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eAppendix. Machine Learning Approaches Used in the Study  

Introduction 

Traditional statistical model specifications require specific structural assumptions (e.g., linearity) 
and pre-specified factors entered in the model, which may limit opportunities for discovering new 
knowledge from the data, especially when model assumptions are not satisfied by real data. Machine 
learning is a branch of artificial intelligence in which computer algorithms learn adaptively from the data 
without making strict assumptions in the statistical models. The major advantages of using machine 
learning over traditional statistical approaches include the ability to capture non-linear and non-
monotone association and to discover complex interactions that might have gone unnoticed in 
traditional regression models.1 Moreover, tree-based machine learning, such as classification trees, use 
surrogate splits to handle missing values, whereas traditional statistical approaches require imputation 
for missing values, which often rely on additional assumptions on the underlying missing mechanism.  

In this study, our primary goal was prediction, and the secondary goal was risk stratification (i.e., 
to identify subgroups of patients at similar risk of the outcome). First, we randomly and equally divided 
beneficiaries into training, testing, and validation samples based on the characteristic and overdose 
distribution. For each study design scenario (eFigures 2A and 2B), we developed and tested 
prediction algorithms for opioid overdose using 5 machine learning approaches: multivariate logistic 
regression, least absolute shrinkage and selection operator (LASSO), random forests (RF), gradient 
boosting machine (GBM), and deep neural network (DNN). For each approach, we fit the trained 
algorithms based on the training sample, refined the algorithm using the testing sample, and then 
applied the final algorithm in the validation sample to evaluate prediction performance. 

Our model reporting compiles with the Standards for Reporting Diagnostic Accuracy (STARD) 
and the Transparent Reporting of Multivariable Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) reporting guidelines.2,3 We calculated the C-statistic (or area under the receiver operating 
curve [ROC]) from the validation sample to assess discrimination (i.e., the extent to which patients 
predicted as high-risk exhibit higher overdose rates compared to those predicted as low risk). We 
examined any difference in C-statistics across different approaches using the DeLong Test.4 For each 
probability cutoff point, overdose was predicted for the visits with calculated probabilities above the 
cutoff point, whereas non-overdose was predicted for the visits with probabilities below the cutoff 
points. Based on their true and predicted overdose status, the patients’ 3-month visits can be assigned 
to one of the four groups (i.e., true positive [TP], false positive [FP], true negative [TN], false negative 
[FN]) shown in the classification matrix (eFigure 3). Given that overdose events are rare outcomes and 
C-statistics do not incorporate information about the prevalence of the outcome, we reported other 
more appropriate metrics, including sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR), number needed 
to evaluate (NNE) to identify one overdose, and estimated rate of alerts to assess pre-implementation 
evaluation of our prediction algorithms (eFigure 3).5 The optimal algorithm for a screening test depends 
on pre-test probability of the outcome, the values of TPs and TNs, and the costs of FP and FN. Since 
these factors vary from setting to setting (and some of them are subjective choices), no single cutoff 
point is suitable for every purpose. In order to compare performance across methods, we presented 
and assessed these prediction metrics (e.g., NNE) at the optimized threshold of the predicted 
probability that balances sensitivity and specificity as identified by the Youden index,6 as well as at 
multiple levels of sensitivity and specificity (e.g., 90%-100%) to allow risk-benefit evaluations of 
interventions triggered by a positive tests using different thresholds defining high risk. 

Second, based on the score (i.e., 100×predicted probability of overdose to simplify interpretation 
and application) in the validation sample, we classified the beneficiaries into three risk groups: low-risk 
(the scores below optimized threshold identified by the Youden index), high-risk (the top fifth percentile 
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of the scores), and medium-risk (score between optimized threshold and top fifth percentile) groups. 
Calibration (the extent to which the predicted overdose risk agree with the observed risks) was 
evaluated using calibration charts of observed overdose rates by three risk group.  

 

Multivariate logistic regression (MLR)7 

 MLR was performed with the log odds for opioid overdose as the dependent variable. The 
independent variables consisted of all the 268 predictor candidates and 2-way interactions between any 
of the two predictors. We examined correlations among the correlation coefficients to screen for multi-
collinearity. Absolute values of r >0.75 were considered significant or strong correlations. We 
incorporated variables into a model in a stepwise fashion with α value of 0.10 to enter and 0.15 to 
remove. Step-wise selections were based on asymptotic covariance estimates. The goodness of fit for 
the final model was determined by Hosmer-Lemeshow X2 analysis. The MLR for training visits was 
used to calculate a probability of overdose for each 3-month visit in the validation sample. For MLR, 
validation visits were assigned to one of the two predictive categories (i.e., overdose vs. non-overdose) 
if the probability threshold >0.01 (identified from the ROC using the Youden Index). Furthermore, we 
used multiple imputations (MI) with an assumption of missing at completely random for missing 
predictor data.8 The MI methods simultaneously predicted missing values of variables using complete 
observations of variables by modeling the joint distribution of all other predictor candidates. For 
variables with multiple categories (e.g., provider specialty), we used multiple imputation chained 
equations (MICE) to impute the missing data. MLR was conducted using the software package Salford 
SPM v8.2. 

