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Supplementary Note 1: Statistic of cell-specific network 

 

(1) Statistic 

Assume that there are n cells with m genes in scRNA-seq data. Based on the statistical 

independency in probability theory (eqn. (1) in the main text), we design a statistic for each gene 

pair and each cell as 

𝜌𝑥𝑦
(𝑘) =

𝑛𝑥𝑦
(𝑘)

𝑛
−

𝑛𝑥
(𝑘)

𝑛
∙

𝑛𝑦
(𝑘)

𝑛
 (S-1) 

where ρxy
(k)

 is the statistic for genes x, y of cell k (the red plot in Figure S1(A)), nx
(k)

 and ny
(k)

 are 

the number of plots (or cells) in the neighborhood of xk and yk respectively (light and medium grey 

boxes in Figure S1(A)), nxy
(k)

 is the number of plots in the neighborhood of (xk, yk) (intersection of 

two boxes and represented as dark grey box in Figure S1(A)), and n is the total number of plots.  

In eqn. (S-1), nx
(k)

 and ny
(k)

 are determined in advance (< n), and thus this statistic is only 

changed with nxy
(k)

. Hence, as shown in Figure S1 (A), we first draw the two boxes Dx
(k)

 and Dy
(k)

 

to represent the neighborhood of xk and yk respectively based on the predetermined nx
(k)

 and ny
(k)

, 

and then we can straightforwardly have the third box Dxy
(k)

, which is simply the intersection of the 

previous two boxes. By counting the plots in Dxy
(k)

, we can obtain the value of nxy
(k)

 and then get 

the criterion of eqn. (S-1), as shown in Figure S1(B). 

 

Figure S1. Scatter diagram of the expression values of gene x, y for cell k, and illustration of the three 

boxes for our statistic. (A) Near the red plot k, make the light and medium grey box Dx
(k)

 and Dy
(k)

 to 

represent the neighborhood of xk and yk respectively. The number of plots in the two boxes are nx
(k)

 and 

ny
(k)

, which are predetermined (< n). The intersection of the two boxes is the dark grey box Dxy
(k)

 that 

represents the neighborhood of (xk , yk), in which the number of plots is nxy
(k)

. (B) Criterion based on the 



statistic ρxy
(k)

. We can identify the association of two genes by statistical test based on the statistic ρxy
(k)

. 

 

Note that the distribution of genes has no influence on the statistic. The box size of Dx
(k)

 and 

Dy
(k)

 will change with the density of plots, smaller in the dense area and larger in the sparse area. 

Then, no matter which distribution the genes follow, the boxes in Figure S1 cover the same plots 

and the statistic model will not change. 

 

(2) Mean value and variance of the statistic 

As nx
(k)

 and ny
(k)

 are predetermined and nxy
(k)

 follows binomial distribution, based on Bayes 

formula, we can get 

𝑃(𝑛𝑥𝑦
(𝑘) = 𝑡|𝑛𝑥

(𝑘) = 𝑖, 𝑛𝑦
(𝑘) = 𝑗) 

=
𝑃(𝑛𝑥𝑦

(𝑘) = 𝑡|𝑛𝑥
(𝑘) = 𝑖)𝑃(𝑛𝑥𝑦

(𝑘) = 𝑡|𝑛𝑦
(𝑘) = 𝑗)

𝑃(𝑛𝑥𝑦
(𝑘) = 𝑡)

 

=

𝑖!
𝑡! (𝑖 − 𝑡)!

∙ (
𝑝𝑥𝑦

𝑝𝑥
)

𝑡

(1 −
𝑝𝑥𝑦

𝑝𝑥
)

𝑖−𝑡

∙
𝑗!

𝑡! (𝑗 − 𝑡)!
∙ (

𝑝𝑥𝑦

𝑝𝑦
*

𝑡

(1 −
𝑝𝑥𝑦

𝑝𝑦
*

𝑗−𝑡

𝑛!
𝑡! (𝑛 − 𝑡)!

∙ 𝑝𝑥𝑦
𝑡(1 − 𝑝𝑥𝑦)

𝑛−𝑡
 

where px, py and pxy is the probability that a plot is located in the Dx
(k)

, Dy
(k)

 and Dxy
(k)

 respectively. 

Then 

∑ 𝑃(𝑛𝑥𝑦
(𝑘) = 𝑡|𝑛𝑥

(𝑘) = 𝑖, 𝑛𝑦
(𝑘) = 𝑗)

𝑛

𝑡=0

= 1 

∑ 𝑡 ∙ 𝑃(𝑛𝑥𝑦
(𝑘) = 𝑡|𝑛𝑥

(𝑘) = 𝑖, 𝑛𝑦
(𝑘) = 𝑗)

𝑛

𝑡=0

= ∑ 𝑡

[
𝑖𝑝𝑥𝑦

𝑡𝑝𝑥
∙

(𝑖 − 1)!
(𝑡 − 1)! (𝑖 − 𝑡)!

(
𝑝𝑥𝑦

𝑝𝑥
)

𝑡−1

(1 −
𝑝𝑥𝑦

𝑝𝑥
)

𝑖−𝑡

] *
𝑗𝑝𝑥𝑦

𝑡𝑝𝑦
∙

(𝑗 − 1)!
(𝑡 − 1)! (𝑗 − 𝑡)!

(
𝑝𝑥𝑦

𝑝𝑦
*

𝑡−1

(1 −
𝑝𝑥𝑦

𝑝𝑦
*

𝑗−𝑡

+

𝑛𝑝𝑥𝑦

𝑡 ∙
(𝑛 − 1)!

(𝑡 − 1)! (𝑛 − 𝑡)!
∙ 𝑝𝑥𝑦

𝑡−1(1 − 𝑝𝑥𝑦)
𝑛−𝑡

𝑛

𝑡=0

=
𝑖𝑗

𝑛
∙

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
∙ ∑ 𝑃(𝑛𝑥𝑦

(𝑘) = 𝑡 − 1|𝑛𝑥
(𝑘) = 𝑖 − 1, 𝑛𝑦

(𝑘) = 𝑗 − 1)

𝑛

𝑡=1

=
𝑖𝑗

𝑛
∙

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
 

By the similar calculation, we can get 

∑ 𝑡2 ∙ 𝑃(𝑛𝑥𝑦
(𝑘) = 𝑡|𝑛𝑥

(𝑘) = 𝑖, 𝑛𝑦
(𝑘) = 𝑗)

𝑛

𝑡=0

=
𝑖𝑗(𝑖 − 1)(𝑗 − 1)

𝑛(𝑛 − 1)
∙

𝑝𝑥𝑦
2

𝑝𝑥
2𝑝𝑦

2
+

𝑖𝑗

𝑛
∙

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
 

Then the mean value of the statistic is 

𝜇𝑥𝑦
(𝑘) = 𝐸 (

𝑛𝑥𝑦
(𝑘)

𝑛
−

𝑛𝑥
(𝑘)𝑛𝑦

(𝑘)

𝑛2
) = ∑ (

𝑡

𝑛
−

𝑖𝑗

𝑛2
* ∙ 𝑃(𝑛𝑥𝑦

(𝑘) = 𝑡|𝑛𝑥
(𝑘) = 𝑖, 𝑛𝑦

(𝑘) = 𝑗)

𝑛

𝑡=0

=
𝑖𝑗

𝑛2
(

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
− 1) 



The variance of the statistic is 

𝜎𝑥𝑦
(𝑘)2

= 𝐸 [(
𝑛𝑥𝑦

(𝑘)

𝑛
−

𝑛𝑥
(𝑘)𝑛𝑦

(𝑘)

𝑛2
)

2

] − *𝐸 (
𝑛𝑥𝑦

(𝑘)

𝑛
−

𝑛𝑥
(𝑘)𝑛𝑦

(𝑘)

𝑛2
)+

2

= ∑ (
𝑡

𝑛
−

𝑖𝑗

𝑛2
*

2

∙ 𝑃(𝑛𝑥𝑦
(𝑘) = 𝑡|𝑛𝑥

(𝑘) = 𝑖, 𝑛𝑦
(𝑘) = 𝑗)

𝑛

𝑡=0

− *
𝑖𝑗

𝑛2
(

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
− 1)+

2

=
𝑖𝑗

𝑛4
∙

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
*
(𝑛 − 𝑖)(𝑛 − 𝑗)

𝑛 − 1
∙

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
+ 𝑛 (1 −

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
)+ 

If genes x and y are independent of each other, pxy = px py, and thus 

𝜇𝑥𝑦
(𝑘) = 0 

𝜎𝑥𝑦
(𝑘)2

=
𝑛𝑥

(𝑘)𝑛𝑦
(𝑘)(𝑛 − 𝑛𝑥

(𝑘))(𝑛 − 𝑛𝑦
(𝑘))

𝑛4(𝑛 − 1)
 

We normalize the statistic 𝜌𝑥𝑦
(𝑘) and define 

𝜌̂𝑥𝑦
(𝑘) =

(
𝑛𝑥𝑦

(𝑘)

𝑛 −
𝑛𝑥

(𝑘)𝑛𝑦
(𝑘)

𝑛2 ) − 0

√
𝑛𝑥

(𝑘)𝑛𝑦
(𝑘)(𝑛 − 𝑛𝑥

(𝑘))(𝑛 − 𝑛𝑦
(𝑘))

𝑛4(𝑛 − 1)

=
√𝑛 − 1 ∙ (𝑛 ∙ 𝑛𝑥𝑦

(𝑘) − 𝑛𝑥
(𝑘)𝑛𝑦

(𝑘))

√𝑛𝑥
(𝑘)𝑛𝑦

(𝑘)(𝑛 − 𝑛𝑥
(𝑘))(𝑛 − 𝑛𝑦

(𝑘))

 (S-2) 

 

Eqn. (S-2) is the statistic model in this paper, or called the normalized statistic. If genes x and y are 

independent of each other, the mean value and variance of 𝜌̂𝑥𝑦
(𝑘)

 for the n cells are 0 and 1 

respectively. 

