

Supporting Information

Effect of Chirality on the Binding of Viologen Guests in Porphyrin Macrocycles

Shaji Varghese, Bram Spierenburg, Jeroen P. J. Bruekers, Anne Swartjes, Paul B. White, Johannes A. A. W. Elemans,* and Roeland J. M. Nolte*

ejoc201900221-sup-0001-SupMat.pdf

Table of contents

Table S1S5	
Table S2S6	
Table S3S8	
Table S4S10	
Table S5S11	
Figure S1S12	
Figure S2S13	
Figure S3S14	
Figure S4S15	
Figure S5 S16	
Figure S6 S17	
Figure S7 S18	
Figure S8	
Figure S9 S20	
Figure S10 S21	
Figure S11 S22	
Figure S12 S23	
Figure S13	
Figure S14S25	
Figure S15	

Figure S16	S27
Figure S17	S28
Figure S18	S29
Figure S19	S30
Figure S20	S31
Figure S21	S32
Figure S22	S33
Figure S23	S34
Figure S24	S35
Figure S25	S36
Figure S26	S37
Figure S27	S38
Figure S28	S39
Figure S29	S40
Figure S30	S41
Figure S31	S42
Figure S32	S43
Figure S33	S44
Figure S34	S45
Figure S35	S46
Figure S36	S47
Figure S37	S48

Figure S38	S49
Figure S39	S50
Figure S40	S51
Figure S41	S52
Figure S42	S53
Figure S43	S54
Figure S44	S55
Figure S45	S56
Figure S46	S57
Figure S47	S58
Figure S48	S59
Figure S49	S60
Figure S50	S61
Figure S51	S62
Figure S52	S63
Figure S53	S64
Figure S54	S65
Figure S55	S66
Figure S56	S67
Figure S57	S68
Figure S58	S69
Figure S59	S70

Figure S60	S71
Figure S61	S72
Figure S62	S73
Figure S63	S74
Figure S64	S75
Figure S65	S76
Figure S66	S77
Figure S67	S78
Figure S68	S79
Figure S69	S80
Figure S70	S81
Figure S71	S82
Figure S72	S83
Figure S73	S84
Figure S74	S85
Figure S75	S86
Figure S76	S87
Figure S77	

Host	NH	28a	28b	30	49	53
(<i>R</i> , <i>S</i> _ρ *)- H ₂ 4	-0.09	-0.21 (I) -0.16 (II) -0.38 (III) -0.11 (IV)	-0.26 (I) -0.24 (II) -1.01 (III) -1.12(IV)	+0.02 (I) -0.18 (III) -0.29 (IV)	+0.24	+0.17
(<i>R</i> , <i>R</i> _p *)- H₂5	-0.07	-0.47 (I) -0.23 (II) -0.09 (III) -0.38 (IV)	–0.30 (I) –0.44 (II) –0.98 (III) –0.93(IV)	0.00 (II) -0.22 (III) -0.16 (IV)	+0.94	+0.14

Table S1. Selected CISVs for protons in the complexes of (R, S_p^*) -H₂4 and (R, R_p^*) -H₂5 with guest V1.^[a]

[a] The roman numbers in brackets refer to the locations of the protons in the complexes, i.e. below the respective porphyrin meso-phenyl rings.