Regularized logistic regression: Least absolute shrinkage and selection operator (LASSO)-type 
regularized logistic regression9-11 

In order to simultaneously fit the regression model and select important predictors, we used 
several regularized or penalized logistic regression including LASSO, ridge regression, and elastic net 
regression, which can automatically identify factors that most strongly predicted overdose. Regularized 
regression uses the elastic family of penalty function for model estimation that performs variable 
selection and produces a parsimonious model. Briefly, after forming a prediction model with logistic 
regression using all candidate variables, beta coefficients are penalized and lowered to deal with model 
overfitting. The magnitude of penalization is subsequently changed to create various models with 
different prediction errors in a cross-validation process, so the final model achieves optimal penalization 
based on the lowest prediction error. In regularized regression, variable selection is performed 
automatically by shrinking regression coefficients of some variables to zero. We used multiple 
imputation (MI) with an assumption of missing at completely at random for missing predictor data.8 The 
MI methods simultaneously predicted missing values of variables using complete observations of 
variables by modeling the joint distribution of all other predictor candidates. For variables with multiple 
categories (e.g., provider specialty), we used multiple imputation chained equations (MICE) to impute 
the missing data. Similar to traditional statistical methods (e.g., logistic regression), regularized 
regression methods cannot handle missing values and they delete rows with missing data. It also 
cannot discover a nonlinearity relationship or multiple interactions. However, regularized regression is 
expected to be more effective in the following situations: there are (1) many more columns (predictors) 
than rows (observations), (2) predictors available may be extremely highly correlated with each other, 
or (3) the goal to find the most compact model yielding acceptable performance. We used the 
GPS/LASSO function in the Salford SPM v8.2 to perform regularized regression with different elasticity 
values between 0 and 2. We used an elasticity value of 1 (which performs the LASSO regression that 
introduces variables as quickly as possible and produces reasonably sparse solutions), 2 (which 
performs the ridge regression that introduces variables sparingly and produces the least sparse 



 

©2019 Lo‐Ciganic W‐H et al. JAMA Network Open. 

solutions favoring proportional shrinkage), and 1.1 (the hybrid ridge-LASSO regression). We also 
controlled the amount of coefficient adjustment using the learning rate of 0.001 (learn rate between 0 
and 1 and a small value forces smaller updates at each step). All other parameters were set as default 
values. The best model was with an elasticity value of 1.1 chosen in a cross-validation process. For 
regularized regression, validation visits were assigned to one of the two predictive categories (i.e., 
overdose vs. non-overdose) if the probability threshold >0.01 that was identified from the ROC using 
the Youden Index. 

Random Forests (RF)12,13 

A classification tree identifies mutually exclusive subgroups whose members share similar 
important predictors of the outcome of interest through a series of binary recursive partitionings.14 RF, 
consisting of numerous independent classification trees from random sampling, improves prediction 
performance over a single tree.12,15 In order to have diverse trees in the random forest, each random 
tree partially randomly selects a subset of predictor variables. This allows for variables of low predictive 
importance to enter the ensemble and potentially reveal interaction effects with other variables, which 
could improve overall predictive accuracy of the RF. Implementation of the tree-growing procedure in 
RF may be controlled by multiple tuning parameters and criteria including the number of trees in the 
forest, meeting a priori p-value thresholds to implement a binary split, the minimum sample size of 
observations in a node, and the number of candidate predictors to be selected at random. Practical 
guidance suggests that initial values for each random forest be fine-tuned iteratively by varying the 
value of each parameter and empirically selecting the combination of parameters to yield the lowest 
prediction error.16 The tree growing process continues until a terminal node is reached, which occurs 
when no allowable splits exist, or stopping criteria are met. Our proposed algorithm steps and rationale 
were adapted from the implementation of Chirkov et al.’s RF framework.16 We used the Random 
Forests in the software package Salford SPM for this study. For RF, validation visits were assigned to 
one of the two predictive categories (i.e., overdose vs. non-overdose) if the probability threshold >0.93 
that was identified from the ROC using the Youden Index. 