 

(3) Distribution of the statistic 

By the similar derivation, we can get the third-order and fourth-order moments of the statistic. 

If genes x and y are independent of each other, nx
(k)

 and ny
(k)

 increase in proportion to n, and the 

third-order and fourth-order moments of the normalized statistic will tend to those of the standard 

normal distribution (0 and 3 respectively) with the increase of n. 

lim
𝑛→∞

𝐸 *(𝜌̂𝑥𝑦
(𝑘))

3
+ = lim

𝑛→∞

√𝑛 − 1

𝑛 − 2
∙

(𝑛 − 2𝑛𝑥
(𝑘))(𝑛 − 2𝑛𝑦

(𝑘))

√𝑛𝑥
(𝑘)𝑛𝑦

(𝑘)(𝑛 − 𝑛𝑥
(𝑘))(𝑛 − 𝑛𝑦

(𝑘))

= 0 

lim
𝑛→∞

𝐸 *(𝜌̂𝑥𝑦
(𝑘))

4
+ = lim

𝑛→∞

𝑛 − 1

(𝑛 − 2)(𝑛 − 3)
*3(𝑛 + 6) −

6𝑛2

𝑛𝑥
(𝑘)(𝑛 − 𝑛𝑥

(𝑘))
−

6𝑛2

𝑛𝑦
(𝑘)(𝑛 − 𝑛𝑦

(𝑘))

+
𝑛3(𝑛 + 1)

𝑛𝑥
(𝑘)𝑛𝑦

(𝑘)(𝑛 − 𝑛𝑥
(𝑘))(𝑛 − 𝑛𝑦

(𝑘))
+ = 3 

Based on the numerical simulation, we also find that with the increase of n, the distribution of 

the normalized statistic 𝜌̂𝑥𝑦
(𝑘) of eqn. (S-2) will tend to standard normal distribution (Figure S2), 

and actually if n > 100, the statistic well follows normal distribution in general. Hence, we assume 

that if genes x and y are independent of each other, our normalized statistic follows standard 

normal distribution. We can use the normal distribution to test the independency or association of 



any two genes in a cell k by 𝜌̂𝑥𝑦
(𝑘) of eqn. (S-2).  

 

 

  

(A) n =100 (B) n = 500 

Figure S2. The comparision of standard normal distribution and the distribution of 𝜌̂𝑥𝑦
(𝑘)

. The density 

function is calculated by kernel density estimation based on 200,000 plots, and nx and ny are equal to 

0.2n. The two genes x and y are independent of each other. 

 

(4) Performance of the statistic in different situations or associations 

We have discussed the mean value, variance and distribution of the statistic 𝜌̂𝑥𝑦
(𝑘) when 

genes x and y are independent of each other. Figure S3 illustrates the performance of the 

normalized statistic when genes x and y follow different distributions. We can see no matter which 

distribution genes x and y follow, if only genes x and y are independent, the distribution of 𝜌̂𝑥𝑦
(𝑘)  

always approaches normal distribution and few plots are larger than the significant level. 

Figure S4 illustrates the performance if genes x and y are correlated in partial cells and 

uncorrelated in the other cells. We can see no matter if the correlation is positive, negative or 

nonlinear, the distribution of our statistic always shows the double crest, which indicates that 

𝜌̂𝑥𝑦
(𝑘)

 is able to distinguish the cells with the correlated genes and uncorrelated genes 

wonderfully. 

Figure S5 illustrates the performance if genes x and y are correlated in all cells. We can see 

no matter if the dependency is linear, nonlinear or complex, the distribution of our statistic is 

always far from 0 and few plots are smaller than the significant level. 

As a summary, our statistic model is able to distinguish the cells with the correlated genes 

and uncorrelated genes in a reliable manner. 

 

  



 

Scatter plots of gene x and gene y 

 

 

Density function of normalized statistic 𝝆̂𝒙𝒚
(𝒌)

 

  

(A) 

  

(B) 

  

(C) 

 

Figure S3. Performance of the statistic if genes x and y are independent of each other. nx
(k)

 and ny
(k)

 are 

set as 60 and n = 500. The box size will be changed with the density of plots, smaller in the dense area 

and larger in the sparse area. Thus, no matter which distribution the genes follow, the boxes cover the 

same number of plots, and the statistic model will not change. Red plots in the left figures represent 

𝜌̂𝑥𝑦
(𝑘)

 in these plots are larger than the significant level of 0.001, which is corresponding with the red 

area in the right figures. We can see if genes x and y are independent, the distribution of our statistic is 

always similar to normal distribution and few plots are larger than the significant level.  

𝜌̂𝑥𝑦 = 0 𝜌̂𝑥𝑦 = 0 

𝜌̂𝑥𝑦 = 0 𝜌̂𝑥𝑦 = 0 

𝜌̂𝑥𝑦 = 0 

𝜌̂𝑥𝑦 = 0 



 

Scatter plots of gene x and gene y 

 

 

Density function of normalized statistic 𝝆̂𝒙𝒚
(𝒌)

 

  

(A) 

  

(B) 

  

(C) 

 

Figure S4. Performance of the statistic if genes x and y are correlated in partial cells and uncorrelated 

in the other cells. nx
(k)

 and ny
(k)

 are set as 60 and n = 500. Red plots in the left figures represent 𝜌̂𝑥𝑦
(𝑘)

 

in these plots are larger than the significant level of 0.001, which is corresponding with the red area in 

the right figures. We can see the distribution of 𝜌̂𝑥𝑦
(𝑘)

 always shows the double crest and is able to 

distinguish the cells with the correlated genes and uncorrelated genes wonderfully, no matter if the 

correlation is positive, negative or nonlinear. 
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Density function of normalized statistic 𝝆̂𝒙𝒚
(𝒌)

 

  

(A) 

  

(B) 

  

(C) 

 

Figure S5. Performance of the statistic if genes x and y are correlated in all cells. nx
(k)

 and ny
(k)

 are set 

as 60 and n = 500. Red plots in the left figures represent 𝜌̂𝑥𝑦
(𝑘)

 in these plots are larger than the 

significant level of 0.001, which is corresponding with the red area in the right figures. We can see the 

correlation can be identified in most cells, no matter if the correlation is positive, negative or complex 

dependency. 

 

  

𝜌̂𝑥𝑦 > 0 

𝜌̂𝑥𝑦 > 0 

𝜌̂𝑥𝑦 > 0 



(5) Performance of the statistic in the case of high dropout rate 

Some experimental platforms such as Drop-seq and 10×genomics will produce the 

scRNA-seq data with high dropout rate, and then the gene expression matrix may be quite sparse. 

Figure S6 illustrates the performance of our statistic in the case of high dropout rate. If genes x 

and y are expressed in only 10% and 20% of total cells respectively and the expression level is 1, 

our statistic 𝜌̂𝑥𝑦
(𝑘)

 can only get four values: 𝜌̂11, 𝜌̂01, 𝜌̂10, 𝜌̂00. Then, as shown in Figure S6 

(C, D), if genes x and y are independent, 𝜌̂𝑥𝑦 still follows normal distribution. If genes x and y are 

dependent, for example, Matthew Correlation Coefficient (MCC) = 0.33, 𝜌̂11 and 𝜌̂00 will be 

much larger than 0, and 𝜌̂01 and 𝜌̂10 will be much smaller than 0, which produce the double 

crest in the histogram. As a result, no matter in the case of high dropout rate or low dropout rate, 

our statistic gets similar performance, and thus we do not need to change our statistical model for 

the sparse gene expression matrix especially. 

 

  

(A) (B) 

  

(C) (D) 

 

Figure S6. Performance of the statistic in the case of high dropout rate. (A, B) Histograms of the 

detected expression of genes x and y. (C) Histogram of the normalized statistic if genes x and y are 

independent. (D) Histogram of the normalized statistic if genes x and y are dependent (MCC = 0.33). 

Note that in (C) and (D), we made 1000 repetitions, and each figure was drawn from 4000 points (four 

points 𝜌̂11, 𝜌̂01, 𝜌̂10, 𝜌̂00 for each repetition). 

 

  



Supplementary Note 2: The robustness of CSNs and NDM on different cell populations 

 

If the dataset contains only one cell, it is impossible to construct the CSN; but if we have the 

expression profiles of more than one hundred cells, we can construct the network for each single 

cell, by exploring the distribution information from the population of cells. From the large number 

of cells in the dataset, we can estimate the joint distributions of every two genes, and these 

distributions can be used as the reference for CSN construction. However, if the composition of 

cells in the dataset is changed, for example, some new cells are added into the dataset, the 

reference or distribution might change with the new cells and then different CSNs would be 

constructed. In this section, we will discuss how CSNs change with the new cells or the 

composition of cells. 

(1) First, if the proportion of each cell type in the new cells is the same as that in the original 

cells (i.e. the number of cells of each cell type increases with the same proportion), the distribution 

of each gene and the joint distribution f(x, y) of each gene pair will not change, and then the 

statistical independency measurement f(x, y) – fX (x) fY (y) is fixed. As the statistic ρxy
(k)

 in eqn. (S-1) 

is an approximation of f(xk, yk) – fX (xk) fY (yk), the expectation of the statistic is stable. Note that if 

we set nx
(k)

 and ny
(k)

 increase in proportion to n (nx
(k)

 = t1n, ny
(k)

 = t2n), the light grey, medium grey 

and dark grey boxes in Figure S1 (Dx
(k)

, Dy
(k)

 and Dxy
(k)

 respectively) will barely change, and then 

𝐸(𝜌𝑥𝑦
(𝑘)) =

𝑛𝑥
(𝑘)𝑛𝑦

(𝑘)

𝑛2
(

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
− 1) = 𝑡1𝑡2 (

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
− 1) 

is a constant, where 𝑝𝑥 = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝐷𝑥

(𝑘) , 𝑝𝑦 = ∫ 𝑓𝑌(𝑦)𝑑𝑦
𝐷𝑦

(𝑘)  and 𝑝𝑥𝑦 = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐷𝑥𝑦

(𝑘)  

are the probability that a plot is located in the Dx
(k)

, Dy
(k)

 and Dxy
(k)

 respectively. t1 and t2 are 

constants.  