Proton	Guest	(R, S_{p}^{*}) - H ₂ 4	(R, S_p^*) - H ₂ 4 + (R, R) - V2		(R, S_{p}^{*}) -H ₂ 4	+ (S,S)- V2
	δ [ppm]	δ [ppm]	δ [ppm]	CISV [ppm]	δ [ppm]	CISV [ppm]
Pyr NH		-2.76	-2.81	-0.05	-2.81	-0.05
2 1		992 906	0.15 0.20	+0.33,	0 12 0 22	+0.31,
3, 4		0.02, 0.90	9.15, 9.29	+0.33	9.13, 9.32	+0.36
8, 9		0 70/0 60/0	8.86/8.79	~+0.1	8.87, 8.79	~+0.1
13, 14		66/861	9.18/9.14	~+0.5	9.21/9.15	~+0.5
18, 19		00/ 0.01	8.86/8.79	~+0.1	8.87/8.76	~+0.1
27(I)a		4.16	4.16	0	4.16	0
27(II)a		4.14	3.77	-0.37	3.81	-0.33
27(III)a		3.93	4.29	+0.36	4.26	+0.33
27(IV)a		4.06	4.28	+0.22	4.26	+0.20
27(I)b		3.71	4.02	+0.31	4.03	+0.32
27(II)b		3.60	3.58	-0.02	3.64	+0.04
27(III)b		3.83	4.05	+0.22	4.00	+0.17
27(IV)b		3.67	4.05	+0.38	4.02	+0.35
28(I)a		3.65	3.35	-0.30	3.34	-0.31
28(II)a		3.82	3.33	-0.49	3.35	-0.47
28 (III)a		3.70	3.36	-0.34	3.35	-0.35
28(IV)a		3.42	3.36	-0.06	3.35	-0.07
28(I)b		3.22	2.79	-0.43	2.90	-0.32
28(II)b		3.33	3.06	-0.27	3.12	-0.21
28 (III)b		3.22	2.66	-0.56	2.51	-0.71
28(IV)b		3.22	2.46	-0.76	2.31	-0.91
30(I)		6.05	5.88	-0.17	5.93	-0.12
30(III)		6.21	6.07	-0.14	6.04	-0.17
30(IV)		6.22	6.08	-0.14	6.09	-0.13
32(I)a		4.16	4.24	+0.08	4.24	-0.08
32(II)a		4.32	4.27	-0.05	4.28	-0.04
32(III)a		4.26	4.38	+0.12	4.39	+0.13
32(IV)a		4.13	4.24	+0.11	4.26	+0.13
32(I)b		3.72	3.87	+0.15	3.87	+0.15
32(II)b		3.58	3.68	+0.10	3.70	+0.12
32 (III)b		3.80	3.90	+0.10	3.90	+0.10
32(IV)b		3.70	3.83	+0.13	3.84	+0.14
NH 49		8.98	9.05	+0.07	9.29	+0.31
53		3.26	3.34	+0.08	3.28	+0.02
V1a,b in	4.66, 4.61		2.91,2.28	-1.75,-2.33	3.20, 2.41	-1.46, -2.20
V1a,b out	4.66, 4.61		4.15,4.05	-0.51, -0.56	4.36, 4.31	-0.30, -0.30
V2a,b in	2.04, 1.86		0.71, 0.39	-1.33, -1.47	-0.03, 0.47	-2.07, -1.39
V2a,b out	2.04, 1.86		1.41, 1.34	-0.63, -0.52	1.67, 1.51	-0.37, -0.35
V3 in	1.60		1.18	-0.42	1.00	-0.60
V3 out	1.60		1.47	-0.13	1.50	-0.10
V4 in	1.02		0.76	-0.26	0.69	-0.33

Table S2. CISVs for protons in complexes between (R, S_{ρ}^{*}) -**H**₂**4** and the guests (R, R)-**V2** and (S, S)-**V2**^[a]

V4 out	1.02	0.98	-0.04	1.02	0	
V10 in	8.93	5.21	-3.72	4.53	-4.40	
V10 out	8.93	7.36	-1.57	7.88	-1.05	
V11 in	8.41	3.51	-4.90	3.34	-5.07	
V11 out	8.41	4.93	-3.48	5.46	-2.95	
V10 in V10 out V11 in V11 out	8.93 8.93 8.41 8.41	5.21 7.36 3.51 4.93	-3.72 -1.57 -4.90 -3.48	4.53 7.88 3.34 5.46	-4.40 -1.05 -5.07 -2.95) 5 7 5

[a] Protons indicated with a 'V' belong to the guest molecule. A slash indicates that it is uncertain which signal belongs to which proton. A comma is used to indicate that proton signals belong to the respective protons. CISVs provided with an '~' are uncertain due to uncertain proton assignment. The notation 'in' refers to the guest proton on the same side as the Mosher amide moiety and the notation 'out' to the guest proton on the other side as the Mosher amide moiety.

Table S3. CISVs for protons in complexes between	(R, R_p^*) - H ₂ 5 and guests (R, R) - V2 and (S, S) -
V2 ^[a]	