 

Gradient Boosting Machine (GBM; Stochastic gradient boosting or TreeNet in Salford SPM)17,18 

Similar to RF, GBM creates a tree ensemble except that a GBM model consists of a series of trees 
grown in a sequential order, whereas a RF consists of a collection of trees grown in parallel. Briefly, the 
first tree is fitted to the data and begins with a very small tree as the initial model. The residuals (error 
values) from the first tree are then fed into the second tree which attempts to further reduce the error. 
Then it grows a second small tree to predict the residuals from the first tree. Next, it computes residuals 
from this new 2nd tree model and grows the 3rd tree to predict revised residuals. This process is 
repeated through a series of successive trees. The final predicted value is formed by adding the 
weighted contribution of each tree. The algorithm typically generates thousands of small decision trees 
built in a sequential error-correcting process to converge to an accurate model. Usually, the individual 
trees are fairly small (typically 3 levels deep with 6 terminal nodes), but the full GBM additive series 
may consist of hundreds of these small trees. Mathematically, a GBM model can be described as:  

GBM predicted target (i.e., opioid overdose) = F0 + β1*T1(X) + β2*T2(X) + … + β100*T100(X) 

Where F0 is the starting value for the tree series, X is a vector of pseudo-residual values remaining at 
each point in the series, T1(X), T2(X), T3(X),… are trees fitted to the pseudo-residuals, and β1, β2,… are 
coefficients of the tree node predicted values that are computed by the GBM algorithm.  

Specifically for our study, Salford’s TreeNet function supplied an initial value specific to the 
chosen loss function (i.e. logistic binary) for each record in the training sample. TreeNet can handle 
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missing values automatically. We used cross entropy (i.e., negative average log likelihood) as the 
tuning criterion to determine the number of trees optimal for logistic models. Second, TreeNet sampled 
25% of the records in the learn sample randomly and then computed the generalized residual for the 
records in the sample. The first tree is fitted to the data and begins with a very small tree as the initial 
model. TreeNet used the sampled records to fit a classification tree with a maximum 8 terminal nodes 
to the generalized residuals. Third, TreeNet used the classification tree derived from the sampled 
records to update the TreeNet model based on the loss function and shrink the update tree by the 
learning rate (or shrinkage rate) at 0.1 for overfitting protection. TreeNet repeated the steps previously 
described 200 times (i.e., number of trees to build = 200). Finally, we tested and validated the 
algorithms in the testing and validation samples. For TreeNet, validation visits were assigned to one of 
the two predictive categories (i.e., overdose vs. non-overdose) if the probability threshold >0.39, that 
was identified from the ROC using the Youden Index. 

 

Deep feed-forward neural network (DNN) or Artificial neural network (ANN)19,20 

Deep learning refers to artificial neural network (ANN) models with multiple hidden layers 
(typically ≥3) that can be used to quantify the complex nonlinear relationships between inputs and 
outputs. Recently, deep learning has shown impressive performance in image and audio processing, 
natural language processing, as well as biomedical fields.19,20 Prior to conducting deep learning, we 
imputed missing data using median imputation for continuous variables and mode for categorical data. 
We also generated a series of dummy variables for categorical variables, and normalized continuous 
variables within a range between 0 and 1. We used a deep feed-forward neural network (DNN) to 
develop algorithms in our training datasets using Python 3.6 (keras package). We examined different 
numbers of hidden layers and nodes. At the end, the DNN with 2 hidden layers with 120 and 40 nodes 
performed the best. In this study, we generally referred our approach as DNN although the hidden 
layers were 2 in the best performing model. In each hidden layer during the algorithm-training process, 
we chose ReLU as an activation function to better prevent vanishing gradient and yield faster 
convergence. We applied a sigmoid function to the output layer to generate score representing the 
probability of overdose. We used the binary cross-entropy loss function with balanced class weight to 
adjust for the rare outcome. Finally, we fine-tuned the L2 regularization weight and minimized the loss 
function to optimize the weight and bias of the DNN. For DNN, validation visits were assigned to one of 
the two predictive categories (i.e., overdose vs. non-overdose) if the probability threshold >0.465 that 
was identified from the ROC using the Youden Index. 
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eTable 1. Diagnosis codes for the exclusion of patients with malignant cancers based on the National 
Committee for Quality Assurance (NCQA)’s Opioid Measures in 2018 Healthcare Effectiveness Data and 
Information Set (HEDIS) 

