Supplementary Data For:

Structural evidence for an essential Fe-S cluster in the catalytic core domain of DNA polymerase ε

Josy ter Beek^{1,#}, Vimal Parkash^{1,#}, Göran O. Bylund¹, Pia Osterman¹, A. Elisabeth Sauer-Eriksson² and Erik Johansson^{1,*}

¹ Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90187, Sweden

² Department of Chemistry, Umeå University, Umeå, 90187, Sweden

[#]These two authors made an equal contribution

* To whom correspondence should be addressed. Tel: +46 90 786 66 38; Email: erik.tm.johansson@umu.se

Content:

Supplemental table 1. Data collection and refinement statistics.

Figure S1. Comparison of the CysX-site in Pol2_{CORE} structures.

Figure S2. Effect of dNTP concentration in primer extension assays with Pol ϵ and Pol ϵ CysX_{MUT}

Figure S3. Quantification of the exonuclease activity of Pol ϵ and Pol ϵ CysX_{MUT}

Figure S4. Primer extension assays with Pol ϵ CysA_MUT

Figure S5. Primer extension assays with Pol ϵ CysB_{MUT}

	Pol2 _{CORE} -1-1228	Pol2 _{CORE} -1-1187	Pol2 _{CORE} -yeast-Anom
Data Collection	PDB ID 6h1v	PDB ID 6qib	PDB ID 6h1v
Spacegroup	C2	C2	C2
Cell parameter			
<i>a,b,c</i> (Å)	148.2, 70.0, 149.9	158.4 70.4 154.2	146.9, 70.3, 149.5
α,β,γ (°)	90, 109.4, 90	90, 113.0, 90	90, 109.1, 90
Wavelength	0.9840	0.96770	1.7360
Resolution range (Å)	73.0-2.70	78.5-2.80	19.9-6.00
Outer shell (Å)	2.80-2.70	2.92-2.80	8.00-6.00
Completeness (%) ^a	98.6(97.5)	98.5(99.2)	94.9(95.3)
Redundancy ^a	2.9(2.7)	4.3(4.5)	1.8(1.8)
$I/\sigma(I)^a$	5.1(0.9)	7.8(1.3)	24.0(20.0)
R_{meas} (%) ^a	13.8(156.0)	14.4(123.0)	3.3(4.3)
$CC1/2^{a}$	0.972(0.144)	0.995(0.447)	0.998(0.997)
SigAno ^a	-	-	1.21 (1.10)
Refinement			
Resolution (Å)	2.7	2.8	-
No. of reflections	39250	36257	-
$R_{work}(\%)/R_{free}(\%)$	23.9 (26.6)	22.2 (28.6)	-
No. of atoms			
Protein	8428	8608	-
DNA	528	528	-
dATP	30	30	-
Metal	1	1	-
Water	6	0	-
4Fe-4S	8	8	
B factors			
Protein	65.8	74.2	-
DNA	55	59.3	-
dATP	31.5	41.9	-
Metal	44.1	46.4	-
Water	38.6	-	-
4Fe-4S	73.5	77.7	
R.m.s deviations			
Bond length (Å)	0.005	0.003	-
Bond angle (°)	0.717	1.057	-
Ramachandran plot			
Most favored (%)	93.8	94.2	-
Additional allowed (%)	6.1	5.2	-
^a Values in parentheses are for the outer shell			

Supplemental Table 1: Data collection and refinement statistics.

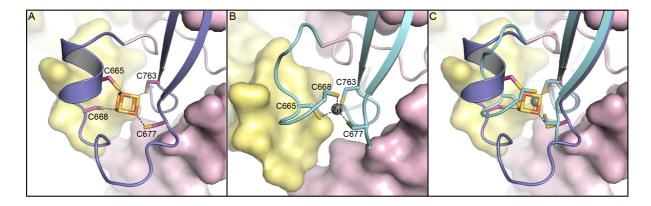


Figure S1. Comparison of the CysX-site with or without a bound Fe-S cluster. A) Zoomed-in view of the Pol2_{CORE} structure (PDB ID: 6qib) showing the four cysteines of the CysX motif (as magenta sticks) in the P-domain (in slateblue cartoon) coordinating the four Fe atoms of the [4Fe-4S] cluster. The N-terminal domain and the palm domain are in yellow and pink surface representations, respectively. (B) The previously solved structure (PDB ID: 4m8o (1)) in a similar orientation shows the four cysteines of the CysX motif in the P-domain (in cyan) coordinating a Zn ion. C) The previous structure with Zn²⁺ (PDB ID: 4m8o (1)) superimposed over the new structure containing the Fe-S cluster (PDB ID: 6qib). Formation of an helical structure places two cysteine residues, Cys665 and Cys668 in perfect geometry to allow cluster binding.

