Supporting Information for "Quantifying the Impact of Atmospheric Transport Uncertainty on CO₂ Surface Flux Estimates"

Andrew E. Schuh¹, Andrew R. Jacobson², Sourish Basu², Brad Weir³,

David Baker¹, Kevin Bowman⁴, Frédéric Chevallier⁵, Sean Crowell⁶, Kenneth

J. Davis⁷, Feng Deng⁸, Scott Denning⁹, Liang Feng^{10,11}, Dylan Jones⁸, Junjie

 ${\rm Liu}^4,$ and Paul I. ${\rm Palmer}^{10,11}$

¹Cooperative Institute for Research in the Atmosphere, Colorado State University ²University of Colorado and NOAA Earth System Research Laboratory ³Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ⁵Laboratoire des Sciences du Climat et de l'Environnement, CEACNRSUVSQ, L'Orme des Merisiers, GifsurYvette, France ⁶School of Meteorology, University of Oklahoma, Norman, OK 73072, USA ⁷Department of Meteorology and Atmospheric Science, Penn State University, University Park, PA, USA ⁸Department of Physics, University of Toronto, Toronto, ON, Canada ⁹Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO, USA ¹⁰School of GeoSciences, University of Edinburgh, Edinburgh, UK ¹¹National Centre for Earth Observation, Edinburgh, UK

Contents of this file

- 1. Table 1
- 2. Figures S1 to S2 $\,$

Introduction This SI contains three items. A table (Table 1) of the stations for which SF6 observatoins were available for the analysis in the manuscript, along with a figure (Figure S1) showing their locations globally. Additionally, Figure S2 shows the model vertical levels for the two transport models being discussed in the manuscript.

Figure S1. Weights as a function model level, i.e. portion of the total column pressure for each model level. This plot shows the formulation for TM5 with 25 levels and GEOS-Chem's MERRA2 reduced 47 level formulation. GEOS-Chem appears to have less total pressure but this is only because the vertical pressure grid has about twice as many levels therefore the relative percentage of the atmosphere in each layer is about half of that of TM5 on average.

February 1, 2019, 10:37pm

Background SF_6 monitoring sites

:

Figure S2. Map of SF_6 Marine Boundary Layer (MBL) sites used in SF_6 analysis.

Site	Latitude	Platform	Laboratory
South Pole	89.98°S	surface flask	HATS
South Pole	$89.98^{\circ}S$	surface quasi-continuous	HATS
South Pole	$89.97^{\circ}\mathrm{S}$	surface flask	CCGG
Halley Bay, Antarctica	$75.61^{\circ}\mathrm{S}$	surface flask	CCGG
Syowa, Antarctica	$69.00^{\circ}\mathrm{S}$	surface flask	CCGG
Palmer Station, Antarctica	$64.92^{\circ}\mathrm{S}$	surface flask	HATS
Palmer Station, Antarctica	$64.92^{\circ}\mathrm{S}$	surface flask	CCGG
Crozet Island	$46.43^{\circ}\mathrm{S}$	surface flask	CCGG
Cape Grim, Tasmania	$40.68^{\circ}\mathrm{S}$	surface flask	HATS
Cape Grim, Tasmania	$40.68^{\circ}\mathrm{S}$	surface flask	CCGG
Pacific Ocean	$35.00^{\circ}\mathrm{S}$	shipboard flask	CCGG
Pacific Ocean	$30.00^{\circ}\mathrm{S}$	shipboard flask	CCGG
Pacific Ocean	$25.00^{\circ}\mathrm{S}$	shipboard flask	CCGG
Pacific Ocean	$20.00^{\circ}\mathrm{S}$	shipboard flask	CCGG
Pacific Ocean	$15.00^{\circ}\mathrm{S}$	shipboard flask	CCGG
Tutuila, American Samoa	$14.25^{\circ}\mathrm{S}$	surface flask	HATS
Tutuila, American Samoa	$14.25^{\circ}\mathrm{S}$	surface quasi-continuous	HATS
Tutuila, American Samoa	$14.24^{\circ}\mathrm{S}$	surface flask	CCGG
Arembepe, Brazil	$12.77^{\circ}\mathrm{S}$	surface flask	CCGG
Pacific Ocean	$10.00^{\circ}\mathrm{S}$	shipboard flask	CCGG
Ascension Island	$7.97^{\circ}\mathrm{S}$	surface flask	CCGG
Pacific Ocean	$5.00^{\circ}\mathrm{S}$	shipboard flask	CCGG
Pacific Ocean	0.00°N	shipboard flask	CCGG
Christmas Island, Republic of Kiribati	$1.70^{\circ}{ m N}$	surface flask	CCGG
Pacific Ocean	$5.00^{\circ}N$	shipboard flask	CCGG
Pacific Ocean	$10.00^{\circ}{ m N}$	shipboard flask	CCGG
Ragged Point, Barbados	$13.16^{\circ}\mathrm{N}$	surface flask	CCGG
Mariana Islands, Guam	$13.39^{\circ}\mathrm{N}$	surface flask	CCGG
Pacific Ocean	$15.00^{\circ}{ m N}$	shipboard flask	CCGG
Cape Kumukahi, Hawaii	$19.52^{\circ}\mathrm{N}$	surface flask	CCGG
Cape Kumukahi, Hawaii	$19.52^{\circ}\mathrm{N}$	surface flask	HATS
Pacific Ocean	$20.00^{\circ}N$	shipboard flask	CCGG
Pacific Ocean	$25.00^{\circ}N$	shipboard flask	CCGG
Sand Island, Midway	$28.21^{\circ}\mathrm{N}$	surface flask	CCGG
Tudor Hill, Bermuda	$32.26^{\circ}N$	surface flask	CCGG
St. Davids Head, Bermuda	$32.37^{\circ}N$	surface flask	CCGG
Terceira Island, Azores	$38.76^{\circ}\mathrm{N}$	surface flask	CCGG
Shemya Island, Alaska	$52.72^{\circ}N$	surface flask	CCGG
Mace Head, Ireland	$53.32^{\circ}\mathrm{N}$	surface flask	CCGG
Mace Head, Ireland	$53.33^{\circ}\mathrm{N}$	surface flask	HATS
Cold Bay, Alaska	$55.20^{\circ}\mathrm{N}$	surface flask	CCGG
Continued on next page			

Table S1: List of marine boundary layer sampling sites for ${\rm SF6}$

February 1, 2019, 10:37pm

Site	Latitude	Platform	Laboratory	
Storhofdi, Iceland	63.33°N	surface flask	CCGG	
Ocean Station M	66.00°N	surface flask	CCGG	
Barrow, Alaska	71.32°N	surface flask	CCGG	
Barrow, Alaska	71.32°N	surface flask	HATS	
Barrow, Alaska	71.32°N	surface quasi-continuous	HATS	
Ny-Alesund, Svalbard	78.91°N	surface flask	CCGG	
Alert, Canada	$82.45^{\circ}N$	surface flask	CCGG	
Alert, Canada	$82.45^{\circ}N$	surface flask	HATS	
Table S1: List of marine boundary layer sampling sites				
for SF_6				

Table S1 – continued from previous page

: