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1 Extended Methods for SoptSC

SoptSC has two main components. The first component is a pipeline for discovering and ordering
groups of cells and their associated marker genes. The second component evaluates all possible
pair-wise interactions among the cells in the data set to provide a normalized prediction of ligand-
receptor signaling. In the following sections we describe key elements of the first component in
further detail. The overall workflow may be summarized as follows: First, a cell-cell similarity
matrix S is constructed based on the gene expression matrix. Second the similarity matrix is used
to find: i) cell subpopulations (clusters) via rank-k non-negative matrix factorization (NMF),
where k is the number of subpopulations identified by spectral analysis, ii) ranked marker genes
for each subpopulation, and iii) pseudotemporal ordering of cells and clusters obtained from a
graph whose edges encoded in the similarity matrix.

1.1 Preprocessing of the data

There are two major steps in selecting highly variable genes in SoptSC. First, we remove genes
that are expressed in less than α% of cells or expressed at least 1−α% of cells (α = 6 by default).
This procedure is the same as SC3 for gene filtering. The motivation here is to filter genes that
are not informative for clustering. Second, we perform principal component analysis (PCA) on
the filtered single-cell data. Genes with highest loadings in the first k principal components are
selected for further analysis. The value of k is chosen as the index at which the largest gap of
the principal component variances occurs.

1.2 Cell-to-cell similarity matrix construction

The input to SoptSC is a single-cell gene expression matrix X with m rows of genes and n
columns of cells. SoptSC computes the coefficient matrix Z from X by solving the following
optimization model [27]:

min
Z

||Z||∗ + λ||X −XZ||2,1

s.t. Z>1 = 1,

Zi,j = 0 for j /∈ Ni,

(1)

where || · ||∗ is the nuclear norm, which is the sum of the singular values of a given matrix; || · ||2,1
is the corresponding l2,1 norm, which is the sum of the Euclidean norm of all columns of a given
matrix; λ is a non-negative parameter, 1 = (1, ..., 1)> is a vector of length n, and Ni is the
set of neighbors of cell i. To compute Ni, cells are projected into low dimensional space using
t-distributed stochastic neighbor embedding (t-SNE) [13], and a K-nearest neighbors (KNN)
algorithm [3] is then applied to the low-dimensional data unlike in the original study in which
KNN was directly applied without using dimension reduction. The linear constraint Z>1 = 1
ensures translational invariance of the data [20].

The optimization model (1) captures relationships between cells by representing each cell as
a linear combination of other cells. By restricting coefficients of non-neighboring cells to be zero,
the model preserves the local structure in the linear representation. By imposing the low rank
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constraint, this model can capture the global structure of the original data input, and is then
more robust to noise and outliers. Problem (1) can be solved numerically by the Alternating
Direction Method of multipliers [27]. Once the optimal solution Z∗ in (1) is obtained, we can
compute the similarity matrix S = max

{
|Z∗|, |Z∗>|

}
. The element Si,j (= Sj,i) of S thus

quantifies the degree of similarity between cell i and cell j.

1.3 Symmetric Non-negative Matrix Factorization (NMF) for Clustering

In order to classify cells into subpopulations based on their similarities, we use symmetric non-
negative matrix factorization (NMF), which can be regarded as a graph-based clustering method
and is widely used for data clustering [10, 11]. The non-negative similarity matrix S is decom-
posed into a product of a non-negative low rank matrix H ∈ Rn×k

+ and its transpose H> via the
optimization problem:

min
H∈Rn×k

||S −HH>||2F s.t. H ≥ 0, (2)

where k is the number of subpopulations of cells and || · ||F is the Frobenius norm (i.e., ||A||F =√∑n
i=1

∑n
j=1 |Ai,j |2 for any given matrix A). This model is similar to spectral clustering, where

the non-negative constraint here is replaced by an orthogonal constraint [10].
It can be shown that the solution of (2) is strictly block-diagonal when the data are sampled

from independent subspaces [12]. Thus the similarity matrix S can be approximated by a
sum of rank one matrices H iH i>, i = 1, 2, ..., k, where H = [H1, H2, ...,Hn] is solved from the
optimization problem (2). Singular value decomposition is used to find H0, which is an initial
low-rank non-negative matrix required as an input for (2) [1]. If S = [S1, S2, ..., Sn], then the
columns of S can be approximated by the space spanned by the columns of H as:

Si ≈
k∑

j=1

Hi,jH
j .

Consequently, the columns ofH represent a basis for S in the (low rank) k-dimensional space, and
the columns of H> provide the coefficients of the representation of the corresponding columns
of S in the space spanned by the columns of H. We then use HT to classify the N cells into
k subpopulations or clusters by assigning the ith cell to the jth subpopulation when the largest
element among all components of the ith column of HT lies in the jth position.

1.4 Estimating the Number of Clusters

Determining the number of clusters in a dataset is a fundamental and challenging problem in
unsupervised learning. Therefore, many clustering algorithms still require the user to specify
the number of clusters. In SoptSC we identify the number of clusters within a dataset by
analyzing the graph Laplacian and the consensus matrix [24], an approach similar to that used
in a previous study [14]. The major steps required to determine the number of clusters are as
follows:



5

1. Given the inputs S and a range of possible number of clusters ki, i = 1, 2, ..., q, we first
partition the cells into ki subpopulations by solving (2).

2. Find the consensus matrix C [7, 15]. For each j = 1, 2, ..., q, define a matrix M j by

M j
p,q =

{
1 if p and q belong to the same cluster

0 otherwise.

The consensus matrix C is then defined by C =
∑q

j=1M
j .

3. Prune the consensus matrix as follows: set a tolerance τ ∈ [0, 0.5], and let Ci,j = 0 if
Ci,j ≤ τq. This increases the robustness of consensus clustering to biological noise.

4. Compute the graph Laplacian L and its eigenvalues, given the identity matrix I and a
diagonal matrix D such that:

L = I −D−1/2CD−1/2,

where Dii =
∑n

j=1Ci,j .

5. Find (i) the number of eigenvalues that are close to zero, and (ii) the index at which the
largest eigenvalue gap occurs [24].

It has been shown that the number of eigenvalues of L equal to 0 is equivalent to the number
of diagonal blocks of L [24], so the initial estimate for k is given by (i). In cases where there
may be significant sources of noise in the data, or where other uncertainties exist, we can use
(ii) instead as an estimate of k. Especially for cases displaying a prominent largest eigenvalue
gap (see Figure S1), (ii) can provide a better estimate of the subpopulation structure present in
the data. For all analyses performed below, we choose a prior number of clusters ranging from
1 to 25, and we set the tolerance τ = 0.3.
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2 Supplementary Tables

2.1 Supplementary Table S1

Dataset Number of Cells Number of Genes Number of Cell-types Units

Yan [25] 90 20214 7 RPKM

Pollen [19] 249 23730 4, 11 TPM

Deng [2] 268 22431 6, 10 RPKM

Goolam [4] 124 41480 5 CPM

Kolodziejczyk [9] 704 10685 3 CPM

Treutlein [22] 80 23271 5 FPKM

Usoskin [23] 622 25334 4, 8, 11 RPM

Klein [8] 2717 24175 4 UMI

Zeisel [26] 3005 19972 9 UMI

Table S1. Summary of the characteristics of all the single-cell datasets used in
clustering performance comparison the paper (for Figure 2).
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2.2 Supplementary Table S2

Pathways Ligand Receptor Target Genes

Tgfβ

Tgfβ1 Tgfβr1 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ1 Tgfβr2 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ2 Tgfβr1 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ2 Tgfβr2 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Bmp

Bmp1 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Sox4, Cdh1

Bmp2 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Sox4, Cdh1

Bmp4 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Sox4, Cdh1

Bmp7 Bmpr2 SCrebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Sox4, Cdh1

Wnt

Wnt3 Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt4 Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt5a Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt6 Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt10a Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Table S2. Signaling pathways used for generating cell-to-cell signaling networks
and cluster-to-cluster signaling networks from Joost data [6].
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2.3 Supplementary Table S3

Pathways Ligand Receptor Target Genes

Tgfβ

Tgfβ1 Tgfβr1 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ1 Tgfβr2 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ2 Tgfβr1 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ2 Tgfβr2 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Bmp

