Supplementary Online Content

Rhee T-M, Hwang D, Lee J-S, Park J, Lee JM. Addition of hyperbaric oxygen therapy vs medical therapy alone for idiopathic sudden sensorineural hearing loss: a systematic review and meta-analysis. *JAMA Otolaryngol Head Neck Surg.* Published online September 27, 2018. doi:10.1001/jamaoto.2018.2133

eMethods. Supplementary Methods

eTable 1. Checklist of Items to Include When Reporting a Systematic Review or Meta-analysis (PRISMA Guidelines)

eTable 2. The Cochrane Collaboration's Tool for Assessing Risk of Bias of 3 Randomized Clinical Trials in Meta-analysis

eTable 3. The Newcastle-Ottawa Scale for Assessing the Quality of 16 Non-randomized Studies in Metaanalysis

- eTable 4. Demographics of the Overall Population
- eFigure 1. Funnel Plots for Evaluation of Publication Bias
- eFigure 2. Effect of Additional Hyperbaric Oxygen Therapy on Absolute Hearing Gain
- eFigure 3. Subgroup Analysis for Any Hearing Recovery
- eFigure 4. Association Between Age and Hearing Recovery
- eFigure 5. Association Between Sex and Hearing Recovery

References

This supplementary material has been provided by the authors to give readers additional information about their work.

eMethods. Supplementary Methods

Search Strategy

Pubmed*			EMBASE [†]			Cochrane Library		
#18	#11 and #17	113	#18	#11 and #17	138	#19	Select 'trials' in #18	24
#17	#12 or #13 or #14 or #15 or	13417	#17	#12 or #13 or #14 or #15 or	17570	#18	#11 and #17	38
	#16			#16				
#16	'HBOT'	576	#16	'HBOT'	792	#17	#12 or #13 or #14 or #15 or	2442
							#16	
#15	'HBO'	2718	#15	'HBO'	4107	#16	'HBOT'	125
#14	'hyperbaric oxygenation'	2361	#14	'hyperbaric oxygenation'	2672	#15	'HBO'	252
#13	'hyperbaric oxygen'	7094	#13	'hyperbaric oxygen'	9157	#14	'hyperbaric oxygenation'	548
#12	'hyperbaric'	12833	#12	'hyperbaric'	16222	#13	'hyperbaric oxygen'	1077
#11	#1 or #2 or #3 or #4 or #5 or	11020	#11	#1 or #2 or #3 or #4 or #5 or	13369	#12	'hyperbaric'	2406
	#6 or #7 or #8 or #9 or #10			#6 or #7 or #8 or #9 or #10				
#10	'ISHL'	36	#10	'ISHL'	43	#11	#1 or #2 or #3 or #4 or #5 or	811
							#6 or #7 or #8 or #9 or #10	

#9	'ISNHL'	4	#9	'ISNHL'	5	#10	'ISHL'	67
#8	'SHL'	344	#8	'SHL'	416	#9	'ISNHL'	1
#7	'SNHL'	1244	#7	'SNHL'	1535	#8	'SHL'	29
#6	'sensorineural hearing loss'	10568	#6	'sensorineural hearing loss'	12783	#7	'SNHL'	45
#5	'ISSHL'	106	#5	'ISSHL'	126	#6	'sensorineural hearing loss'	718
#4	'ISSNHL'	136	#4	'ISSNHL'	149	#5	'ISSHL'	23
#3	'SSHL'	122	#3	'SSHL'	134	#4	'ISSNHL'	30
#2	'SSNHL'	279	#2	'SSNHL'	318	#3	'SSHL'	22
#1	'sudden sensorineural	1239	#1	'sudden sensorineural	1447	#2	'SSNHL'	32
	hearing loss'			hearing loss'				
						#1	'sudden sensorineural	220
							hearing loss'	
						1		

* Search options were limited to title or abstract by using commands as shown: ([Title/Abstract])

[†] Search options were limited to title, keyword, or abstract by using commands as shown: ([Title/Keyword/Abstract] : ":ti,ab,kw")

Characteristics of the Excluded Studies

No.	Title	First Author	Journal	Main Reason for Exclusion	
1	Sudden hypoacusis treated with hyperbaric oxygen therapy: A controlled study ¹	Fattori et al.	Ear Nose Throat, 2001	The protocol and main point of the study is irrelevant. The control group used vasodilator instead of steroids.	
2	Sudden sensorineural hearing loss: Our experience in diagnosis, treatment, and outcome ²	Cadoni et al.	J Otolaryngol, 2005	Results were not available as a suitable form for meta-analysis.	
3	Comparison of simultaneous systemic steroid and hyperbaric oxygen treatment versus only steroid in idiopathic sudden sensorineural hearing loss ³	Callioglu et al.	Int J Clin Exp Med, 2015	Results were not available as a suitable form for meta-analysis.	
4	Hyperbaric oxygen therapy as salvage therapy for sudden sensorineural hearing loss ⁴	Ajduk et al.	J Int Adv Otol, 2017	Results were not available as a suitable form for meta-analysis.	