However, with the increase of n, the variance will be smaller, and then 

𝐸(𝜌̂𝑥𝑦
(𝑘)) =

𝐸 (
𝑛𝑥𝑦

(𝑘)

𝑛 −
𝑛𝑥

(𝑘)𝑛𝑦
(𝑘)

𝑛2 )

√
𝑛𝑥

(𝑘)𝑛𝑦
(𝑘)(𝑛 − 𝑛𝑥

(𝑘))(𝑛 − 𝑛𝑦
(𝑘))

𝑛4(𝑛 − 1)

= √𝑛 − 1 ∙

𝑡1𝑡2 (
𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
− 1*

√𝑡1𝑡2(1 − 𝑡1)(1 − 𝑡2)
 

will be positive and become larger if 𝑝𝑥𝑦 > 𝑝𝑥𝑝𝑦, negative and become smaller if 𝑝𝑥𝑦 < 𝑝𝑥𝑝𝑦, 

and equal to 0 if 𝑝𝑥𝑦 = 𝑝𝑥𝑝𝑦. 

As a result, with the increase of n, the discrimination between the cells with the correlated 

genes and uncorrelated genes will become larger, the type II error will decrease, and some edges 

will be rediscovered in the new dataset. 

(2) Next, if the new cells do not belong to any cell type in the original dataset (i.e. a new cell 

type is added into the dataset), the distribution of each gene and the joint distribution f(x, y) of 

each gene pair will be changed, and then the CSNs constructed by the original dataset may be also 

changed. Here, to simplify the analysis, we suppose that there is the same distribution of each 

gene in the new cells as the original cells, but all of the genes do not have any correlations. Then, 

the new cells are obviously different from any cell type in the original dataset, and will interfere 

with the edge recognition in the CSN construction, which represents an extreme case. 



We set nx
(k)

 and ny
(k)

 increase in proportion to sample size, number of the original cells is n0, 

and number of the new cells is n. If CSNs are constructed by the original cells, then  

𝐸(𝜌̂𝑥𝑦
(𝑘)) = √𝑛0 − 1 ∙

𝑡1𝑡2 (
𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
− 1*

√𝑡1𝑡2(1 − 𝑡1)(1 − 𝑡2)
 

On the other hand, if CSNs are constructed by the original cells and the new cells, then  

𝐸(𝜌̂𝑥𝑦
(𝑘)′) = √𝑛0 + 𝑛 − 1 ∙

𝑡1𝑡2 (

𝑛0𝑝𝑥𝑦 + 𝑛𝑝𝑥𝑝𝑦

𝑛0 + 𝑛
𝑝𝑥𝑝𝑦

− 1)

√𝑡1𝑡2(1 − 𝑡1)(1 − 𝑡2)
 

Thus  

𝐸(𝜌̂𝑥𝑦
(𝑘)′)

𝐸(𝜌̂𝑥𝑦
(𝑘))

=

√𝑛0 + 𝑛 − 1 ∙

𝑡1𝑡2 (
𝑛0𝑝𝑥𝑦 + 𝑛𝑝𝑥𝑝𝑦

𝑝𝑥𝑝𝑦(𝑛0 + 𝑛)
− 1*

√𝑡1𝑡2(1 − 𝑡1)(1 − 𝑡2)

√𝑛0 − 1 ∙
𝑡1𝑡2 (

𝑝𝑥𝑦

𝑝𝑥𝑝𝑦
− 1*

√𝑡1𝑡2(1 − 𝑡1)(1 − 𝑡2)

=
√𝑛0 + 𝑛 − 1 ∙

𝑛0
𝑛0 + 𝑛

√𝑛0 − 1
≈

1

√1 +
𝑛
𝑛0

 

We can see the normalized statistic will become smaller with the increase of n. Compared 

with the CSNs constructed from the original dataset, the CSNs from the new dataset will lose 

some edges. However, if the significance of an edge (i.e. the normalized statistic) is sufficiently 

large, this edge can still be retained. 

As a result, if a new cell type is added into the dataset, CSNs will lose some edges, but the 

significant edges are retained. 

(3) Finally, if the new cells belong to partial cell types in the original dataset, the proportion 

of each cell type will change. It is obvious that to the cell types with more samples, more edges 

will be identified, while to the other cell types, the noise will increase and some edges will be lost. 

Hence, this situation is a combination of the two situations mentioned above. 

As a conclusion, the robustness of an edge is determined by its normalized statistic; the larger 

normalized statistic, the more robust this edge is. In addition, if there are many or more cells in a 

cell type, the edges of the CSNs in this cell type can be identified more easily. Furthermore, the 

topological structure of CSN is stable and robust, which means the hub genes that have higher 

degrees in the CSN are always hub genes no matter how many edges can be identified to some 

extent. 

 

On the other hand, we further transfer CSNs to a network degree matrix (NDM) to embody 

the network features and reduce the dimensions simultaneously. The value in this matrix is the 

number of edges connected to each gene in each CSN, which means that for gene x in the network 

of cell k 

𝑁𝐷𝑀𝑥𝑘 = ∑ 𝑒𝑑𝑔𝑒𝑥𝑦
(𝑘)

𝑚

𝑦=1,𝑦≠𝑥

 (S-3) 

Then we can get a matrix NDM with m × n elements. Moreover, in this work we normalize 

the NDM by 



𝑁𝐷𝑀̂𝑥𝑘 =
𝑁𝐷𝑀𝑥𝑘

∑ 𝑁𝐷𝑀𝑖𝑘
𝑚
𝑖=1

∙
𝑎2

𝑐
 (S-4) 

where a is the average genes per cell in the scRNA-seq data and is defined as 

𝑎 =
1

𝑛
∑ ∑ sgn(𝐺𝐸𝑀𝑖𝑗)

𝑚

𝑖=1

𝑛

𝑗=1

  

c is a constant, and is chosen as 2000 in this work based on the computational simulation. 

GEM is the original gene expression matrix and sgn() is sign function. Thus each cell has the 

same number of network degrees, which is determined by the average genes per cell in the 

scRNA-seq data. The normalization is able to improve the robustness and helps to the comparison 

of the cells from different cell populations. Hence, for NDM, we can easily conclude that if there 

are more cells in a cell type, there are more edges in the CSNs of this cell type, but if we 

normalize the NDM by eqn. (S-4), NDM will be robust. 

 

 

 

  



Supplementary Note 3: The input, output and application fields of our CSN method 

 

Input:  

Gene expression matrix (RPKM/FPKM/TPM/count) 

Significant level (e.g. 0.001, 0.01, 0.05 …). If the significant level is larger, it is easier to 

reject the null hypothesis and get more edges. In this paper, we set significant level as 

0.01. 

Box size. nx
(k)

 and ny
(k)

 should be determined in advance. In this paper, we set nx
(k)

 and ny
(k)

 

approximately equal to 0.1n. Users can change this parameter as well. 

Output: 

Cell-specific network for each cell (rows = genes, column = genes) 

Network degree matrix (rows = genes, column = cells) 

Normalized statistic of edge x-y for all cells (1×n vector) 

Application fields: 

The number of cells should be 100 at least. 

  



Supplementary Note 4: Algorithms and their parameters used in clustering, 

visualization and pseudo-trajectory analysis 

 

Preprocessing: GEM is preprocessed from initial gene expression matrix by normalization, 

gene selection (listed in Supplementary Note 5) and logarithm, i.e. 𝑥̂ = log  (1 + 𝑥). NDM is 

straight transformed from GEM and also preprocessed by logarithm. 

 

Hierarchical clustering 

Distance between two objects: Euclidean distance 

Algorithm for computing distance between clusters: Ward’s linkage (Inner squared distance, 

minimum variance algorithm) 

Number of clusters: Same as the number of categories in the original dataset 

 

k-means clustering 

Centroid initialization: k-means++ algorithm (1) 

Distance between two objects: Squared Euclidean distance 

Maximum number of iterations: 1000 

Number of times to repeat clustering using new initial cluster centroid positions: 100 

Number of clusters: Same as the number of categories in the original dataset 

 

k-medoids clustering 

Algorithm to find medoids: Partitioning Around Medoids (PAM) (2) 

Centroid initialization: k-means++ algorithm (1) 

Distance between two objects: Squared Euclidean distance 

Maximum number of iterations: 1000 

Number of times to repeat clustering using new initial cluster centroid positions: 1 

Number of clusters: Same as the number of categories in the original dataset 

 

SNN-Cliq (3) 

Number of neighbors: 5 

Other parameters: Default 

 

SIMLR (4) 

Number of clusters: Same as the number of categories in the original dataset 

Other parameters: Default 

 

t-SNE (5) 

In clustering analysis: 

Preprocessed by PCA to reduce the dimensions to: 20 

t-SNE reduce the dimensions to: 5 

Perplexity: 30 

Clustering method: Hierarchical clustering / k-means 

In visualization: 

Preprocessed by PCA to reduce the dimensions to: 20 

javascript:void(0);
javascript:void(0);


t-SNE reduce the dimensions to: 2 

Perplexity: 30 

 

Wanderlust (6) 

Preprocessed by PCA to reduce the dimensions to: 250 (Chu-time) / 200 (Trapnell) 

Branch: no branch 

Other parameters: Default 

 

  



Supplementary Note 5: Datasets used for validation of CSN 

Ten single-cell RNA-seq datasets (7-15) and one bulk RNA-seq dataset are used in this paper. 

The normalization, gene selection rules and data sources of all datasets are listed below. 

Dataset 
Number 

of cells 

Number 

of cell 

types 

Normali

zation 

method 

Number 

of genes 

used in 

GEM 

and 

NDM 

Gene 

selection 

rules 

Data Sources 

Buettner 182 3 FPKM 8988 
FPKM per 

cell on 

average > 5 

Supplementary Data 2 

Kolodziejc

zyk 
704 3 count 10685 

Counts per 

cell on 

average > 10 

ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress) 

E-MTAB-2600 

Pollen 249 11 TPM 14805 

Expressed in 

at least 10 

cells 

NCBI Sequence Read Archive 

(http://www.ncbi.nlm.nih.gov/Traces/sra/) 

SRP041736 

Zeisel 3005 9 TPM 15964 
Gene Expression Omnibus 

(www.ncbi.nlm.nih.gov/geo) 

GSE60361 

Darmanis 420 8 TPM 15651 GSE67835 

Chu-type 1018 7 FPKM 16619 GSE75748 

Chu-time 758 6 FPKM 15691 GSE75748 

Trapnell 372 4 FPKM 17867 GSE52529 

Kim 118 3 TPM 13392 GSE73121 

Xin 1600 4 RPKM 25040  GSE81608 

TCGA 1135 4 FPKM 33409 

Expressed in 

at least 500 

samples 

The Cancer Genome Atlas (TCGA) 

Project: TCGA-LUAD and TCGA-LUSC 

(https://cancergenome.nih.gov) 

 

  

http://www.ebi.ac.uk/arrayexpress
http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/geo


Supplementary Note 6: The relevance between correlation coefficient and normalized 

statistic 

 

We selected 500 genes with the largest variance on Chu-type dataset, and then calculated the 

squared correlation coefficient R
2
 and average normalized statistic for every two genes in H1 cells. 

Figure S7 indicates the high relevance between R
2
 and the normalized statistic of eqn. (S-2). As 

shown in the figure, a few points get the large R
2
 but normalized statistic is almost zero, which is 

because the two genes in most cells are not expressed except one or two cells, and thus R
2
 

approaches 1 by only those cells. 

 

Figure S7. The relevance between squared correlation coefficient and average normalized statistic in 

H1 cells. 

 

  



Supplementary Note 7: Illustration of some gene associations  

 

Figure S8 illustrates some gene associations with POU5F1 based on Chu-type dataset. Some 

literatures have validated the gene interactions between POU5F1 and CDH1 (16), POU5F1 and 

EPAS1 (17), POU5F1 and NANOG (18), which indicates that it is possible to find the information 

of gene associations by scRNA-seq data.  

 

  

  

  

 

Figure S8. Scatter diagrams and performance of the normalized statistic of edge POU5F1 - CDH1, 

POU5F1 - EPAS1 and POU5F1 – NANOG. 

  



Supplementary Note 8: The top genes with the highest degrees on Chu-type dataset 

 

We listed the top 10 genes with the highest degrees of each cell type on Chu-type dataset. 

 

H1 H9 DEC EC HFF NPC TB 

PHC1 DPPA4 CER1 PECAM1 LIN28A CDH6 ITGB6 

L1TD1 L1TD1 SERPINB9 CXorf36 B2M LIX1 VGLL1 

TERF1 PHC1 POU2AF1 MMRN2 AXL LRP2 PLSCR5 

DPPA4 TERF1 ERBB4 TFPI LGALS1 PAX6 GABRP 

TDGF1 POU5F1 GATA4 F2RL2 ANXA2 ILDR2 PIK3C2G 

POLR3G ZFP42 RHOBTB3 TNFSF10 CD24 DLK1 PAPPA2 

USP44 HSPD1 STC1 SPTBN1 CD59 DPYSL5 GUCY1A3 

DNMT3B USP44 CST1 SCARF1 THBS1 OTX1 HAND1 

POU5F1 CD24 FGF17 CARD8 COL1A1 TMSB4X TPM1 

S100A11 SNURF MYCT1 SOX7 TWSG1 EFNA5 P2RY6 

 

  



Supplementary Note 9: The “darker” genes of each cell type on Chu-type dataset 

 

We listed the “darker” genes of each cell type on Chu-type dataset (p-value in this table is the 

maximum p-value among the top-expressed cell type and other cell type, and Wilcoxon rank-sum 

test is used). 

 

Gene 
Cell 

type 

p-value of 

network 

degree 

p-value of 

expression 
Gene 

Cell 

type 

p-value of 

network 

degree 

p-value of 

expression 

TDGF1 H1 3.59E-06 0.956 MSL1 EC 3.32E-06 0.010 

VSNL1 H1 3.62E-08 0.094 PHF8 EC 1.07E-06 0.086 

DNAH11 H9 2.00E-06 0.030 GORAB EC 1.01E-06 0.573 

NPPB HFF 1.66E-07 0.015 KANSL3 EC 1.51E-07 0.026 

TMEM97 NPC 3.33E-06 0.053 EFNA2 EC 1.01E-07 0.017 

SGPL1 NPC 7.88E-06 0.818 UBQLN4 EC 2.14E-06 0.061 

ICAM1 NPC 2.18E-07 0.038 SIK2 EC 3.12E-06 0.016 

ARSA NPC 6.86E-06 0.019 FBXO33 EC 6.57E-06 0.794 

MX2 DEC 9.35E-06 0.015 KANSL1L EC 1.01E-06 0.016 

GATA2 DEC 4.92E-06 0.504 STAT5B EC 3.74E-07 0.031 

ACTA2 DEC 3.39E-12 0.022 ASB3 EC 6.23E-07 0.024 

LGALS3 DEC 1.73E-16 0.337 THAP3 EC 1.60E-06 0.017 

TNFRSF19 DEC 5.34E-06 0.016 TTC32 EC 8.76E-06 0.195 

FAM131B EC 6.30E-06 0.012 ZHX2 EC 2.03E-06 0.053 

PHF13 EC 2.96E-06 0.026 TAF1C EC 5.64E-06 0.151 

ZNF226 EC 1.39E-06 0.904 ZNF618 EC 2.45E-07 0.095 

IFT122 EC 3.08E-06 0.014 C1orf21 EC 2.49E-06 0.024 

CDH8 EC 4.98E-06 0.012 AGBL5 EC 1.75E-07 0.042 

EZH1 EC 2.60E-08 0.028 EXOC6 EC 6.33E-06 0.014 

KHDRBS3 EC 2.09E-07 0.033 SCMH1 EC 1.67E-07 0.188 

IDH2 EC 2.26E-07 0.051 DOCK3 EC 1.43E-06 0.044 

EFCAB7 EC 4.92E-08 0.024 FXR2 TB 9.83E-06 0.017 

 

  



Supplementary Note 10: Results of clustering analysis 

 

We used different measurements to evaluate the performances of clustering analysis, which 

are shown below. 

 

(1) Adjusted Random Index (ARI) 

  Buettner 
Kolod 

ziejczyk 
Pollen Zeisel Darmanis 

Chu- 

type 

Chu- 

time 
Kim Trapnell 

Hierarchical 
GEM 0.48 0.49 0.95 0.55 0.63 0.75 0.67 0.66 0.08 

NDM 0.82 0.99 0.96 0.53 0.91 0.77 0.72 0.73 0.24 

k-means 
GEM 0.31 0.53 0.90 0.39 0.58 0.73 0.59 0.60 0.14 

NDM 0.74 0.80 0.87 0.43 0.77 0.77 0.70 0.83 0.44 

Hierarchical 

(tSNE) 

GEM 0.32 0.99 0.94 0.60 0.67 0.98 0.68 0.66 0.16 

NDM 0.97 1.00 0.85 0.62 0.86 0.99 0.68 1.00 0.43 

k-means 

(tSNE) 

GEM 0.30 0.99 0.94 0.62 0.65 0.98 0.69 0.72 0.16 

NDM 0.94 1.00 0.85 0.65 0.85 0.99 0.69 1.00 0.47 

k-medoids 
GEM 0.14 0.03 0.91 0.43 0.36 0.60 0.43 0.57 0.00 

NDM 0.31 0.73 0.89 0.11 0.23 0.76 0.41 0.61 0.23 

SIMLR 
GEM 0.92 0.99 0.90 0.56 0.75 0.74 0.66 0.97 0.21 

NDM 1.00 1.00 0.92 0.67 0.90 0.75 0.67 0.95 0.31 

SNN-Cliq 
GEM 0.00 0.00 0.90 0.50 0.20 0.64 0.30 0.58 0.00 

NDM 0.50 0.65 0.90 0.60 0.01 0.61 0.36 0.58 0.24 

 

 

 (2) F1-measure 

  Buettner 
Kolod 

ziejczyk 
Pollen Zeisel Darmanis 

Chu- 

type 

Chu- 

time 
Kim Trapnell 

Hierarchical 
GEM 0.66 0.67 0.95 0.63 0.69 0.79 0.73 0.78 0.35 

NDM 0.88 0.99 0.96 0.61 0.93 0.81 0.77 0.82 0.49 

k-means 
GEM 0.54 0.70 0.91 0.48 0.65 0.78 0.67 0.73 0.36 

NDM 0.83 0.87 0.88 0.54 0.82 0.81 0.76 0.89 0.60 

Hierarchical 

(tSNE) 

GEM 0.55 0.99 0.95 0.67 0.73 0.98 0.74 0.78 0.38 

NDM 0.98 1.00 0.86 0.69 0.88 0.99 0.74 1.00 0.60 

k-means 

(tSNE) 

GEM 0.54 0.99 0.95 0.68 0.71 0.98 0.75 0.82 0.38 

NDM 0.96 1.00 0.86 0.71 0.88 0.99 0.75 1.00 0.62 

k-medoids 
GEM 0.46 0.50 0.92 0.52 0.48 0.67 0.54 0.72 0.37 

NDM 0.55 0.82 0.91 0.34 0.40 0.79 0.52 0.75 0.49 

SIMLR 
GEM 0.95 0.99 0.91 0.63 0.80 0.78 0.73 0.98 0.41 

NDM 1.00 1.00 0.92 0.73 0.92 0.79 0.74 0.97 0.51 

SNN-Cliq 
GEM 0.50 0.52 0.91 0.58 0.39 0.70 0.48 0.72 0.37 

NDM 0.69 0.75 0.91 0.67 0.34 0.67 0.47 0.74 0.48 

 