Proton	Guest	(<i>R</i> , <i>R</i> _p *)- H₂5	(<i>R</i> , <i>R</i> _ρ *)- H ₂ 5	+ <i>R</i> , <i>R</i>)-Guest	(<i>R</i> , <i>R</i> _p *)- H₂5 -	+ (S,S)-Guest
	δ [ppm]	δ [ppm]	δ [ppm]	CISV [ppm]	δ [ppm]	CISV [ppm]
Pyr NH		-2.69	-2.83	-0.14	-2.84	-0.15
3, 4			9.20/9.03	~+0.5	9.19/9.04	~+ 0.5
8, 9		8.81-8.70/	8.83/8.76	~+0.1	8.83/8.78	~+0.1
13, 14		8.65/8.61	9.21/9.13	~+0.5	9.19/9.12	~+0.5
18, 19			8.80, 8.90	~+0.1	8.80, 8.91	~+0.1
27(I)a		4.46	4.28	-0.18	4.31	-0.15
27(II)a		4.18	4.16	-0.02	4.18	0
27(III)a		4.12	4.28	+0.16	4.32	+0.20
27(IV)a		4.06	4.26	+0.20	4.32	+0.26
27(I)b		4.05	3.93	-0.12	3.93	-0.12
27(II)b		4.06	4.02	-0.04	4.03	-0.03
27(III)b		4.03	4.01	-0.02	4.05	+0.02
27(IV)b		3.92	4.00	+0.08	4.05	+0.13
28(I)a		3.96	3.35	-0.61	3.38	-0.58
28(II)a		3.66	3.36	-0.30	3.38	-0.28
28 (III)a		3.37	3.34	-0.03	3.38	+0.01
28(IV)a		3.75	3.36	-0.39	3.38	-0.37
28(I)b		3.47	3.18	-0.29	3.18	-0.29
28(II)b		3.31	2.92	-0.39	2.86	-0.45
28 (III)b		3.18	2.35	-0.83	2.52	-0.66
28(IV)b		3.21	2.52	-0.69	2.68	-0.53
		6.11	5.96	-0.15	5.96	-0.15
		6.18	6.07	-0.11	6.10	-0.08
30(IV)		6.22	6.04	-0.18	6.11	-0.11
32(I)a		3.67	4.27	+0.60	4.25	+0.58
32(II)a		4.08	4.25	+0.17	4.26	+0.18
32(III)a		4.12	4.26	+0.14	4.26	+0.14
32(IV)a		4.21	4.38	+0.17	4.39	+0.18
32(I)b		3.28	3.75	+0.47	3.72	+0.44
32(II)b		3.67	3.87	+0.20	3.86	+0.19
32 (III)b		3.66	3.83	+0.17	3.82	+0.16
32(IV)b		3.68	3.89	+0.21	3.88	+0.20
NH 49		8.07	9.31	+1.24	9.18	+1.11
53		3.22	3.27	+0.05	3.29	+0.07
V1a,b in	4.66, 4.61		3.44, 2.66	-1.22, -1.95	3.09, 3.56	-1.57, -1.05
V1a,b out	4.66, 4.61		4.22, 4.17	-0.44, -0.44	4.03, 3.94	-0.63, -0.67
V2a,b in	2.04, 1.86		0.10, 0.62	-1.94, -1.24	0.90, 0.49	-1.14, -1.37
V2a,b out	2.04, 1.86		1.59, 1.45	-0.45, -0.41	1.35, 1.29	-0.69, -0.57
V3 in	1.60		1.17	-0.43	1.32	-0.28
V3 out	1.60		1.50	-0.10	1.47	-0.13
V4 in	1.02		0.86	-0.16	0.84	-0.18

V4 out	1.02	1.00	-0.02	0.98	-0.04
 V10 in	8.93	4.94	-3.99	5.52	-3.41
 V10 out	8.93	7.63	-1.30	7.17	-1.76
 V11 in	8.41	3.37	-5.04	3.69	-4.72
 V11 out	8.41	5.14	-3.27	4.76	-3.65

[a] Protons indicated with a 'V' belong to the guest molecule. A slash indicates that it is uncertain which signal belongs to which proton. A comma is used to indicate that proton signals belong to the respective protons. CISVs provided with an '~' are uncertain due to uncertain proton assignment. The notation 'in' refers to the guest proton on the same side as the Mosher amide moiety and the notation 'out' to the guest proton on the other side as the Mosher amide moiety.