			Braz		The protocol and main point of the
5	The place of hyperbaric oxygen therapy and		Otorhinolaryngol		study is irrelevant. This study mainly
		Tasdoven et al			5
	ozone therapy in sudden hearing loss ⁵		o torinino iai y iigor,		investigated the efficacy of ozone
	ozone merapy in sudden nearing loss		2017		investigated the enfeaty of ozone
			2017		
					therapy for sudden hearing loss.

eTable 1. Checklist of items to include when reporting a systematic review or	r meta-analysis (PRISMA guidelines)
---	-------------------------------------

Section/topic	Checklist item		Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility	3
		criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations;	
		conclusions and implications of key findings; systematic review registration number.	
INTRODUCTION	<u>.</u>		
Rationale	3	Describe the rationale for the review in the context of what is already known.	5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions,	5
		comparisons, outcomes, and study design (PICOS).	
METHODS	<u>.</u>		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available,	8
		provide registration information including registration number.	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years	6
		considered, language, publication status) used as criteria for eligibility, giving rationale.	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify	6
		additional studies) in the search and date last searched.	

Section/topic		Checklist item	Reported on page #
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could	6 and eMethods
		be repeated.	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if	6
		applicable, included in the meta-analysis).	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any	7
		processes for obtaining and confirming data from investigators.	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions	7
		and simplifications made.	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this	7 and eMethods
		was done at the study or outcome level), and how this information is to be used in any data synthesis.	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of	7-8
		consistency (e.g., I ²) for each meta-analysis.	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias,	9 and eTable 2 and 3
		selective reporting within studies).	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done,	7-8
		indicating which were pre-specified.	
RESULTS	-		

Section/topic		Checklist item	Reported on page #
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for	8-9 and Figure 1
		exclusions at each stage, ideally with a flow diagram.	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up	9 and Table 1
		period) and provide the citations.	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	9 and eTable 2 and 3
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each	9-11
		intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9-11, Figure 1-2
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10, eFigure 1
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item	10-11, Figure 3-4, eFigure 2-
		16]).	5
DISCUSSION	-		-
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their	11-13
		relevance to key groups (e.g., health care providers, users, and policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete	15-16
		retrieval of identified research, reporting bias).	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future	16
		research.	

Section/topic		Checklist item	Reported on page #
FUNDING	-		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	N/A

Study	Domain	Support for judgment & review authors' judgment				
Topuz et al. (2004) ⁶	Random sequence generation	Unclear risk of bias. No indication of the method of random sequence generation.				
	Allocation concealment	Unclear risk of bias. No indication of an attempt at the allocation concealment.				
	Blinding of participants and personnel	High risk of bias. No attempt was described for blinding any party.				
	Blinding of outcome assessment	High risk of bias. No attempt was described for blinding of outcome assessment.				
	Incomplete outcome data	Low risk of bias. All patients at each randomization group were completely followed, and				
		100% of each group received allocated intervention.				
	Selective reporting	Low risk of bias. All outcomes of interest have been reported in the manuscript.				
	Other sources of bias	Low risk of bias. The study appears to be free of other sources of bias.				
Cekin et al. (2009) ⁷	Random sequence generation	Low risk of bias. Patients were randomly allocated using a computer-based method.				
	Allocation concealment	Unclear risk of bias. No indication of an attempt at the allocation concealment.				
	Blinding of participants and personnel	High risk of bias. No attempt was described for blinding any party.				
	Blinding of outcome assessment	High risk of bias. No attempt was described for blinding of outcome assessment.				
	Incomplete outcome data	Low risk of bias. All patients at each randomization group were completely followed, and				
		100% of each group received allocated intervention.				
	Selective reporting	Low risk of bias. All outcomes of interest have been reported in the manuscript.				
	Other sources of bias	Low risk of bias. The study appears to be free of other sources of bias.				
Cvorovic et al. (2013) ⁸	Random sequence generation	Unclear risk of bias. No indication of the method of random sequence generation.				

eTable 2. The Cochrane Collaboration's tool for assessing risk of bias of 3 randomized clinical trials in meta-analysis

Allocation concealment	Unclear risk of bias. No indication of an attempt at the allocation concealment.
Blinding of participants and personnel	High risk of bias. No attempt was described for blinding any party.
Blinding of outcome assessment	High risk of bias. No attempt was described for blinding of outcome assessment.
Incomplete outcome data	Low risk of bias. All patients at each randomization group were completely followed, and
	100% of each group received allocated intervention.
Selective reporting	Low risk of bias. All outcomes of interest have been reported in the manuscript.
Other sources of bias	Low risk of bias. The study appears to be free of other sources of bias.

No.	Author	Year	Selection	Comparability	Outcome	The Newcastle-Ottawa Scale
1	Cavallazzi et al. ⁹	1996	****	*	**	Selection (Maximum of one star for each numbered item)
2	Aslan et al. ¹⁰	2002	****	*	***	1. Representativeness of the exposed cohort
3	Narozny et al. ¹¹	2004	****	*	**	a) truly representative of the average (describe) in the community *
4	Desloovere et al. ¹²	2006	****	*	***	b) somewhat representative of the average in the community
5	Satar et al. ¹³	2006	****	*	**	*c) selected group of users eg nurses, volunteers
6	Dundar et al. ¹⁴	2007	****	*	**	d) no description of the derivation of the cohort
7	Fujimura et al. ¹⁵	2007	****	*	***	2. Selection of the non exposed cohort
8	Ohno et al. ¹⁶	2010	****	*	***	a) drawn from the same community as the exposed cohort *b) drawn from a different source
9	Alimoglu et al. ¹⁷	2011	****	*	**	c) no description of the derivation of the non exposed cohort
10	Liu et al. ¹⁸	2011	****	*	***	3. Ascertainment of exposure to implantsa) secure record (eg surgical records) *
11	Yang et al. ¹⁹	2013	****	*	***	b) structured interview *
12	Capuano et al. ²⁰	2015	****	*	***	c) written self reportd) no description
13	Pezzoli et al. ²¹	2015	****	*	***	4. Demonstration that outcome of interest was not present at start of study
14	Psillas et al. ²²	2015	****	*	***	a) yes * b) no
15	Hosokawa et al. ²³	2017	****	*	***	

eTable 3. The Newcastle-Ottawa Scale for assessing the quality of 16 non-randomized studies in meta-analysis

16 Ricciardiello et al.²⁴ 2017 $\star \star \star \star$ \star \star

eTable 4. Demographics of the Overall Population

Source	Demographics of the Overall Population								
	Mean Age, y	Male, %	Initial Hearing Level, dB	Severe to Profound Hearing Loss, %	Vertigo, %				
Cavallazzi et al, ²² 1996	48.2	51.6	NR	NR	NR				
Aslan et al, ²³ 2002	47.3	64.0	NR	NR	NR				
Narozny et al, ⁹ 2006	40.8	47.4	66.4	NR	34.6				
Topuz et al, ⁶ 2004	41.5	60.0	70.4	25.5	NR				
Desloovere et al, ¹⁰ 2006	45.6	46.5	43.6	NR	NR				
Satar et al, ¹¹ 2006	45.5	66.7	72.5	37.0	NR				
Dundar et al, ¹² 2007	NR	56.3	NR	80.0	NR				
Fujimura et al, ¹³ 2007	52.6	NR	68.9	27.7	16.2				
Cekin et al, ⁷ 2009	46.0	64.9	86.8	NR	7.0				
Ohno et al, ¹⁴ 2010	49.0	50.0	60.7	40.2	32.6				
Alimoglu et al, ¹⁵ 2011	NR	NR	67.8	NR	NR				
Liu et al, ¹⁶ 2011	45.8	48.4	NR	54.8	NR				
Cvorovic et al, ⁸ 2013	50.5	NR	69.0	NR	NR				
Yang et al, ¹⁷ 2013	51.1	46.9	86.2	NR	30.6				
Capuano et al, ¹⁸ 2015	53.6	57.0	69.6	41.0	8.0				
Pezzoli et al, ¹⁹ 2015	50.7	NR	66.9	38.6	NR				
Psillas et al, ²⁰ 2015	49.1	42.2	69.8	60.0	24.4				
Hosokawa et al, ²¹ 2017	62.0	52.9	NR	30.0	42.8				
Ricciardiello et al, ²⁴ 2017	46.1	55.6	53.8	NR	24.1				

Abbreviation: NR, not reported.

eFigure 1. Funnel Plots for Evaluation of Publication Bias

A. Complete hearing recovery

B. Any hearing recovery

eFigure 1. Funnel plots for evaluation of publication bias

The results of Egger's and Begg's tests are presented. Using the trim-and-fill method, no trimming was done due to absence of asymmetry for funnel plots of (A) complete hearing recovery and (B) any hearing recovery.