(3) Purity 

  Buettner 
Kolod 

ziejczyk 
Pollen Zeisel Darmanis 

Chu- 

type 

Chu- 

time 
Kim Trapnell 

Hierarchical 
GEM 0.77 0.75 0.97 0.80 0.85 0.83 0.80 0.84 0.42 

NDM 0.93 1.00 0.97 0.77 0.94 0.86 0.87 0.89 0.48 

k-means 
GEM 0.70 0.76 0.92 0.78 0.84 0.82 0.75 0.81 0.45 

NDM 0.91 0.92 0.89 0.74 0.83 0.87 0.87 0.93 0.65 

Hierarchical 

(tSNE) 

GEM 0.67 1.00 0.96 0.89 0.89 0.99 0.83 0.84 0.46 

NDM 0.99 1.00 0.91 0.88 0.94 1.00 0.82 1.00 0.67 

k-means 

(tSNE) 

GEM 0.68 1.00 0.96 0.89 0.89 0.99 0.83 0.88 0.46 

NDM 0.98 1.00 0.91 0.88 0.94 1.00 0.83 1.00 0.67 

k-medoids 
GEM 0.56 0.50 0.93 0.73 0.71 0.75 0.67 0.82 0.30 

NDM 0.65 0.89 0.92 0.46 0.50 0.87 0.68 0.77 0.50 

SIMLR 
GEM 0.97 1.00 0.94 0.86 0.90 0.84 0.82 0.99 0.48 

NDM 1.00 1.00 0.95 0.91 0.93 0.84 0.79 0.98 0.56 

SNN-Cliq 
GEM 0.36 0.42 0.94 0.83 0.68 0.77 0.54 0.81 0.29 

NDM 0.73 0.94 0.91 0.87 0.34 0.89 0.70 0.76 0.55 

 

(4) Entropy 

  Buettner 
Kolod 

ziejczyk 
Pollen Zeisel Darmanis 

Chu- 

type 

Chu- 

time 
Kim Trapnell 

Hierarchical 
GEM 0.77 0.72 0.12 0.78 0.53 0.43 0.62 0.54 1.76 

NDM 0.31 0.02 0.10 0.86 0.29 0.32 0.52 0.45 1.30 

k-means 
GEM 1.02 0.69 0.28 0.93 0.64 0.46 0.77 0.66 1.66 

NDM 0.49 0.31 0.34 1.06 0.66 0.32 0.54 0.32 1.01 

Hierarchical 

(tSNE) 

GEM 1.02 0.01 0.14 0.52 0.30 0.07 0.55 0.52 1.62 

NDM 0.07 0.00 0.28 0.59 0.21 0.03 0.55 0.00 1.02 

k-means 

(tSNE) 

GEM 1.02 0.01 0.14 0.51 0.31 0.07 0.53 0.46 1.62 

NDM 0.12 0.00 0.28 0.57 0.23 0.03 0.52 0.00 0.98 

k-medoids 
GEM 1.19 1.42 0.29 1.10 1.13 0.71 1.10 0.69 1.95 

NDM 1.03 0.45 0.27 2.12 1.61 0.37 1.13 0.63 1.30 

SIMLR 
GEM 0.14 0.01 0.24 0.64 0.36 0.43 0.57 0.06 1.50 

NDM 0.00 0.00 0.16 0.50 0.28 0.36 0.62 0.11 1.20 

SNN-Cliq 
GEM 1.58 1.54 0.27 0.69 1.39 0.66 1.72 0.68 1.98 

NDM 0.80 0.26 0.21 0.65 2.49 0.28 1.04 0.62 1.14 

 



Supplementary Note 11: Results of visualization 

 

 

 

Figure S9. The clustering performances of NDM and GEM on four datasets. PCA and t-SNE that 

represent linear and nonlinear dimension-reduction method respectively are used for visualization. 

Different colors represent different cell types. x-axis and y-axis in each graph represent PC1 and PC2 

(or tSNE1 and tSNE2), respectively. 

 

  



Supplementary Note 12: Results of pseudo trajectory analysis 

 

In this paper, we used two datasets with the gold standard from literatures, which include 758 

cells with 6 stages (0h, 12h, 24h, 36h, 72h, 96h) in Chu-time dataset (14) and 372 cells with 4 

stages (0h, 24h, 48h, 72h) in Trapnell dataset (10). Wanderlust (6) is a method to construct 

no-branch pseudo trajectory, which gives each cell a value to represent the cell order, and the cells 

in the later stages will get larger values. GEM and NDM are used for comparison. Figure S10 

illustrates that the Wanderlust values increase in accordance with the time sequence in Chu-time 

dataset, and the results of GEM and NDM are quite similar. But in Trapnell dataset, NDM is able 

to identify the change at 72h, but GEM fails. 

 

 

Figure S10. The comparison of GEM and NDM in pseudo trajectory analysis. The cells in the later 

stages will get larger Wanderlust values, and the average at every time points is shown as black line. 

  



Supplementary Note 13: Comparison of different parameters of CSN 

 

 

 

Figure S11. Comparison of different parameters of CSN. X-axis is box size and different colors 

represent different p-value. Y-axis is the ARI in clustering analysis. The results show that the optimum 

box size is about 0.1, and the optimum p-value is about 0.01, on average. 



Supplementary Note 14: Comparison of different normalization methods 

 

ARI of GEM and NDM in clustering analysis between different normalization methods is 

listed below. We can see NDM from the GEM normalized by TPM/FPKM/count gets the similar 

performances on the same dataset, though the result by TPM seems to be better. Thus, our NDM 

method is not sensitive to the normalization method, and is suitable to various types of gene 

expression matrix. 

 

  
Kolodziejczyk 

(NDM) 

Kolodziejczyk 

(GEM) 
Pollen (NDM) Pollen (GEM) 

  TPM count TPM count TPM count TPM Count 

Hierarchical 1 0.99 0.73 0.49 0.96 0.92 0.95 0.95 

k-means 0.93 0.80 0.70 0.53 0.87 0.82 0.90 0.87 

Hierarchical (tSNE) 1 1 0.73 0.99 0.85 0.85 0.94 0.88 

k-means (tSNE) 1 1 0.73 0.99 0.85 0.85 0.94 0.92 

 

 

  Zeisel (NDM) Zeisel (GEM) Darmanis (NDM) Darmanis (GEM) 

  TPM count TPM count TPM count TPM Count 

Hierarchical 0.53 0.56 0.55 0.39 0.91 0.89 0.63 0.46 

k-means 0.43 0.41 0.39 0.36 0.77 0.80 0.58 0.42 

Hierarchical (tSNE) 0.62 0.59 0.60 0.58 0.86 0.85 0.67 0.62 

k-means (tSNE) 0.65 0.55 0.62 0.57 0.85 0.85 0.65 0.61 

 

 

  Chu-type (NDM) Chu-type (GEM) Chu-time (NDM) Chu-time (GEM) 

  TPM FPKM TPM FPKM TPM FPKM TPM FPKM 

Hierarchical 0.75 0.77 0.75 0.75 0.67 0.72 0.79 0.67 

k-means 0.75 0.77 0.75 0.73 0.72 0.70 0.72 0.59 

Hierarchical (tSNE) 0.99 0.99 0.99 0.98 0.72 0.68 0.72 0.68 

k-means (tSNE) 0.99 0.99 0.99 0.98 0.72 0.69 0.72 0.69 

 

 

  Kim (NDM) Kim (GEM) Trapnell (NDM) Trapnell (GEM) 

  TPM FPKM TPM FPKM TPM FPKM TPM FPKM 

Hierarchical 0.73 0.73 0.66 0.66 0.24 0.24 0.08 0.08 

k-means 0.83 0.75 0.60 0.56 0.48 0.44 0.13 0.14 

Hierarchical (tSNE) 1 1 0.66 0.95 0.44 0.43 0.20 0.16 

k-means (tSNE) 1 1 0.72 0.76 0.5 0.47 0.20 0.16 

 

  



Supplementary Note 15: Comparison of different gene selection rules 

 

ARI of GEM and NDM in clustering analysis between different gene selection rules is listed 

below. We can see that the different gene selection rules have just a little influence on the 

performance of GEM and NDM, and NDM is still superior to GEM clearly. 

 

 

 Buettner (NDM) Buettner (GEM) 

 FPKM per cell on average FPKM per cell on average 

 > 1 > 5 > 10 > 50 > 1 > 5 > 10 > 50 

Hierarchical 0.91 0.82 0.85 0.85 0.26 0.48 0.34 0.38 

k-means 0.90 0.74 0.85 0.75 0.30 0.31 0.25 0.31 

Hierarchical (tSNE) 0.78 0.97 0.70 0.95 0.37 0.32 0.29 0.38 

k-means (tSNE) 0.84 0.94 0.71 0.95 0.30 0.30 0.31 0.42 

 

 

 Darmanis (NDM) Darmanis (GEM) 

 Detected expression in at least Detected expression in at least 

 1 cell 5 cells 10 cells 50 cells 1 cell 5 cells 10 cells 50 cells 

Hierarchical 0.88 0.91 0.91 0.90 0.63 0.64 0.63 0.59 

k-means 0.76 0.90 0.77 0.90 0.58 0.57 0.58 0.57 

Hierarchical (tSNE) 0.85 0.85 0.86 0.64 0.64 0.67 0.67 0.63 

k-means (tSNE) 0.85 0.85 0.85 0.64 0.65 0.65 0.65 0.63 

 

 

 Chu-type (NDM) Chu-type (GEM) 

 Detected expression in at least Detected expression in at least 

 1 cell 5 cells 10 cells 50 cells 1 cell 5 cells 10 cells 50 cells 

Hierarchical 0.75 0.75 0.77 0.77 0.75 0.75 0.75 0.75 

k-means 0.77 0.77 0.77 0.77 0.74 0.73 0.73 0.74 

Hierarchical (tSNE) 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 

k-means (tSNE) 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 

 

 

 Chu-time (NDM) Chu-time (GEM) 