Host	Guest	K [M ⁻¹]	Fit error [%]	URL
(<i>R</i> , <i>S</i> _p *)- H ₂ 4	V1	9.78 * 10 ⁵	6	http://app.supramolecular.org/bindfit/view/1e95e65f-a5a7- 48c2-b1a9-b2228b41d174
(<i>R</i> , <i>S</i> _p *)- H ₂ 4	V1	8.02 * 10 ⁵	1	http://app.supramolecular.org/bindfit/view/08e82184-b858- 491e-bced-90892ab9f0c5
(<i>R,S_p*</i>)- H₂4	V1	8.69 * 10 ⁵	2	http://app.supramolecular.org/bindfit/view/8c3ca7c7-f3df- 4fec-9850-4feee77a54eb
Average for (<i>R</i> , <i>S</i> _p *)- H ₂ 4	V1	$8.83 * 10^5 \pm 8.9 * 10^4$		
Host	Guest	K [M ⁻¹]	Fit error [%]	URL
(<i>R</i> , <i>S</i> _p *)- H ₂ 4	(R,R)- V2	1.337 * 10 ⁶	6	http://app.supramolecular.org/bindfit/view/5d2c0483-2c08- 42e7-aaad-75185712a5d4
(<i>R</i> , <i>S</i> _p *)- H ₂ 4	(R,R)- V2	1.412 * 10 ⁶	8	http://app.supramolecular.org/bindfit/view/ed8296fb-4279- 433e-b046-59aee7708e04
(<i>R</i> , <i>S</i> _p *)- H ₂ 4	(R,R)- V2	1.418 * 10 ⁶	6	http://app.supramolecular.org/bindfit/view/a8996a07-84d2- 461e-a8f1-0d4701a0430d
Average for (<i>R</i> , <i>S</i> _p *)- H ₂ 4	(R,R)- V2	$1.388 * 10^{6} \pm 4.5 * 10^{4}$		
Host	Guest	K [M ⁻¹]	Fit error [%]	URL
(<i>R</i> , <i>S</i> _p *)- H ₂ 4	(S,S)- V2	3.73 * 10 ⁶	17	http://app.supramolecular.org/bindfit/view/759b066d-3afc- 4f9b-bb86-fae00abd3a83
(<i>R</i> , <i>S</i> _p *)- H ₂ 4	(S,S)- V2	3.73 * 10 ⁶	20	http://app.supramolecular.org/bindfit/view/c841de76-bd7b- 4df2-a311-e68cfc35113b
(<i>R</i> , <i>S</i> _p *)- H ₂ 4	(S,S)- V2	4.18 * 10 ⁶	26	http://app.supramolecular.org/bindfit/view/673e6274-850b- 44b5-a559-88028cff955e
Average for (<i>R</i> , <i>S</i> _p *)- H ₂ 4	(<i>S,S</i>)- V2	3.88 * 10 ⁶ ± 2.6 * 10 ⁵		

Table S4. Association constants of complexes between (R, S_p^*) -H₂4 and V1 and V2.

Host	Guest	K [M ⁻¹]	Fit error [%]	URL
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	V1	1.04 * 10 ⁶	5	http://app.supramolecular.org/bindfit/view/18219a74-b104- 45f6-ba76-f56b82aaa112
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	V1	1.42 * 10 ⁶	3	http://app.supramolecular.org/bindfit/view/4bf485eb-5007- 4ee4-a14f-6e37d768be94
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	V1	1.40 * 10 ⁶	3	http://app.supramolecular.org/bindfit/view/23f40633-656c- 4061-a238-d2ec73924645
Average for (<i>R</i> , <i>R</i> _p *)- H ₂ 5	V1	1.29 * 10 ⁶ ± 2.1 * 10 ⁵		
Host	Guest	K [M ⁻¹]	Fit error [%]	URL
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	(R,R)- V2	7.1 * 10 ⁶	18	http://app.supramolecular.org/bindfit/view/3155f464-3fc5- 4cd0-af0e-160047e1ff64
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	(R,R)- V2	2.1 * 10 ⁷	66	http://app.supramolecular.org/bindfit/view/ecd71a2f-3a57- 4ce0-ae38-57ae4abdd443
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	(R,R)- V2	9.0 * 10 ⁶	34	http://app.supramolecular.org/bindfit/view/59fc8613-9b40- 4c43-979d-1afd74c9fd8f
Average for	(R,R)- V2	$8.0 * 10^6 \pm 1.4 * 10^6$		
Host	Guest	K [M ⁻¹]	Fit error [%]	URL
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	(<i>S,S</i>)- V2	7.52 * 10 ⁶	20	http://app.supramolecular.org/bindfit/view/d16144c9-2580- 432d-9f0e-9ff4ab746d24
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	(S,S)- V2	7.00 * 10 ⁶	23	http://app.supramolecular.org/bindfit/view/0316ba92-bef1- 422c-86b8-d27631843a96
(<i>R</i> , <i>R</i> _p *)- H ₂ 5	(<i>S,S</i>)- V2	1.4 * 10 ⁷	63	http://app.supramolecular.org/bindfit/view/3945be8a-cced- 4099-b6e0-5d17c9a46187
Average for (<i>R</i> , <i>R</i> _p *)- H₂5	(<i>S,S</i>)- V2	7.3 * 10 ⁶ ± 3.7 * 10 ⁵		

Table S5. Association constants of complexes between (R, R_{ρ}^{*}) -H₂5 and guests V1 and V2.^[a]

^[a] Data points with a too large fitting error (66 and 63 %) were omitted in the calculation of the final association constants

Figure S1. ¹H NMR spectrum (500 MHz, 298 K) of (R, S_p^*) -H₂4 in CDCl₃.

