences	Restriction	
Recombinant plasmid	Timer sequences	enzymes	
pET28a-SMT3-SigI1	F, 5'- ATT <u>GGATCC</u> GTGGAAGTCCGGAAAAT	BamHI, XhoI	
	R, 5'-ATT <u>CTCGAG</u> TTATATAAGGTCACTTTCCCC		
pET30a-SigI1 _N	F, 5'-TTA <u>CATATG</u> GAAGTCCGGAAAATTAATACC	NdeI, XhoI	
	R, 5'-TTT <u>CTCGAG</u> GTTATAAAAATATTCGTCATCA		
pET30a-SigI1 _C	F, 5'-TTA <u>CATATG</u> GAAGATATTGAGGCAAGG	NdeI, XhoI	
	R, 5'-TTT <u>CTCGAG</u> CATAGTATAATACTCCAAATA		
pET28a-SMT3-RsgI1 _N	F, 5'-ATT <u>GGATCC</u> ATGAACAGATTGGGAATAAT	BamHI, XhoI	
	R, 5'-ATT <u>CTCGAG</u> TTACTTTCCCCTGACA		
pET28a-SigI2	F, 5'-	NcoI, XhoI	
	ATA <u>CCATGG</u> GCATTGATTTGTTTTCCCCTAAGG		
	R, 5'-TTA <u>CTCGAG</u> TTTTGTGCTCCGTTCAATGTTG		
pET28a-SigI2 _C	F, 5'-TTA <u>CCATGG</u> GCAGTGAAATTGATTTACAAA	NcoI, XhoI	
	R, 5'-TTA <u>CTCGAG</u> TTTTGTGCTCCGTTCAAT		
pET28a-SMT3-RsgI2 _N	F, 5'-ATT <u>GGATCC</u> ATGTCACATTACACGGGAAT	BamHI, XhoI	
	R, 5'-ATTCTCGAGTTAGGCTGAATACAAGTCGGA		