Bmp1 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Sox4, Cdh1

Bmp2 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Sox4, Cdh1

Bmp4 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Sox4, Cdh1

Bmp7 Bmpr2 SCrebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Sox4, Cdh1

Wnt

Wnt3 Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt4 Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt5a Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt6 Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt10a Fzd1 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Table S3. Signaling pathways used for generating cell-to-cell signaling networks
and cluster-to-cluster signaling networks from Olsson data [17].
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2.4 Supplementary Table S4

Pathways Ligand Receptor Target Genes

Tgfβ

Tgfβ1 Tgfβr1 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ1 Tgfβr2 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ2 Tgfβr1 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Tgfβ2 Tgfβr2 Zeb2, Smad2, Wnt4, Wnt11, Bmp7, Sox9, Notch1

Bmp

Bmp1 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Cdh1

Bmp2 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Cdh1

Bmp4 Bmpr2 Crebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Cdh1

Bmp7 Bmpr2 SCrebbp, Fos, Id1, Jun, Runx1, Smad1, Smad5, Cdh1

Wnt

Wnt3 Fzd10 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt4 Fzd10 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt5a Fzd10 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt8a Fzd10 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Wnt8b Fzd10 Ctnnb1, Lgr5, Runx2, Apc, Mmp7, Dkk1, Ccnd1

Table S4. Signaling pathways used for generating cell-to-cell signaling networks
and cluster-to-cluster signaling networks for mouse hematopoietic stem cell
differentiation [16].
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3 Supplementary Figures

3.1 Supplementary Figure S1

Figure S1. Spectra of the graph Laplacian of the truncated consensus matrix pre-
dict the number of clusters. The first 30 sorted eigenvalues of the graph Laplacian of the
constructed consensus matrix for each data set is plotted.
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3.2 Supplementary Figure S2
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Figure S2. Pseudotime inference by SoptSC, Monocle2 and DPT; as well as clus-
ters identified by SC3, Seurat, and SIMLR for mouse early embryonic data [5].
(A,B,C) Visualization of 2-dimensional trajectory of cells by (SoptSC, Monocle2, DPT) with
true experimental time labels and pseudotime inferred by (SoptSC, Monocle2, DPT). (D,E,F)
Visualization of low-dimensional projection of cells by (SC3,Seurat,SIMLR) with cell-stage labels
and cluster labels identified by (SC3,Seurat,SIMLR).
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3.3 Supplementary Figure S3

Figure S3. Pseudotime inference by SoptSC, Monocle2 and DPT for ESC data.
[8] (A) Visualization of 2-dimensional projection of cells by SoptSC with true experimental
time labels and pseudotime inferred by SoptSC. (B) Visualization of low-dimensional trajectory
identified by Monocle2 with true time labels and pseudotime inferred by Monocle2. (C) Visu-
alization of low-dimensional projection of cells by DPT with true time labels and pseudotime
inferred by DPT.
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3.4 Supplementary Figure S4