Figure S2. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of (R, S_p^*) -**H**₂4 in CDCl₃.

Figure S3. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of (R, S_p^*)-**H**₂4 in CDCl₃.

Figure S4. ¹H-¹³C edited HSQC NMR spectrum (500 MHz, 298 K) of (R, S_p^*)-**H**₂**4** in CDCl₃. CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S5. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of (R, S_p^*)-H₂4 in CDCl₃.

Figure S6. ¹H-¹⁹F HOESY NMR spectrum (500 MHz, 298 K) of (R, S_p^*) -H₂4 in CDCl₃.

Figure S7. ¹H-¹⁹F HOESY NMR spectrum (500 MHz, 298 K) of (R, S_p^*)-**H**₂**4** in CDCl₃. (Key nOe contacts are encircled).

Figure S8. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R, S_p^*) -H₂4 in CDCl₃.

Figure S9. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R, S_p^*)-**H**₂**4** in CDCl₃. (Key nOe contacts encircled).

Figure S10. ¹H NMR spectrum (500 MHz, 298 K) of the (R,S^*)-**H**₂**4** in CDCl₃: D₃CCN, (1:1 v/v).

Figure S11. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of (R,S^*)-**H**₂4 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S12. ¹⁹F NMR spectrum (471 MHz, 298 K) of (R,S^*)-**H**₂4 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S13. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S14. ¹H-¹³C edited HSQC NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 in CDCl₃: D₃CCN, (1:1 v/v). CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S15. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S16. ¹H NMR spectrum (500 MHz, 298 K) of the (R,S^*)-H₂4 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S17. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of the (R,S^*)-H₂4 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S18. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of the (R,S^*)-H₂4 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S19. ¹H-¹³C HSQC edited NMR spectrum (500 MHz, 298 K) of the (R,S^*)-H₂4 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v). CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S20. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of the (R,S^*)-H₂4 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S21. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of the (R,S^*)-H₂4 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S22. ¹H NMR spectrum (500 MHz, 298 K) of the (R,S^*)-H₂4 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S23. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of (R,S^*)-H₂4 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S24. ¹⁹F NMR spectrum (471 MHz, 298 K) of (R,S^*)-**H**₂4 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S25. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S26. ¹H-¹³C edited HSQC NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v). CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S27. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S28. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S29. ¹H NMR spectrum (500 MHz, 298 K) of the (R,S^*)-**H**₂4 complex with (S,S)-**V2** in CDCl₃: D₃CCN, (1:1 v/v).

Figure S30. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of (R,S^*)-H₂4 complex with (S,S)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S31. ¹⁹F NMR spectrum (471 MHz, 298 K) of (R,S^*)-H₂4 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S32. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 complex with (S,S)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S33. ¹H-¹³C edited HSQC NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 complex with (S,S)-V2 in CDCl₃: D₃CCN, (1:1 v/v). CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S34. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 complex with (*S*,*S*)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S35. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R,S^*)-H₂4 complex with (*S*,*S*)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S36. ¹H NMR spectrum (500 MHz, 298 K) of (R,R_p^*) -H₂5 in CDCl₃.

Figure S37. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of (R, R_p^*) -**H**₂**5** in CDCl₃.

Figure S38. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of (R, R_p^*) -H₂5 in CDCl₃.

Figure S39. ¹H-¹³C edited HSQC NMR spectrum (500 MHz, 298 K) of (R, R_p^*)-**H**₂**5** in CDCl₃. CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S40. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of (R, R_p^*)-**H₂5** in CDCl₃.

Figure S41. ¹H-¹⁹F HOESY NMR spectrum (500 MHz, 298 K) of (R, R_p^*) -H₂5 in CDCl₃.

Figure S42. ¹H-¹⁹F HOESY NMR spectrum (500 MHz, 298 K) of (R, R_p^*)-**H**₂**5** in CDCl₃.(Key nOe contacts encircled).