Mutant	Primer sequences	Plasmid template
RsgI1 _N (Y8L)	F,5'-GAACAGATTGGGAATAATA <mark>TTA</mark> GAAATTCAGGGCATGAAAG	pET28a-SMT3-RsgI1 _N
	R,5'-CTTTCATGCCCTGAATTTCTAATATTATTCCCAATCTGTTC	
RsgI1 _N (Y8I)	F,5'-GAACAGATTGGGAATAATA <mark>ATT</mark> GAAATTCAGGGCATGAAAGC	pET28a-SMT3-RsgI1 _N
	R,5'-GCTTTCATGCCCTGAATTTCAATTATTATTCCCAATCTGTTC	
RsgI1 _N (E9K)	F,5'-ACAGATTGGGAATAATATATATAAAATTCAGGGCATGAAAGCT	pET28a-SMT3-RsgI1 _N
	R,5'-AGCTTTCATGCCCTGAATTTTATATATATTATTCCCAATCTGT	
RsgI1 _N (E9G)	F,5'-ACAGATTGGGAATAATATATGGAATTCAGGGCATGAAAGCT	pET28a-SMT3-RsgI1 _N
	R,5'-AGCTTTCATGCCCTGAATTCCATATATTATTCCCAATCTGT	
RsgI1 _N (V16K)	F,5'-GAAATTCAGGGCATGAAAGCTAAAGTTCTGACAAGCGAAGGCG	pET28a-SMT3-RsgI1 _N
	R,5'-CGCCTTCGCTTGTCAGAACTTTAGCTTTCATGCCCTGAATTTC	
RsgI1 _N (V16I)	F,5'-ATTCAGGGCATGAAAGCTATTGTTCTGACAAGCGAAGGCGAAT R,5'-	pET28a-SMT3-RsgI1 _N
	ATTCGCCTTCGCTTGTCAGAACAATAGCTTTCATGCCCTGAAT	
RsgI1 _N (L18I)	F,5'-GGGCATGAAAGCTGTAGTTATTACAAGCGAAGGCGAATTT	pET28a-SMT3-RsgI1 _N
	R,5'-AAATTCGCCTTCGCTTGTAATAACTACAGCTTTCATGCCC	
RsgI1 _N (L18F)	F,5'-CAGGGCATGAAAGCTGTAGTTTTTACAAGCGAAGGCGAAT	pET28a-SMT3-RsgI1 _N
	R,5'-ATTCGCCTTCGCTTGTAAAAACTACAGCTTTCATGCCCTG	
RsgI1 _N (E21K)	F,5'-GAAAGCTGTAGTTCTGACAAGC <mark>AAA</mark> GGCGAATTTTTGATTATTCGC	pET28a-SMT3-RsgI1 _N
	R,5'-GCGAATAATCAAAAATTCGCCTTTGCTTGTCAGAACTACAGCTTTC	
RsgI1 _N (E23K)	F,5'-TAGTTCTGACAAGCGAAGGCAAATTTTTGATTATTCGCAG	pET28a-SMT3-RsgI1 _N
	R,5'-CTGCGAATAATCAAAAATTTGCCTTCGCTTGTCAGAACTA	
RsgI1 _N (F24I)	F,5'-GTTCTGACAAGCGAAGGCGAAATTTTGATTATTCGCAGGCGCAAAG	pET28a-SMT3-RsgI1 _N
	R,5'-CTTTGCGCCTGCGAATAATCAAAATTTCGCCTTCGCTTGTCAGAAC	
RsgI1 _N (I26E)	F,5'-GACAAGCGAAGGCGAATTTTTG <mark>GAA</mark> ATTCGCAGGCGCAAAGATATG	pET28a-SMT3-RsgI1 _N
	R,5'-CATATCTTTGCGCCTGCGAATTTCCAAAAATTCGCCTTCGCTTGTC	
RsgI1 _N (V35K)	F,5'-GCAGGCGCAAAGATATGAAGAAAGGACAGCAGGTGAGTTTTG	pET28a-SMT3-RsgI1 _N
	R,5'-CAAAACTCACCTGCTGTCCTTTCTTCATATCTTTGCGCCTGC	
RsgI1 _N (V35I)	F,5'-ATTCGCAGGCGCAAAGATATGAAGATTGGACAGCAGGTGAGT	pET28a-SMT3-RsgI1 _N
	R,5'-ACTCACCTGCTGTCCAATCTTCATATCTTTGCGCCTGCGAAT	
RsgI1 _N (E9K-E21K)	F,5'-GAAAGCTGTAGTTCTGACAAGCAAAGGCGAATTTTTGATTATTCG	pET28a-SMT3-RsgI1 _N (E9K)
	R,5'-CGAATAATCAAAAATTCGCCTTTGCTTGTCAGAACTACAGCTTTC	
RsgI1 _N (E9K-E23K)	F,5'-TAGTTCTGACAAGCGAAGGCAAATTTTTGATTATTCGCAG	pET28a-SMT3-RsgI1 _N (E9K)
	R,5'-CTGCGAATAATCAAAAATTTGCCTTCGCTTGTCAGAACTA	
RsgI1 _N (Y8L-E9K)	F,5'-GAACAGATTGGGAATAATATTAAAAATTCAGGGCATGAAAGC	pET28a-SMT3-RsgI1 _N
	R,5'-GCTTTCATGCCCTGAATTTTTAATATTATTATTCCCAATCTGTTC	
RsgI1 _N (Y8L-V35R)	F,5'-GCAGGCGCAAAGATATGAAG <mark>CGT</mark> GGACAGCAGGTGAGTTTTG	pET28a-SMT3-RsgI1 _N (Y8L)
	R,5'-CAAAACTCACCTGCTGTCCACGCTTCATATCTTTGCGCCCTGC	
$RsgI1_N(E9K-E21K-E23K)$	F,5'-CTGTAGTTCTGACAAGCAAAGGCAAATTTTTGATTATTCGCAGG	pET28a-SMT3-RsgI1 _N (E9K)
	R,5'-CCTGCGAATAATCAAAAATTTGCCTTTGCTTGTCAGAACTACAG	
$RsgI1_{N}(Y8L-E9K-V35R)$	F,5'-GATTGGGAATAATATTAAAAATTCAGGGCATGAAAGCTG	pET28a-SMT3-RsgI1 _N (Y8L-
	R,5'-CAGCITICATGCCCIGAATITITAATATTATTCCCAATC	V35R)
SigII _c (K209E)	F,5'-CATACCCAGAAATGAATTAGAAAAGAAAGCCAAGGTTCACGG	pET30a-SigI1 _C
C. 11 (D217E)		ET20. C. H
Sigl(K21/E)	r,5 -UAAAUUUAAUUIIUAUUUUUUUUUUAUAUAUAUAUAATAAGUUAATAATAG	pE130a-SigIIc
C. II (KOODE BOIGE)		- ET20- 0'-11 (V200E)
SigIIc(K209E-R217E)	F,5'-GAAAGCCAAGGTTCACGGGGAGACCATAGGCAATAATAG	pE130a-SigII _C (K209E)
	K,5'-CTATTATTGCCTATGGTCTCCCCGTGAACCTTGGCTTTC	