Figure S4. Analysis of the developmental trajectories of mouse ESCs [8]. (A)
Visualization of cells labeled by true experimental time. (B) Cell subpopulations inferred by
SoptSC. (C) Pseudotime for all cells. (D) Lineage inferred by SoptSC. (E) Pseudotime for cell
states where the pseudotime of each state is calculated by the average of the temporal ordering
of cells within the state. (F) Clustered gene-cell heatmap of genes from top 10 markers for each
cluster identified by SoptSC. (G) Expression of selected marker genes along pseudotime.
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3.5 Supplementary Figure S5
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Figure S5. SoptSC identifies cell subpopulations, markers, lineage, and pseudo-
time in human early embryonic data. [25] (A) Visualization of cell in two-dimensional
space labeled by true experimental time information. (B) Unsupervised subpopulations iden-
tified by SoptSC. (C) Pseudotime inferred by SoptSC. (D) Pseudotemporal cell ordering with
initial state inferred unsupervised (left) or set by the user (right) is compared with known
experimental stages. The Kendall rank correlation measured with experimental stages against
i) the temporal ordering of cells inferred by SoptSC unsupervised is 0.84, and against ii) the
temporal ordering with initial state set is 0.86. Due to the variability between oocyte and 4-cell
stages and the very small number of cells, SoptSC was not able to infer the earliest developmen-
tal cell orderings unsupervised; if the initial state is provided, SoptSC predicts the trajectory
with high consistency. (E) Lineage inferred by SoptSC, indicating a linear trajectory. (F) Pseu-
dotime along lineage, where the pseudotime of each subpopulation is calculated by the average
of the temporal ordering of cells within the subpopulation. (G) Clustered gene-cell heatmap
of genes from top 15 markers for each cluster identified by SoptSC. (H) Expression of selected
marker genes along pseudotime.
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3.6 Supplementary Figure S6
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Figure S6. Pseudotime inference by SoptSC, Monocle2 and DPT; and clusters
identified by SC3, Seurat, and SIMLR for IFE data [6]. (A, B, C) Visualization of
two-dimensional projection of cells by (SoptSC, Monocle2, DPT) with true experimental time
labels and pseudotime inferred by (SoptSC, Monocle2, DPT). (D, E, F) Visualization of low-
dimensional projection of cells by (SC3,Seurat,SIMLR) with cell-stage labels and cluster labels
identified by (SC3,Seurat,SIMLR).
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3.7 Supplementary Figure S7

Figure S7. Analysis of epidermal differentiation in the IFE. [6] (A) Cell subpopu-
lations inferred by SoptSC and the low dimensional visualization. (B) Selected marker genes
and their expression in each population. (C) Lineage tree identified by SoptSC. (D) Pseudotime
for cell states where the pseudotime of each subpopulation is calculated by the average of the
temporal ordering of cells within the subpopulation. (E) Expression of selected marker genes
along pseudotime. (F) Clustered gene-cell heatmap of genes from top 15 markers for each cluster
identified by SoptSC.
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3.8 Supplementary Figure S8
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Figure S8. Single-cell signaling networks predicted for the BMP, TGFβ, and Wnt
pathways from Joost et al. data [6]. (A) Cell-cell signaling network and cluster-cluster
signaling network for individual ligand-receptor pair from BMP pathway. Top row: single-cell
signaling networks for ligand-receptor pairs, with edge weights corresponding to the probability
of a signal passed between cells. Bottom row: cluster-to-cluster signaling interactions with edge
weights corresponding to the probability of a signal passed between clusters. Colors correspond
to the cluster labels. (B) Cell-cell signaling network and cluster-cluster signaling network for
individual ligand-receptor pair from TGFβ pathway. (C) Cell-cell signaling network and cluster-
cluster signaling network for individual ligand-receptor pair from Wnt pathway. Target gene list
is summarized in Table S2.

3.9 Supplementary Figure S9

Figure S9. The table counts all possible signaling events (for BMP, Tgf-β, and Wnt pathways)
between the cells in one cluster Ci and the cells in another cluster Cj , where an event occurs
when a cell from cluster Ci expresses ligand and cell from cluster Cj expresses one of its receptors
from Table S2. The results come from Joost et al. data [6].
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3.10 Supplementary Figure S10