Abbreviations: OR, odds ratio.

eFigure 2. Effect of Additional Hyperbaric Oxygen Therapy on Absolute Hearing Gain

eFigure 2. Effect of additional hyperbaric oxygen therapy on absolute hearing gain

Mean difference with 95% confidence intervals of absolute hearing gain is displayed according to the frequency levels.

Abbreviations are as in Figure 2.

eFigure 3. Subgroup Analysis for Any Hearing Recovery

	No. of	No. of Patients				
	NO. OF - Studies	MT alone	HBOT + MT	Odds Ratios (95% CI) for Any Recovery		I ² (P _{Heterogeneity})
Statistical Model						
Fixed effects	15	1194	919	• 1.33 (1.23 – 1.43)	< 0.001	79.3% (<0.001)
Radom effects	15	1194	919	 1.43 (1.20 – 1.67)	< 0.001	79.3% (<0.001)
HBOT Strategy						
Salvage treatment	6	442	331	2.86 (1.52 – 5.26)	0.001	80.5% (<0.001)
Adjunctive treatment	9	752	588	• 1.18 (1.08 – 1.28)	< 0.001	31.8% (0.163)
HBOT Protocol: Total Duration						
Over 1,200 min (20 h)	7	342	376	→ 1.28 (1.09 – 1.52)	0.004	60.8% (0.018)
Below 1,200 min (20 h)	8	852	543	—•— 1.61 (1.18 – 2.22)	0.004	86.5% (<0.001)
HBOT Protocol: Maximal Pressure						
Over 2.5 ATA	11	800	633	◆ 1.22 (1.09 – 1.35)	0.001	52.9% (0.019)
Below 2.5 ATA	4	394	286	2.78 (1.16 – 6.67)	0.022	87.4% (<0.001)
Response Assessment Point						
More than 3 months after treatment	7	868	521	——— 1.96 (1.32 – 2.94)	0.001	89.2% (<0.001)
Less than 3 months after treatment	8	326	398	➡ 1.22 (1.09 – 1.39)	0.001	37.1% (0.133)
		0.1		1 10		
			Favors MT alone Favors HBOT + MT			

eFigure 3. Subgroup analysis for any hearing recovery

Effect of hyperbaric oxygen therapy on any hearing recovery according to the various subgroups is presented.

Abbreviations are as in Figure 5.

eFigure 4. Association between Age and Hearing Recovery

eFigure 4. Association between age and hearing recovery

Log values of odds ratios for (**A**) complete hearing recovery and (**B**) any hearing recovery are plotted according to the mean age of each enrolled study, using random-effects meta-regression. Each circle indicates a trial which was proportionately weighed in meta-analysis. Abbreviations: CI, confidence interval.

eFigure 5. Association between Sex and Hearing Recovery

eFigure 5. Association between sex and hearing recovery

Log values of odds ratios for (**A**) complete hearing recovery and (**B**) any hearing recovery are plotted according to the proportion of men of each enrolled study, using random-effects meta-regression. Each circle indicates a trial which was proportionately weighed in meta-analysis. Abbreviations: CI, confidence interval.

References

1. Fattori B, Berrettini S, Casani A, Nacci A, De Vito A, De Iaco G. Sudden hypoacusis treated with hyperbaric oxygen therapy: a controlled study. *Ear Nose Throat J*. 2001;80(9):655-660.

2. Cadoni G, Agostino S, Scipione S, et al. Sudden sensorineural hearing loss: our experience in diagnosis, treatment, and outcome. *J Otolaryngol*. 2005;34(6):395-401.

3. Callioğlu EE, Tuzuner A, Demirci S, Cengiz C, Caylan R. Comparison of simultaneous systemic steroid and hyperbaric oxygen treatment versus only steroid in idiopathic sudden sensorineural hearing loss. *International Journal of Clinical and Experimental Medicine*. 2015;8(6):9876-9882.

4. Ajduk J, Ries M, Trotic R, Marinac I, Vlatka K, Bedekovic V. Hyperbaric Oxygen Therapy as Salvage Therapy for Sudden Sensorineural Hearing Loss. *J Int Adv Otol*. 2017;13(1):61-64.

5. Ergun Tasdoven G, Derin AT, Yaprak N, Ozcaglar HU. The place of hyperbaric oxygen therapy and ozone therapy in sudden hearing loss. *Braz J Otorhinolaryngol*. 2017;83(4):457-463.

6. Topuz E, Yigit O, Cinar U, Seven H. Should hyperbaric oxygen be added to treatment in idiopathic sudden sensorineural hearing loss? *Eur Arch Otorhinolaryngol.* 2004;261(7):393-396.