Table S2. Specific primer sequences for plasmid mutagenesis used in this study. The mutation sites in primer sequences are shown in red.

RsgI _N (%)	Ct	Bs								
	KsgII	Ksg12	Ksg13	KsgI4	RsgIS	Rsg16	Ksgl/	Rsglð	Rsg19	Ksgl
CtRsgI1	100	28.9	26.9	32.7	28.9	23.1	19.2	26.9	34.6	26.9
CtRsgI2		100	30.0	26.0	28.0	24.0	12.0	30.0	32.0	15.4
CtRsgI3			100	39.6	19.2	27.3	17.0	35.7	35.1	16.1
CtRsgI4				100	23.5	26.9	19.2	25.0	32.1	15.4
CtRsgI5					100	33.3	17.7	43.1	31.4	17.6
CtRsgI6						100	21.2	30.8	29.1	16.7
CtRsgI7							100	11.5	15.4	21.2
CtRsgI8								100	30.9	14.5
CtRsgI9									100	15.5
BsRsgI										100
G. I (0/)	Ct		Bs							
$Sigi_{C}(\%)$	SigI1	SigI2	SigI3	SigI4	SigI5	SigI6	SigI7	SigI8		SigI
CtSigI1	100	36.0	42.7	39.3	33.6	45.3	27.3	40.9		36.0
CtSigI2		100	43.1	40.2	39.1	38.5	28.2	30.0		32.4
CtSigI3			100	52.1	40.4	44.4	33.6	34.6		35.1
CtSigI4				100	39.1	45.3	28.2	36.4		38.7
CtSigI5					100	37.3	30.0	25.5		35.5
CtSigI6						100	32.7	38.2		36.0
CtSigI7							100	24.6		36.9
CtSigI8								100		31.5
BsSigI										100

Table S3. Sequence identities among different pairs of $RsgI_N$ or $SigI_C$.

Parameters	RsgI1 _N	SigI1 _C -RsgI1 _N complex
NOE restraints		
Intra-residue	591	1470
Sequential	346	864
Medium-range	184	570
Long-range	514	1012
Ambiguous	688	2356
Total	2323	6272
Number per residue	43.6	36.7
Hydrogen bond restraints	21	160
Torsion angle restraints		
Phi (Φ) angle restraints	45	148
Psi (Ψ) angle restraints	45	148
Chi (χ) angle restraints	23	73
Violations		
Max. NOE violation (Å)	0.140	0.179
Max. torsion angle violation (°)	2.01	4.57
R.M.S.D from mean structure (Å)		
Residues in regular secondary structure ^a		
Backbone heavy atoms	$0.18{\pm}0.03$	$0.30{\pm}0.06$
All heavy atoms	$0.63{\pm}0.08$	$0.75{\pm}0.05$
All residues ^b		
Backbone heavy atoms	1.40 ± 0.26	0.70 ± 0.16
All heavy atoms	1.83 ± 0.25	1.10 ± 0.11
Ramachandran statistics		
Most favored region (%)	89.9	91.9
Additionally allowed (%)	10.0	7.4
Generously allowed (%)	0.1	0.3
Disallowed (%)	0.0	0.5 °
WHAT_CHECK Z-scores ^d		
1st generation packing quality	-0.477	-0.275
2nd generation packing quality	2.279	-0.292
Ramachandran plot appearance	-2.622	-2.461
chi-1/chi-2 rotamer normality	-2.839	-2.448
Backbone conformation	-0.039	-0.240
Inside/Outside distribution	1.013	0.978

Table S4. Structural statistics of RsgI1_N and the SigI1_C-RsgI1_N complex.