Figure S43. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R, R_p^*) -H₂5 in CDCl₃.

Figure S44. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R, R_p *)-**H**₂**5** in CDCl₃.(Key nOe contacts encircled).

Figure S45. ¹H NMR spectrum (500 MHz, 298 K) of (R, R^*)-**H**₂**5** in CDCl₃: D₃CCN, (1:1 v/v).

Figure S46. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of (R,R^*)-**H**₂**5** in CDCI₃: D₃CCN, (1:1 v/v).

Figure S47. ¹⁹F NMR spectrum (471 MHz, 298 K) of (*R*,*R**)-**H**₂**5** CDCl₃: D₃CCN, (1:1 v/v).

Figure S48. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S49. ¹H-¹³C edited HSQC NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 in CDCl₃: D₃CCN, (1:1 v/v). CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S50. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S51. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R,R^*)-**H**₂**5** in CDCl₃: D₃CCN, (1:1 v/v).

Figure S52. ¹H NMR spectrum (500 MHz, 298 K) of the (R,R^*)-H₂5 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S53. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of the (R,R^*)-**H**₂**5** complex with **V1** in CDCI₃: D₃CCN, (1:1 v/v).

Figure S54. ¹H-¹H COSY NMR spectrum (500 MHz, 298 K) of the (R,R^*)-H₂5 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S55. ¹H-¹³C HSQC edited NMR spectrum (500 MHz, 298 K) of the (R,R^*)-H₂5 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v). CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S56. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of the (R,R^*)-H₂5 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S57. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of the (R,R^*)-H₂5 complex with V1 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S58. ¹H NMR spectrum (500 MHz, 298 K) of (R,R^*)-**H**₂**5** complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S59. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of (R,R^*)-H₂5 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

-67.5 -68.0 -68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 -72.0 -72.5 -73.0 -73.5 -74.0 -74.5 -75.0 -75.5 -76.0 -76.5 -77.0 -77.5 -78.0 -78.5 -79.0 -79.5 19F (ppm)

Figure S60. ¹⁹F NMR spectrum (471 MHz, 298 K) of (R,R^*)-H₂5 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S61. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S62. ¹H-¹³C edited HSQC NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v). CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S63. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S64. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (R,R)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S65. ¹H NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (S,S)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S66. ¹³C{¹H} NMR spectrum (126 MHz, 298 K) of (R,R^*)-H₂5 complex with (S,S)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S67. ¹⁹F NMR spectrum (471 MHz, 298 K) of (R,R^*)-H₂5 complex with (S,S)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S68. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (S,S)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S69. ¹H-¹³C edited HSQC NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (S,S)-V2 in CDCl₃: D₃CCN, (1:1 v/v). CH₂ groups are indicated in blue and CH/CH₃ groups in red.

Figure S70. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (*S*,*S*)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S71. ¹H-¹H ROESY NMR spectrum (500 MHz, 298 K) of (R,R^*)-H₂5 complex with (*S*,*S*)-V2 in CDCl₃: D₃CCN, (1:1 v/v).

Figure S72. 1D-ROESY experiment in which protons *V4* of guests (*R*,*R*)-**V2** and (*S*,*S*)-**V2** bound inside host (*R*,*S*_{*p*}*)-**H**₂**4** are excited. Most of the magnetization is transferred

to the *V4* of the free guest due to chemical exchange. However, a small amount is transferred to the methoxy proton 53 of the Mosher substituent in (R, S_{ρ}^*) -**H**₂**4**. In the case of (R, R)-**V2** the magnetization transfer is 0.36% and in the case of (S, S)-**V2** 1.06%. V4in are the methyl protons of the bound guest closest to the Mosher substituent and V4out the methyl protons of the bound guest farthest away from this substituent. V4free are the methyl protons of the unbound guest.

Figure S73. ¹HNMR spectrum of compound **5** in chloroform-*d*.

Figure S74. ¹³C NMR (126 MHz, chloroform-*d*) of compound **5**.

Figure S75. ¹H-¹H DQF-COSY NMR spectrum (500 MHz, 298 K) of compound **5** in chloroform-*d*.

Figure S76. ${}^{1}\text{H}{}^{13}\text{C}$ edited HSQC NMR spectrum (500 MHz, 298 K) of compound **5** in chloroform-*d*. CH₂ groups are indicated in red and CH/CH₃ groups in blue.

Figure S77. ¹H-¹³C HMBC NMR spectrum (500 MHz, 298 K) of compound **5** in chloroform-*d*.