Figure S10. Caption on next page.
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Figure S10. Analysis of subpopulations, pseudotime, and lineage paths during
myelopoiesis [18]. (A) Pseudotemporal ordering of hematopoietic cells by SoptSC. (B) Lin-
eage hierarchy constructed by SoptSC. Colors correspond to the mean pseudotime value for
the subpopulation. Subpopulation identities have been annotated according to marker gene
expression. HSPC: hematopoietic stem/progenitor cells; Multi-Lin: mixed progenitor (see [18]);
Mono: monocytic progenitor; Granulo: granulocytic progenitor; Myelo: myelocytic progenitor;
Erythro: erythrocytic progenitor; Mega: megakaryocytic progenitor. (C) Gene expression of
selected markers. (D) Clustered gene-cell heatmap of genes from top 15 markers for each cluster
identified by SoptSC; Clusters from C1 to C8 correspond to: HSPC2, Myelo., Erythro./Mega,
Mono., HSPC1, Granulo., HSPC3, MultiLin (see legend in Figure 6B of the main text). (E)
Expression of selected markers along pseudotime where branch 1 corresponds to HSPC1, HSPC2,
HSPC3, Erythro./Mega; branch 2 corresponds to HSPC1, HSPC2, HSPC3, Multi-Lin, Mono.;
and branch 3 corresponds to HSPC1, HSPC2, HSPC3, Granulo., Myelo.;
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3.11 Supplementary Figure S11
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Figure S11. Pseudotime inference by SoptSC, Monocle2 and DPT; and clusters
identified by SC3, Seurat, and SIMLR for Olsson et al. data [17]. (A, B, C) Visu-
alization of two-dimensional projection of cells by (SoptSC, Monocle2, DPT) with true labels
from the original study and pseudotime inferred by (SoptSC, Monocle2, DPT). (D, E, F) Vi-
sualization of low-dimensional projection of cells by (SC3,Seurat,SIMLR) with cell-stage labels
and cluster labels identified by (SC3, Seurat, SIMLR). (G) Heatmap of Top 10 marker genes
from Seurat. (H) Violin plots of selected markers.
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3.12 Supplementary Figure S12
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Figure S12. Comparison of performance of clustering for methods SoptSC, Seurat,
SC3, SIMLR, and pseudotime inference for SoptSC, Monocle2, DPT (A) Accuracy
of clusters identified by SoptSC, Seurat, SC3 and SIMLR for mouse early embryonic data [5].
(B) Accuracy of clusters identified by SoptSC, Seurat, SC3 and SIMLR for IFE data [6]. (C)
Accuracy of clusters identified by SoptSC, Seurat, SC3 and SIMLR for Olsson et al. data data
[17]. (D) Accuracy of pseudotime inferred by SoptSC, Monocle2 and DPT for Olsson et al. data
data [17].
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3.13 Supplementary Figure S13

Figure S13. Cell-to-cell signaling networks predicted for pathways in data from
Olsson et al. [18] Single-cell signaling networks for ligand-receptor pairs, with edge weights
corresponding to the probability of a signal passed between cells. Members of the pathways
analyzed for Bmp, Tgf-β and Wnt are summarized in Table S3.
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3.14 Supplementary Figure S14

Figure S14. Cluster-to-cluster signaling networks predicted for pathways in data
from Olsson et al. [18] Bmp all, Tgfβ all and Wnt all represent the signaling network between
clusters using all provided ligand-receptor pairs for the specific pathways.
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3.15 Supplementary Figure S15

Figure S15. The table counts all possible signaling events (for BMP, Tgf-β, and Wnt path-
ways) between the cells in one cluster Ci and the cells in another cluster Cj , where an event occurs
when a cell from cluster Ci expresses ligand and cell from cluster Cj expresses one of its receptors
from Table S3. The resuls come from Olsson et al. data [18]. {C1,C2,C3,C4,C5,C6,C7,C8}
corresponds to {HSPC2, Myelo., Erythro./Mega, Mono., HSPC1, Granulo., HSPC3, MultiLin}.
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3.16 Supplementary Figure S16

Figure S16. Analysis of pseudotime, and lineage paths for mouse hematopoietic
stem cell differentiation [16]. (A) Lineage inferred by SoptSC. (B) Lineage hierarchy con-
structed by SoptSC. Colors correspond to the mean pseudotime value for the subpopulation. (C)
Clustered gene-cell heatmap of genes from top 10 markers for each cluster identified by SoptSC;
(D) Gene expression of selected markers. Colors represent the mean expression for each gene
within each cluster.
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3.17 Supplementary Figure S17

Figure S17. Cell-to-cell signaling networks predicted for pathways in data for
mouse hematopoietic stem cell differentiation [16]. Single-cell signaling networks for
ligand-receptor pairs, with edge weights corresponding to the probability of a signal passed be-
tween cells. Members of the pathways analyzed for Bmp, Tgf-β and Wnt are summarized in
Table S4.
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3.18 Supplementary Figure S18