 Detected expression in at least Detected expression in at least 

 1 cell 5 cells 10 cells 50 cells 1 cell 5 cells 10 cells 50 cells 

Hierarchical 0.64 0.65 0.72 0.75 0.67 0.68 0.67 0.67 

k-means 0.70 0.70 0.70 0.71 0.60 0.59 0.59 0.59 

Hierarchical (tSNE) 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

k-means (tSNE) 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.69 

 

 

 



 Trapnell (NDM) Trapnell (GEM) 

 Detected expression in at least Detected expression in at least 

 1 cell 5 cells 10 cells 50 cells 1 cell 5 cells 10 cells 50 cells 

Hierarchical 0.23 0.24 0.24 0.23 0.06 0.06 0.08 0.01 

k-means 0.25 0.25 0.44 0.23 0.13 0.15 0.16 0.13 

Hierarchical (tSNE) 0.43 0.45 0.43 0.44 0.17 0.16 0.16 0.16 

k-means (tSNE) 0.47 0.50 0.47 0.47 0.16 0.16 0.16 0.16 

 

 

 Kim (NDM) Kim (GEM) 

 Detected expression in at least Detected expression in at least 

 1 cell 5 cells 10 cells 50 cells 1 cell 5 cells 10 cells 50 cells 

Hierarchical 0.77 0.73 0.73 0.72 0.66 0.66 0.66 0.73 

k-means 0.78 0.76 0.83 0.73 0.61 0.61 0.60 0.56 

Hierarchical (tSNE) 1.00 1.00 1.00 1.00 0.66 0.66 0.66 0.76 

k-means (tSNE) 1.00 1.00 1.00 0.98 0.72 0.72 0.72 0.75 

 

 

 Kolodziejczyk (NDM) Kolodziejczyk (GEM) 

 Counts per cell on average Counts per cell on average 

 > 10 > 20 > 50 > 10 > 20 > 50 

Hierarchical 0.99 0.81 0.83 0.49 0.51 0.53 

k-means 0.80 0.76 0.61 0.53 0.53 0.52 

Hierarchical (tSNE) 1.00 1.00 1.00 0.99 0.99 0.99 

k-means (tSNE) 1.00 1.00 1.00 0.99 0.99 0.99 

 

 

 Pollen (NDM) Pollen (GEM) 

 Detected expression in at least Detected expression in at least 

 10 cells 20 cells 50 cells 10 cell 20 cells 50 cells 

Hierarchical 0.96 0.96 0.92 0.95 0.94 0.95 

k-means 0.87 0.84 0.90 0.90 0.91 0.92 

Hierarchical (tSNE) 0.85 0.85 0.88 0.94 0.94 0.95 

k-means (tSNE) 0.85 0.86 0.88 0.94 0.94 0.94 

 

  



Supplementary Note 16: Clustering analysis for the imputed data 

 

In this work, we used scImpute (18) to impute the dataset, and then constructed the NDM 

from the imputed data. Clustering methods including hierarchical clustering algorithm (HCA) and 

k-means were used for comparison. We also performed the clustering to the data that are 

preprocessed by t-SNE.  

The result is shown in Figure S12. From Figure S12, we can see that the imputed GEM gets 

better results than original GEM in some datasets, but is usually inferior to the performance of 

NDM from original GEM. The result of NDM from imputed GEM is a little better than imputed 

GEM, but is obviously worse than NDM from original GEM. As a conclusion, the imputation 

based on the current methods is not recommended before CSN construction. In other words, 

existing imputation method is based on the expression level of scRNA-seq data but does not take 

into account of the gene-gene interactions, and thus, the identification of edges in CSNs from 

imputed data may be interfered, which leads to the worse result for the NDM from imputed data. 
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Figure S12. The clustering performance of original GEM, imputed GEM, NDM from original GEM 

and NDM from imputed GEM on the nine datasets. Hierarchical clustering algorithm (HCA) and 

k-means were used for comparison. We also performed the clustering to the data that is preprocessed 

by t-SNE. 
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Supplementary Note 17: Differential genes in gene expression or network degree 

between adenocarcinoma and squamous cell carcinoma adjacent normal tissues 

 

We listed the differential genes in gene expression or network degree between 

adenocarcinoma and squamous cell carcinoma adjacent normal tissues (Wilcoxon rank sum test, 

FDR < 0.05 and fold change > 2). 

 

Ensembl ID 

FDR of 

gene 

expression 

FDR of 

network 

degree 

Ensembl ID 

FDR of 

gene 

expression 

FDR of 

network 

degree 

ENSG00000090512 0.003197 0.007644 ENSG00000213875 0.015745 0.708816 

ENSG00000107807 0.055148 0.035364 ENSG00000214097 0.215530 0.019641 

ENSG00000108849 0.368530 0.045265 ENSG00000214417 0.034325 0.806984 

ENSG00000118990 0.043816 0.097390 ENSG00000216331 0.075561 0.043294 

ENSG00000122043 0.303478 0.046362 ENSG00000217159 0.180773 0.047935 

ENSG00000125998 0.028002 0.028380 ENSG00000217653 0.365533 0.025425 

ENSG00000132677 0.703875 0.019787 ENSG00000219559 0.118403 0.026393 

ENSG00000134757 0.000013 0.018907 ENSG00000224299 0.564278 0.016476 

ENSG00000143556 0.002407 0.290305 ENSG00000225513 0.523751 0.026656 

ENSG00000144785 0.117591 0.028505 ENSG00000226084 0.000015 0.009083 

ENSG00000147381 0.003110 0.005170 ENSG00000228697 0.032383 0.027148 

ENSG00000158874 0.044069 0.547680 ENSG00000229119 0.000003 0.000919 

ENSG00000159527 0.203220 0.044516 ENSG00000231725 0.055468 0.030999 

ENSG00000163209 0.000326 0.086008 ENSG00000232385 0.001449 0.551598 

ENSG00000163216 0.004361 0.843903 ENSG00000233214 0.046598 0.468909 

ENSG00000169469 0.000020 0.092241 ENSG00000233246 0.227560 0.028999 

ENSG00000169474 0.000225 0.258632 ENSG00000233260 0.187237 0.032592 

ENSG00000170454 0.019020 0.024161 ENSG00000235175 0.000013 0.787825 

ENSG00000170465 0.004923 0.020187 ENSG00000237409 0.483375 0.043804 

ENSG00000178363 0.000016 0.103138 ENSG00000237490 0.009014 0.084218 

ENSG00000183242 0.832016 0.033203 ENSG00000237955 0.028421 0.000968 

ENSG00000184330 0.016564 0.015338 ENSG00000241794 0.027922 0.850091 

ENSG00000185479 0.000194 0.901974 ENSG00000242113 0.005058 0.001137 

ENSG00000186832 0.000255 0.455530 ENSG00000244712 0.383523 0.015151 

ENSG00000186847 0.001649 0.223682 ENSG00000251377 0.170296 0.002587 

ENSG00000187054 0.000189 0.019431 ENSG00000255723 0.170214 0.028800 

ENSG00000188373 0.039188 0.009669 ENSG00000257759 0.136402 0.019879 

ENSG00000197641 0.015678 0.026463 ENSG00000259303 0.088267 0.046652 

ENSG00000199676 0.041426 0.878395 ENSG00000261587 0.799625 0.041349 

ENSG00000203785 0.000052 0.001433 ENSG00000263829 0.789961 0.012973 

ENSG00000205420 0.000051 0.270627 ENSG00000265394 0.149375 0.022218 

ENSG00000205628 0.313880 0.042657 ENSG00000273962 0.018738 0.085123 

ENSG00000213033 0.956406 0.022251 ENSG00000281550 0.039444 0.040817 

ENSG00000213455 0.010947 0.746091 ENSG00000281591 0.032370 0.032139 



Supplementary Note 18: The two subtypes divided from squamous cell carcinoma 

samples 

 

We can divide squamous cell carcinoma samples into two subtypes S1 and S2 based on NDM 

(Figure 6C in main text), which are listed below. 

 

Subtype S1 (117 samples): 

TCGA-18-3409 TCGA-37-3792 TCGA-52-7622 TCGA-60-2716 TCGA-85-6560 TCGA-77-A5GH 

TCGA-18-3410 TCGA-37-4129 TCGA-52-7809 TCGA-60-2725 TCGA-85-7950 TCGA-85-A4PA 

TCGA-21-1078 TCGA-37-4130 TCGA-52-7812 TCGA-63-6202 TCGA-85-8048 TCGA-85-A50M 

TCGA-21-1083 TCGA-37-4132 TCGA-56-6546 TCGA-66-2744 TCGA-85-8288 TCGA-85-A510 

TCGA-21-5787 TCGA-37-4135 TCGA-56-7223 TCGA-66-2754 TCGA-85-8352 TCGA-85-A513 

TCGA-22-1000 TCGA-37-4141 TCGA-56-7731 TCGA-66-2755 TCGA-85-8584 TCGA-90-A4ED 

TCGA-22-1002 TCGA-37-5819 TCGA-56-8083 TCGA-66-2756 TCGA-90-7767 TCGA-90-A4EE 

TCGA-22-1005 TCGA-39-5011 TCGA-56-8201 TCGA-66-2757 TCGA-90-7964 TCGA-90-A59Q 

TCGA-22-1016 TCGA-39-5034 TCGA-56-8307 TCGA-66-2769 TCGA-94-7943 TCGA-96-A4JL 

TCGA-22-1017 TCGA-39-5039 TCGA-56-8309 TCGA-66-2785 TCGA-94-8491 TCGA-98-A53B 

TCGA-22-4594 TCGA-39-5040 TCGA-56-8624 TCGA-66-2786 TCGA-96-7545 TCGA-98-A53C 

TCGA-22-4596 TCGA-43-2576 TCGA-56-8626 TCGA-66-2789 TCGA-98-7454 TCGA-98-A53D 

TCGA-22-5472 TCGA-43-2578 TCGA-56-8628 TCGA-68-8250 TCGA-98-8022 TCGA-98-A53H 

TCGA-22-5480 TCGA-43-2581 TCGA-58-8386 TCGA-68-8251 TCGA-98-8023 TCGA-L3-A4E7 

TCGA-22-5481 TCGA-43-5668 TCGA-58-8388 TCGA-77-6842 TCGA-33-AASB TCGA-NK-A5D1 

TCGA-22-5483 TCGA-43-7656 TCGA-60-2695 TCGA-77-7335 TCGA-56-A49D TCGA-O2-A52Q 

TCGA-33-4587 TCGA-43-7658 TCGA-60-2697 TCGA-77-7465 TCGA-56-A4ZJ TCGA-O2-A5IB 

TCGA-33-6737 TCGA-46-3766 TCGA-60-2706 TCGA-77-8007 TCGA-63-A5MM 
 

TCGA-34-2608 TCGA-46-3767 TCGA-60-2714 TCGA-77-8131 TCGA-63-A5MN 
 

TCGA-34-5234 TCGA-46-3769 TCGA-60-2715 TCGA-85-6175 TCGA-77-A5FZ 
 

 