^a The residues in regular secondary structure include 2-11, 14-19, 24-28, 38-42, and 43-45 of RsgI1_N and 146-159, 163-167, 174-188, 191-200, 205-211, 216-221, 223-234, and 238-248 of SigI1_C.

^b The artificial residues at the N- and C-termini introduced by cloning are excluded.

^c All residues in the disallowed region are in the terminal disordered loops.

^d For Z-scores, a more positive value is better.

	Ct	Bs								
RsgI _N	RsgI1	RsgI2	RsgI3	RsgI4	RsgI5	RsgI6	RsgI7	RsgI8	RsgI9	RsgI
CtRsgI1	16	4	2	4	3	4	5	2	4	7
CtRsgI2		16	5	4	5	5	1	4	3	4
CtRsgI3			16	8	5	7	2	7	5	4
CtRsgI4				16	3	4	4	3	4	3
CtRsgI5					16	6	2	7	4	5
CtRsgI6						16	2	5	6	4
CtRsgI7							16	1	2	5
CtRsgI8								16	3	3
CtRsgI9									16	4
Bs RsgI										16
C:-I	Ct		Bs							
Sigic	SigI1	SigI2	SigI3	SigI4	SigI5	SigI6	SigI7	SigI8		SigI
CtSigI1	20	7	8	7	6	10	8	8		10
CtSigI2		20	9	11	4	5	3	9		6
CtSigI3			20	12	6	7	9	11		9
CtSigI4				20	4	8	6	9		6
CtSigI5					20	5	3	5		4
CtSigI6						20	7	6		10
CtSigI7							20	5		7
CtSigI8								20		9
BsSigI										20

Table S5. Number of identical residues in the interface of the $RsgI_N\mbox{-}SigI_C$ complexes.

	RsgI1 _N -SigI1 _C	RsgI2 _N -SigI2 _C
	(I6)(L239)	(I7)(L245, L246, F249)
		(L9)(I155, L169, F243, L246)
	(V16)(F163, L164, V167)	(I17)(L169)
	(L18)(L229, I232, L244)	(L19)(L246, L250)
Undranhahia		(L23)(I187, F249, L250)
interactions ^a	(F24)(F163, L166, V167, V170, Y225, A228, L229, I232)	(F25)(L172, F231, A234)
	(L25)(V167, V170)	
	(I26)(L164, V167)	
	(V35)(R146, I149)	
	(V49)(V167,V170)	
	(Y8 O ^η H ^η)(S240 O ^γ)	
	(S20 O)(Y246 O ^η H ^η)	
	(E21 O ^ε)(Y247 O ^η H ^η)	
Hydrogen bonds ^b	(G22 O)(Y225 O ^η H ^η)	
		(R36 O)(S152 O ^y H ^y)
	(G36 O)(E144 NH)	(G37 O)(E150 NH)
	$(Q38 O^{\epsilon 1})(Y243 O^{\eta}H^{\eta})$	
	(E9 O ^ε)(K153 N ^ζ)	(K10 N ^ζ)(E159 O ^ε)
		$(R15 N^{\eta 1,2} H^{\eta 1,2})(E170 O^{\epsilon})$
Ionic bonds ^c	$(E21 \text{ O}^{\varepsilon})(R177 \text{ N}^{\eta 1,2}\text{H}^{\eta 1,2})$	
	$(E23 O^{\epsilon})(R177 N^{\eta 1,2}H^{\eta 1,2})$	(D24 O ^δ)(K183 N ^ζ)
		$(R36 N^{\eta 1,2}H^{\eta 1,2})(E156 O^{\epsilon})$

Table S6. Intermolecular interactions in the structure of the SigI1_C-RsgI1_N complex and the structural model of the SigI2_C-RsgI2_N complex.

^a The listed hydrophobic interactions were determined by a 5-Å distance cut-off between the hydrophobic-group carbon atoms of two residues in more than half of the total number of structures.

^b The listed hydrogen bond interactions were determined by a 2.5-Å distance cut-off between the hydrogen donor and receptor atoms in more than half of the total number of structures.

^c The listed ionic bond interactions were determined by a 5-Å distance cut-off between the charged group nitrogen/oxygen atoms of two residues in more than half of the total number of structures.