Figure S18. Cluster-to-cluster signaling networks predicted for pathways in data
for mouse hematopoietic stem cell differentiation [16]. Bmp all, Tgfβ all and Wnt all
represent the signaling network between clusters using all provided ligand-receptor pairs for the
specific pathways.
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3.19 Supplementary Figure S19

Figure S19. The table counts all possible signaling events (for BMP, Tgf-β, and Wnt path-
ways) between the cells in one cluster Ci and the cells in another cluster Cj , where an event
occurs when a cell from cluster Ci expresses ligand and cell from cluster Cj expresses one of
its receptors from Table S4. The results come from single-cell data for mouse hematopoi-
etic stem cell differentiation [16]. {C1,C2,C3,C4,C5,C6} corresponds to {Erythro./Mega., MyP,
Granulo./Mono., LyP, HSPC2, , HSPC1}.
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4 Extended Details on Data Analysis

4.1 Details of Data Analysis by SoptSC

All the results in this paper is run under MATLAB R2017b on Mac Pro (Late 2013) with 3.5
GHz 6-Core Intel Xeon E5.

For the datasets [2, 4, 8, 9, 19, 22, 23, 25, 26] used in evaluating the clustering performance
(Fig. 2), we set α = 0 for Treutlein[22] and Yan[25] and α = 1 for the other datasets. In all
cases, the number of selected genes is 2000.

For single-cell qPCR data from mouse early embryo (e.g., [5]), we remove the first two control
genes (actb, ahcy) and analyze the remaining 46 with SoptSC.

For scRNA-seq data from human early embryo (ref. [25]), we selected genes that expressed
at least 6 cells and at most among the overall 88 cells, which induces 11517 genes to be used in
the downstream analysis.

For Joost data set (ref. [6]), we selected 3000 genes for downstream analysis based on our
gene filtering technique with parameter α being set as 0.03×N where N represents the number
of cells in the data.

For the Olsson data set (ref. [17]), we selected 2000 genes for downstream analysis based on
our gene filtering technique with α = 0.

For scRNA-seq data from Nesterowa (ref. [16]), we selected 3000 genes for downstream
analysis based on our gene filtering techniques with α = 0.03 × N where N is the number of
cells.

4.2 Details of Data Analysis by SC3

SC3 is run in R under version 3.4.3. For all the datasets used in evaluating the performance
clustering in the paper, we used the default setting.

4.3 Details of Data Analysis by Seurat

For all datasets used to evaluate the performance of clustering against different methods (Figure
2), we implement the parameters setting for Seurat as follows. To initialize the Seurat object
with the raw (non-normalized data), we keep all genes expressed in at least 3 cells and keep
all cells with at least 200 detected genes To select highly variable genes for initial clustering
of cells, we performed Principal Component Analysis (PCA) on the scaled data for all genes
included in the previous step. We set x.low.cutoff = 0, y.cutoff = 0.8 in FindVariableGenes
function. For clustering, we used the function FindClusters using 10 PCs with resolution 0.8.
Nonlinear dimensionality reduction method, namely tSNE, was applied to the scaled matrix for
visualization of cells in two-dimensional space using first 10 PC components.

For mouse early embryonic data [5], Joost et al. data [6] and Olsson et al. data [18] we used
3 PCs with resolution 0.8.

4.4 Details of Data Analysis by SIMLR

We run SIMLR in MATLAB with default setting for all datasets used in the paper.
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4.5 Details of Data Analysis by Monocle2

For two embryonic datasets used in pseudotime comparison, we run Monocle2 for the reduction
method set as ”DDRTree” with parameters pseudo expr set as 0 and max components set as 2.
For Joost et al. [6] and Olsson et al. [18] datasets, we selected ordering genes with parameters
mean expression greater than 0.2 and dispersion empirical larger than 0.5 ∗ dispersion fit For
Shalek et al. [21] data, we selected ordering genes with parameters mean expression greater
than 1 and dispersion empirical larger than 1.5 ∗ dispersion fit

4.6 Details of Data Analysis by DPT

We run DPT in MATLAB with default setting for all datasets used in the paper.

References

1. C. Boutsidis and E. Gallopoulos. Svd based initialization: A head start for nonnegative
matrix factorization. Pattern Recognition, 41(4):1350–1362, 2008.
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