Subtype S2 (384 samples): 

TCGA-18-3406 TCGA-33-6738 TCGA-56-7822 TCGA-66-2790 TCGA-85-8479 TCGA-63-A5MV 

TCGA-18-3407 TCGA-34-2596 TCGA-56-7823 TCGA-66-2791 TCGA-85-8481 TCGA-63-A5MW 

TCGA-18-3408 TCGA-34-2600 TCGA-56-8082 TCGA-66-2792 TCGA-85-8580 TCGA-63-A5MY 

TCGA-18-3411 TCGA-34-5231 TCGA-56-8304 TCGA-66-2793 TCGA-85-8582 TCGA-68-A59I 

TCGA-18-3412 TCGA-34-5232 TCGA-56-8305 TCGA-66-2794 TCGA-85-8664 TCGA-68-A59J 

TCGA-18-3414 TCGA-34-5236 TCGA-56-8308 TCGA-66-2795 TCGA-85-8666 TCGA-6A-AB49 

TCGA-18-3415 TCGA-34-5239 TCGA-56-8503 TCGA-66-2800 TCGA-90-6837 TCGA-77-A5G1 

TCGA-18-3416 TCGA-34-5240 TCGA-56-8504 TCGA-68-7755 TCGA-90-7766 TCGA-77-A5G3 

TCGA-18-3417 TCGA-34-5241 TCGA-56-8622 TCGA-68-7756 TCGA-90-7769 TCGA-77-A5G6 

TCGA-18-3419 TCGA-34-5927 TCGA-56-8623 TCGA-68-7757 TCGA-92-7340 TCGA-77-A5G7 

TCGA-18-3421 TCGA-34-5928 TCGA-56-8625 TCGA-70-6722 TCGA-92-7341 TCGA-77-A5G8 

TCGA-18-4083 TCGA-34-5929 TCGA-56-8629 TCGA-70-6723 TCGA-92-8063 TCGA-77-A5GA 

TCGA-18-4086 TCGA-34-7107 TCGA-58-8387 TCGA-77-6843 TCGA-92-8064 TCGA-77-A5GB 

TCGA-18-4721 TCGA-34-8454 TCGA-58-8390 TCGA-77-6844 TCGA-92-8065 TCGA-77-A5GF 

TCGA-18-5592 TCGA-34-8455 TCGA-58-8391 TCGA-77-6845 TCGA-94-7033 TCGA-85-A4CL 



TCGA-18-5595 TCGA-34-8456 TCGA-58-8392 TCGA-77-7138 TCGA-94-7557 TCGA-85-A4CN 

TCGA-21-1070 TCGA-37-3783 TCGA-58-8393 TCGA-77-7139 TCGA-94-8035 TCGA-85-A4JB 

TCGA-21-1071 TCGA-37-3789 TCGA-60-2696 TCGA-77-7140 TCGA-94-8490 TCGA-85-A4JC 

TCGA-21-1072 TCGA-37-4133 TCGA-60-2698 TCGA-77-7141 TCGA-96-7544 TCGA-85-A4QQ 

TCGA-21-1075 TCGA-39-5016 TCGA-60-2703 TCGA-77-7142 TCGA-96-8169 TCGA-85-A4QR 

TCGA-21-1076 TCGA-39-5019 TCGA-60-2704 TCGA-77-7337 TCGA-96-8170 TCGA-85-A50Z 

TCGA-21-1077 TCGA-39-5021 TCGA-60-2707 TCGA-77-7338 TCGA-98-8020 TCGA-85-A511 

TCGA-21-1079 TCGA-39-5022 TCGA-60-2708 TCGA-77-7463 TCGA-98-8021 TCGA-85-A512 

TCGA-21-1080 TCGA-39-5024 TCGA-60-2709 TCGA-77-8008 TCGA-21-A5DI TCGA-85-A53L 

TCGA-21-1081 TCGA-39-5027 TCGA-60-2710 TCGA-77-8009 TCGA-22-A5C4 TCGA-85-A5B5 

TCGA-21-1082 TCGA-39-5028 TCGA-60-2711 TCGA-77-8128 TCGA-33-A4WN TCGA-94-A4VJ 

TCGA-21-5782 TCGA-39-5029 TCGA-60-2712 TCGA-77-8130 TCGA-33-A5GW TCGA-94-A5I4 

TCGA-21-5783 TCGA-39-5030 TCGA-60-2713 TCGA-77-8133 TCGA-33-AAS8 TCGA-94-A5I6 

TCGA-21-5784 TCGA-39-5031 TCGA-60-2719 TCGA-77-8136 TCGA-33-AASD TCGA-96-A4JK 

TCGA-21-5786 TCGA-39-5035 TCGA-60-2720 TCGA-77-8138 TCGA-33-AASI TCGA-98-A538 

TCGA-22-0940 TCGA-39-5036 TCGA-60-2721 TCGA-77-8139 TCGA-33-AASJ TCGA-98-A539 

TCGA-22-0944 TCGA-39-5037 TCGA-60-2722 TCGA-77-8140 TCGA-33-AASL TCGA-98-A53A 

TCGA-22-1011 TCGA-43-3394 TCGA-60-2723 TCGA-77-8143 TCGA-34-A5IX TCGA-98-A53I 

TCGA-22-1012 TCGA-43-3920 TCGA-60-2724 TCGA-77-8144 TCGA-37-A5EL TCGA-98-A53J 

TCGA-22-4591 TCGA-43-5670 TCGA-60-2726 TCGA-77-8145 TCGA-37-A5EM TCGA-J1-A4AH 

TCGA-22-4593 TCGA-43-6143 TCGA-63-5128 TCGA-77-8146 TCGA-37-A5EN TCGA-L3-A524 

TCGA-22-4595 TCGA-43-6647 TCGA-63-5131 TCGA-77-8148 TCGA-43-A474 TCGA-LA-A446 

TCGA-22-4599 TCGA-43-6770 TCGA-63-7020 TCGA-77-8150 TCGA-43-A475 TCGA-LA-A7SW 

TCGA-22-4601 TCGA-43-6771 TCGA-63-7021 TCGA-77-8153 TCGA-43-A56U TCGA-MF-A522 

TCGA-22-4604 TCGA-43-6773 TCGA-63-7022 TCGA-77-8154 TCGA-43-A56V TCGA-NC-A5HD 

TCGA-22-4605 TCGA-43-7657 TCGA-63-7023 TCGA-77-8156 TCGA-56-A4BW TCGA-NC-A5HE 

TCGA-22-4607 TCGA-43-8115 TCGA-66-2727 TCGA-79-5596 TCGA-56-A4BX TCGA-NC-A5HF 

TCGA-22-4609 TCGA-43-8116 TCGA-66-2734 TCGA-85-6561 TCGA-56-A4BY TCGA-NC-A5HG 

TCGA-22-4613 TCGA-43-8118 TCGA-66-2737 TCGA-85-6798 TCGA-56-A4ZK TCGA-NC-A5HH 

TCGA-22-5471 TCGA-46-3765 TCGA-66-2742 TCGA-85-7696 TCGA-56-A5DR TCGA-NC-A5HI 

TCGA-22-5473 TCGA-46-3768 TCGA-66-2753 TCGA-85-7697 TCGA-56-A5DS TCGA-NC-A5HJ 

TCGA-22-5474 TCGA-46-6025 TCGA-66-2758 TCGA-85-7698 TCGA-56-A62T TCGA-NC-A5HK 

TCGA-22-5477 TCGA-46-6026 TCGA-66-2759 TCGA-85-7699 TCGA-58-A46J TCGA-NC-A5HL 

TCGA-22-5478 TCGA-51-4079 TCGA-66-2763 TCGA-85-7710 TCGA-58-A46K TCGA-NC-A5HM 

TCGA-22-5479 TCGA-51-4080 TCGA-66-2765 TCGA-85-7843 TCGA-58-A46L TCGA-NC-A5HN 

TCGA-22-5482 TCGA-51-4081 TCGA-66-2766 TCGA-85-7844 TCGA-58-A46M TCGA-NC-A5HO 

TCGA-22-5485 TCGA-51-6867 TCGA-66-2767 TCGA-85-8049 TCGA-58-A46N TCGA-NC-A5HP 

TCGA-22-5489 TCGA-52-7810 TCGA-66-2768 TCGA-85-8052 TCGA-63-A5M9 TCGA-NC-A5HQ 

TCGA-22-5491 TCGA-52-7811 TCGA-66-2770 TCGA-85-8070 TCGA-63-A5MB TCGA-NC-A5HR 

TCGA-22-5492 TCGA-56-1622 TCGA-66-2771 TCGA-85-8071 TCGA-63-A5MG TCGA-NC-A5HT 

TCGA-33-4532 TCGA-56-5897 TCGA-66-2773 TCGA-85-8072 TCGA-63-A5MH TCGA-NK-A5CR 

TCGA-33-4533 TCGA-56-5898 TCGA-66-2777 TCGA-85-8276 TCGA-63-A5MI TCGA-NK-A5CT 

TCGA-33-4538 TCGA-56-6545 TCGA-66-2778 TCGA-85-8277 TCGA-63-A5MJ TCGA-NK-A5CX 

TCGA-33-4547 TCGA-56-7221 TCGA-66-2780 TCGA-85-8287 TCGA-63-A5ML TCGA-NK-A7XE 



TCGA-33-4566 TCGA-56-7222 TCGA-66-2781 TCGA-85-8350 TCGA-63-A5MP TCGA-O2-A52N 

TCGA-33-4582 TCGA-56-7579 TCGA-66-2782 TCGA-85-8351 TCGA-63-A5MR TCGA-O2-A52S 

TCGA-33-4583 TCGA-56-7580 TCGA-66-2783 TCGA-85-8353 TCGA-63-A5MS TCGA-O2-A52V 

TCGA-33-4586 TCGA-56-7582 TCGA-66-2787 TCGA-85-8354 TCGA-63-A5MT TCGA-O2-A52W 

TCGA-33-4589 TCGA-56-7730 TCGA-66-2788 TCGA-85-8355 TCGA-63-A5MU TCGA-XC-AA0X 

 