7. Cekin E, Cincik H, Ulubil SA, Gungor A. Effectiveness of hyperbaric oxygen therapy in management of sudden hearing loss. *J Laryngol Otol*. 2009;123(6):609-612.

8. Cvorovic L, Jovanovic MB, Milutinovic Z, Arsovic N, Djeric D. Randomized prospective trial of hyperbaric oxygen therapy and intratympanic steroid injection as salvage treatment of sudden sensorineural hearing loss. *Otol Neurotol.* 2013;34(6):1021-1026.

9. Cavallazzi G, Pignataro L, Capaccio P, editors. Italian experience in hyperbaric oxygen therapy for idiopathic sudden sensorineural hearing loss. International Joint Meeting on Hyperbaric and Underwater Medicine; 1996.

10. Aslan I, Oysu C, Veyseller B, Baserer N. Does the addition of hyperbaric oxygen therapy to the conventional treatment modalities influence the outcome of sudden deafness? *Otolaryngology-Head and Neck Surgery*. 2002;126(2):121-126.

11. Narozny W, Kuczkowski J, Kot J, Stankiewicz C, Sicko Z, Mikaszewski B. Prognostic factors in sudden sensorineural hearing loss: our experience and a review of the literature. *Ann Otol Rhinol Laryngol*. 2006;115(7):553-558.

12. Desloovere C, Knecht R, Germonpre P. Hyperbaric oxygen therapy after failure of conventional therapy for sudden deafness. *B-ent*. 2006;2(2):69-73.

13. Satar B, Hidir Y, Yetiser S. Effectiveness of hyperbaric oxygen therapy in idiopathic sudden hearing loss. *J Laryngol Otol*. 2006;120(8):665-669.

14. Dundar K, Gumus T, Ay H, Yetiser S, Ertugrul E. Effectiveness of hyperbaric oxygen on sudden sensorineural hearing loss: prospective clinical research. *J Otolaryngol*. 2007;36(1):32-37.

15. Fujimura T, Suzuki H, Shiomori T, Udaka T, Mori T. Hyperbaric oxygen and steroid therapy for idiopathic sudden sensorineural hearing loss. *Eur Arch Otorhinolaryngol*. 2007;264(8):861-866.

16. Ohno K, Noguchi Y, Kawashima Y, Yagishita K, Kitamura K. Secondary hyperbaric oxygen therapy for idiopathic sudden sensorineural hearing loss in the subacute and chronic phases. *J Med Dent Sci.* 2010;57(2):127-132.

17. Alimoglu Y, Inci E, Edizer DT, Ozdilek A, Aslan M. Efficacy comparison of oral steroid, intratympanic steroid, hyperbaric oxygen and oral steroid + hyperbaric oxygen treatments in idiopathic sudden sensorineural hearing loss cases. *Eur Arch Otorhinolaryngol*. 2011;268(12):1735-1741.

18. Liu SC, Kang BH, Lee JC, et al. Comparison of therapeutic results in sudden sensorineural hearing loss with/without additional hyperbaric oxygen therapy: a retrospective review of 465 audiologically controlled cases. *Clin Otolaryngol*. 2011;36(2):121-128.

19. Yang CH, Wu RW, Hwang CF. Comparison of intratympanic steroid injection, hyperbaric oxygen and combination therapy in refractory sudden sensorineural hearing loss. *Otol Neurotol*. 2013;34(8):1411-1416.

20. Capuano L, Cavaliere M, Parente G, et al. Hyperbaric oxygen for idiopathic sudden hearing loss: is the routine application helpful? *Acta Otolaryngol.* 2015;135(7):692-697.

21. Pezzoli M, Magnano M, Maffi L, et al. Hyperbaric oxygen therapy as salvage treatment for sudden sensorineural hearing loss: a prospective controlled study. *Eur Arch Otorhinolaryngol.* 2015;272(7):1659-1666.

22. Psillas G, Ouzounidou S, Stefanidou S, et al. Hyperbaric oxygen as salvage treatment for idiopathic sudden sensorineural hearing loss. *B*-*ent*. 2015;11(1):39-44.

23. Hosokawa S, Sugiyama KI, Takahashi G, et al. Hyperbaric Oxygen Therapy as Adjuvant Treatment for Idiopathic Sudden Sensorineural Hearing Loss after Failure of Systemic Steroids. *Audiol Neurootol*. 2017;22(1):9-14.

24. Ricciardiello F, Abate T, Pianese A, et al. Sudden sensorineural hearing loss: role of hyperbaric oxygen therapy. *Translational Medicine Reports*. 2017;1(1).