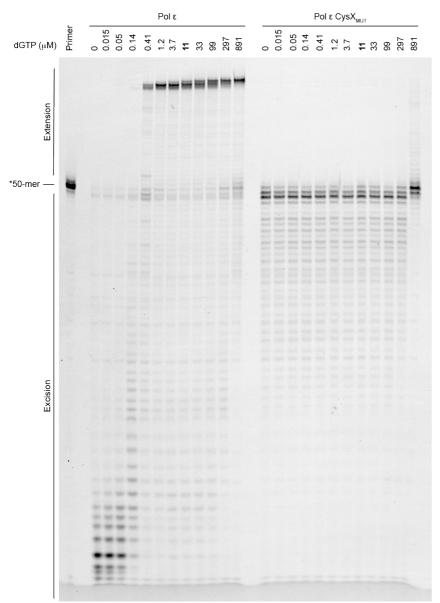


Fig. S2: Effect of dNTP concentration in primer extension assays with Pol ε and Pol ε CysX_{MUT}. The exonuclease activity in Pol ε CysX_{MUT} can be suppressed but only at the highest dNTP concentrations. At 11 μ M dGTP, there is also 22 μ M dATP, 39 μ M dCTP and 66 μ M dTTP in the reaction mix, which mimics the physiological concentrations for yeast (2). The effect of a three-fold change in concentration for all four dNTPs is observed in each lane. Primer extension assays in the presence of varying amounts of dNTPs with a DNA substrate consisting of a fluorescently labeled 50-mer primer annealed to a perfectly matched 80-mer template.

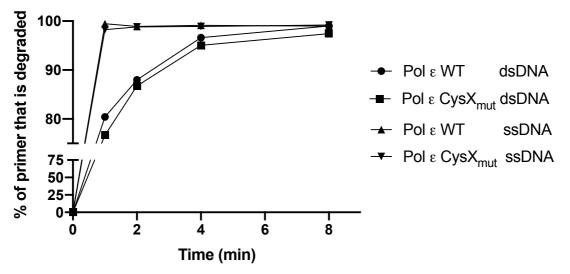


Fig. S3: The shortening of a full-length oligonucleotide occurs at similar rates by Pol ε CysX_{MUT} and Pol ε CysX_{MUT}. Quantification of the observed exonuclease activity of Pol ε and Pol ε CysX_{MUT} on a correctly matched 50/80-mer (dsDNA) or a single stranded 50-mer (ssDNA) substrate in figure 5.

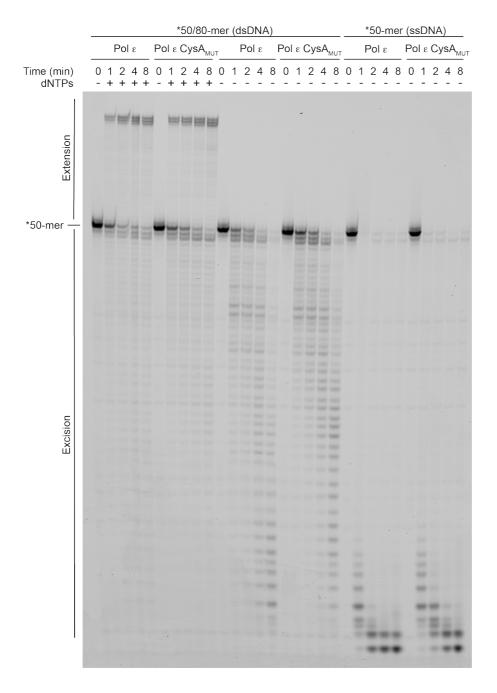


Figure S4. Impact of the substitutions in the CysA motif (C2111S/C2133S) on Pol ε polymerase and exonuclease activity. Primer extension assays in the presence of dNTPs with a DNA substrate consisting of a fluorescently labeled 50-mer primer annealed to a perfectly matched 80-mer template. The exonuclease activity was assayed in the absence of dNTPs using the same double-stranded DNA substrate or only the single-stranded 50-mer.

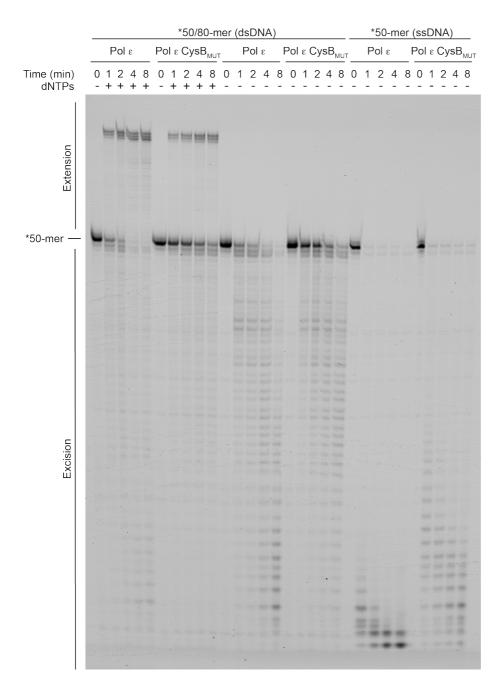


Figure S5. Impact of the substitutions in the CysB motif (C2167S/C2181S) on Pol ϵ polymerase and exonuclease activity. Primer extension assays in the presence of dNTPs with a DNA substrate consisting of a fluorescently labeled 50-mer primer annealed to a perfectly matched 80-mer template. The exonuclease activity was assayed in the absence of dNTPs using the same double-stranded DNA substrate or only the single-stranded 50-mer.

References

- Hogg,M., Osterman,P., Bylund,G.O., Ganai,R.A., Lundström,E.-B., Sauer-Eriksson,A.E. and Johansson,E. (2014) Structural basis for processive DNA synthesis by yeast DNA polymerase ε. *Nat. Struct. Mol. Biol.*, **21**, 49–55.
- Sabouri, N., Viberg, J., Goyal, D.K., Johansson, E. and Chabes, A. (2008) Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage. *Nucleic Acids Res.*, 36, 5660–5667.