  



Supplementary Note 19: Survival analyses based on “dark” genes 

 

We can find some “dark” genes from TCGA lung cancer bulk RNA-seq data. These “dark” 

genes have no differential expressions between lung cancer samples and normal samples (FDR of 

Wilcoxon rank-sum test > 0.05), which are ignored by the traditional methods. But by our CSN 

method, they have significantly differential network degrees, which are considered important at a 

network level. As shown in Figure S13, although those “dark” genes have no differential 

expressions, they can divide the adenocarcinoma samples into two parts based on the normalized 

network degree. The survival analyses of those “dark” genes indicate the significant difference 

between the two parts, which implies their prognosis ability, and have potential applications in 

precision medicine or personalized treatment. 

 

 

 
(A) AC007638.2 (novel transcript, antisense to HLF). S1 (391 samples): normalized degree > 8, S2 

(133 samples): normalized degree ≤ 8 

 



 

(B) AC092574.2 (novel transcript, antisense to ZNF721). S1 (288 samples): normalized degree > 14, 

S2 (236 samples): normalized degree ≤ 14 

 

 

(C) AC002563.1 (novel transcript, antisense to CIT). S1 (402 samples): normalized degree > 7, S2 

(122 samples): normalized degree ≤ 7 

 

Figure S13. Survival analyses of three “dark” genes. 

  



Supplementary Note 20: Source Code (MATLAB) 

 

(1) Output is CSNs 

Construction of cell-specific networks from gene expression matrix 

 

function csn = csnet(data,c,alpha,boxsize,weighted) 

%Construction of cell-specific networks 

%The function performs the transformation from gene expression matrix to 

%cell-specific network (csn). 

%data: Gene expression matrix, rows = genes, columns = cells 

%c: Construct the CSNs for all cells, set c = [] (Default); 

%   Construct the CSN for cell k, set  c = k 

%alpha: Significant level (eg. 0.001, 0.01, 0.05 ...) 

%       larger alpha leads to more edges, Default = 0.01 

%boxsize: Size of neighborhood, Default = 0.1 

%weighted: 1  edge is weighted 

%          0  edge is not weighted (Default) 

%csn: Cell-specific network, the kth CSN is in csn{k} 

%     rows = genes, columns = genes 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Too many cells or genes may lead to out of memory. % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if nargin < 5 || isempty(weighted) 

    weighted = 0; 

end 

if nargin < 4 || isempty(boxsize) 

    boxsize = 0.1; 

end 

if nargin <3 || isempty(alpha) 

    alpha = 0.01; 

end 

  

[n1,n2] = size(data); 

if nargin <2 || isempty(c) 

    c = 1 : n2; 

end 

  

%Define the neighborhood of each plot 

upper = zeros(n1,n2); 

lower = zeros(n1,n2); 

for i = 1 : n1 

    [s1,s2] = sort(data(i,:)); 

    n3 = n2-sum(sign(s1)); 



    h = round(boxsize/2*sum(sign(s1))); 

    k = 1; 

    while k <= n2 

        s = 0; 

        while k+s+1 <= n2 && s1(k+s+1) == s1(k) 

            s = s+1; 

        end 

        if s >= h 

            upper(i,s2(k:k+s)) = data(i,s2(k)); 

            lower(i,s2(k:k+s)) = data(i,s2(k)); 

        else 

            upper(i,s2(k:k+s)) = data(i,s2(min(n2,k+s+h))); 

            lower(i,s2(k:k+s)) = data(i,s2(max(n3*(n3>h)+1,k-h))); 

        end 

        k = k+s+1; 

    end 

end 

  

%Construction of cell-specific network 

csn = cell(1,n2); 

B = zeros(n1,n2); 

p = -icdf('norm',alpha,0,1); 

for k = c 

    for j = 1 : n2 

        B(:,j) = data(:,j) <= upper(:,k) & data(:,j) >= lower(:,k); 

    end 

    a = sum(B,2); 

    d = (B*B'*n2-a*a')./sqrt((a*a').*((n2-a)*(n2-a)')/(n2-1)+eps); 

    d(1 : n1+1 : end) = 0; 

    if weighted 

        csn{k} = d.*(d > 0); 

    else 

        csn{k} = sparse(d > p); 

    end 

    disp(['Cell ' num2str(k) ' is completed']); 

end 

 

 

(2) Output is NDM 

Construction of network degree matrix from gene expression matrix 

 

function ndm = csndm(data,alpha,boxsize,normalize) 

%Construction of network degree matrix 

%The function performs the transformation from gene expression matrix to 



%network degree matrix (ndm). 

%data: Gene expression matrix (TPM/FPKM/count), rows = genes, columns = 

cells 

%alpha: Significant level (eg. 0.001, 0.01, 0.05 ...), Default = 0.01 

%boxsize: Size of neighborhood, Default = 0.1 (nx(k) = ny(k) = 0.1*n) 

%normalize: 1  result is normalized (Default); 0  result is not normalized            

  

if nargin < 4 || isempty(normalize) 

    normalize = 1; 

end 

if nargin < 3 || isempty(boxsize) 

    boxsize = 0.1; 

end 

if nargin <2 || isempty(alpha) 

    alpha = 0.01; 

end 

  

%Define the neighborhood of each plot 

[n1,n2] = size(data); 

upper = zeros(n1,n2); 

lower = zeros(n1,n2); 

for i = 1 : n1 

    [s1,s2] = sort(data(i,:)); 

    n0 = n2-sum(sign(s1)); 

    h = round(boxsize/2*sum(sign(s1))); 

    k = 1; 

    while k <= n2 

        s = 0; 

        while k+s+1 <= n2 && s1(k+s+1) == s1(k) 

            s = s+1; 

        end 

        if s >= h 

            upper(i,s2(k:k+s)) = data(i,s2(k)); 

            lower(i,s2(k:k+s)) = data(i,s2(k)); 

        else 

            upper(i,s2(k:k+s)) = data(i,s2(min(n2,k+s+h))); 

            lower(i,s2(k:k+s)) = data(i,s2(max(n0*(n0>h)+1,k-h))); 

        end 

        k = k+s+1; 

    end 

end 

  

%If gene expression matrix is sparse, use the sparse matrix will accelerate 

%the calculation and reduce memory footprint 



%data = sparse(data); upper = sparse(upper); lower = sparse(lower); 

  

%Construction of network degree matrix 

ndm = zeros(n1,n2); 

B = zeros(n1,n2); 

p = -icdf('norm',alpha,0,1); 

for k = 1 : n2 

    for j = 1 : n2 

        B(:,j) = data(:,j) <= upper(:,k) & data(:,j) >= lower(:,k) & 

data(:,k); 

    end 

    %B = sparse(B); 

    a = sum(B,2); 

    csn = (B*B'*n2-a*a')./sqrt((a*a').*((n2-a)*(n2-a)')/(n2-1)+eps); 

    csn = (csn > p); 

    ndm(:,k) = sum(csn,2) - diag(csn); 

    disp(['Cell ' num2str(k) ' is completed']); 

end 

  

%Normalization of network degree matrix 

if normalize 

    ndm = bsxfun(@rdivide,ndm,sum(ndm))*mean(sum(sign(ndm)))^2/2000; 

end 

 

 

(3) Output is Edge 

Normalized statistic of edge x-y from the expression values of genes x and y 

 

function edge = csnedge(gx,gy,boxsize) 

%The normalized statistic of edge x-y 

%gx gy: Gene expression values of gene x and gene y 

%       If there are n cells, gx and gy are 1-by-n vectors 

%boxsize: Size of neighborhood, Default = 0.1 

%edge: 1-by-n vector, the normalized statistic of edge x-y in all cells 

 

if nargin < 3 

    boxsize = 0.1; 

end 

  

%Define the neighborhood of each plot 

n = length(gx); 

upper = zeros(1,n); 

lower = zeros(1,n); 

a = zeros(2,n); 



B = cell(1,2); 

for i = 1 : 2 

    g = gx*(i==1)+gy*(i==2); 

    [s1,s2] = sort(g); 

    n0 = n-sum(sign(s1)); 

    h = round(boxsize/2*sum(sign(s1))); 

    k = 1; 

    while k <= n 

        s = 0; 

        while k+s+1 <= n && s1(k+s+1) == s1(k) 

            s = s+1; 

        end 

        if s >= h 

            upper(s2(k:k+s)) = g(s2(k)); 

            lower(s2(k:k+s)) = g(s2(k)); 

        else 

            upper(s2(k:k+s)) = g(s2(min(n,k+s+h))); 

            lower(s2(k:k+s)) = g(s2(max(n0*(n0>h)+1,k-h))); 

        end 

        k = k+s+1; 

    end 

     

    B{i} = bsxfun(@le,g',upper) & bsxfun(@ge,g',lower); 

    a(i,:) = sum(B{i}); 

end 

  

%Calculate the normalized statistic of edge x-y in all cells 

edge = (sum(B{1} & B{2})*n-a(1,:).*a(2,:))./sqrt(a(1,:).*a(2,:) ... 

    .*(n-a(1,:)).*(n-a(2,:))/(n-1)); 
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