ICD-9 codes ICD-10 codes 
140.x (x=0, 1, 3, 4, 5, 6, 8, 9), 141.x (x=0, to 6, 8 and 9), 
142.x (x=0, 1, 2, 8, 9), 143.x (x=0, 1, 8, 9), 144.x (x=0, 1, 8, 
9),  145.x (x=0 to 6, 8, and 9), 146.x (x=0 to 9), 147.x (x=0, 1, 
2, 3, 8, 9), 148.x (x=0, 1,2, 3, 8, 9), 149.x (x=0, 1, 8, 9), 150.x 
(x=0, 1, 2, 3, 4, 5, 8, 9), 151.x (x=0, 1, 2, 3, 4, 5, 6. 8, 9), 
152.x (x=0, 1, 2, 3, 8, 9), 153.x (x=0 to 9), 154.x (x=0, 1, 2, 3, 
8), 155.x (x=0, 1, 2),  156.x (x=0, 1, 2, 8, 9), 156.x (x=1, 2, 8, 
9), 157.x (x=0, 1, 2, 3, 4, 8, 9), 158.x (x=0, 8, 9), 159.x (x=0, 
1, 8, 9), 160.x (x=0 to 5, 8, 9), 161.x (x=0, 1, 2, 3, 8, 9), 162.x 
(x=0, 2, 3, 4, 5, 8, 9), 163.x (x=0, 1, 8, 9), 164.x (x=0, 1, 2, 3, 
8, 9), 165.x (x=0, 8, 9), 170.x (x=0 to 9), 171.x (x=0, 2, 3, 4, 5, 
6, 7, 8, 9), 172.x (x=0 to 9), 174.x (x=0 to 6, 8, 9), 175.0, 
175.9, 176.x (x=0 to 5, 8, 9), 179, 180.x (x=0, 1, 8, 9), 181, 
182.x (x=0, 1, 8), 183.x (x=0, 2, 3, 4, 5, 8, 9), 184.x (x=0, 1, 2, 
3, 4, 8, 9), 185, 186.0, 186.9, 187.x (x=1 to 9), 188.x (x=0 to 
9), 189.x (x=0, 1, 2, 3, 4, 8, 9), 190.x (x=0 to 9), 191.x (x=0 to 
9), 192.x (x=0, 1, 2, 3, 8, 9), 193, 194.x (x=0, 1, 3, 4, 5, 6. 8, 
9), 195.x (x=0 to 5, 8), 196.x (x=0 to 3, 5, 6, 8, 9), 197.x (x=0 
to 8), 198.x (x=0 to 7), 198.81, 198.82, 198.89, 199.x (x=0, 1, 
2), 200.0x (x=0 to 8), 200.1x (x=0 to 8), 200.2x (x=0 to 8), 
200.3x (x=0 to 8), 200.4x (x=0 to 8), 200.5x (x=0 to 8), 200.6x 
(x=0 to 8), 200.7x (x=0 to 8), 200.8x (x=0 to 8), 201.0x (x=0 to 
8), 201.1x (x=0 to 8), 201.2x (x=0 to 8), 201.4x (x=0 to 8), 
201.5x (x=0 to 8), 201.6x (x=0 to 8), 201.7x (x=0 to 8), 201.9x 
(x=0 to 8), 202.0x (x=0 to 8), 202.1x (x=0 to 8), 202.2x (x=0 to 
8), 202.3x (x=0 to 8), 202.4x (x=0 to 8), 202.5x (x=0 to 8), 
202.6x (x=0 to 8), 202.7x (x=0 to 8), 202.8x (x=0 to 8), 202.9x 
(x=0 to 8), 203.0x (x=0 to 2), 203.1x (x=0 to 2), 203.8x (x=0 to 
2), 204.0x (x=0 to 2), 204.1x (x=0 to 2), 204.2x (x=0 to 2), 
204.8x (x=0 to 2), 204.9x (x=0 to 2), 205.0x (x=0 to 2), 205.1x 
(x=0 to 2), 205.2x (x=0 to 2), 205.3x (x=0 to 2), 205.8x (x=0 to 
2), 205.9x (x=0 to 2), 206.0x (x=0 to 2), 206.1x (x=0 to 2), 
206.2x (x=0 to 2), 206.8x (x=0 to 2), 206.9x (x=0 to 2), 207.0x 
(x=0 to 2), 207.1x (x=0 to 2), 207.2x (x=0 to 2), 207.8x (x=0 to 
2), 208.0x (x=0 to 2), 208.1x (x=0 to 2), 208.2x (x=0 to 2), 
208.8x (x=0 to 2), 208.9x (x=0 to 2), 209.0x (x=0 to 3), 209.1x 
(x=0 to 7), 209.2x (x=0 to 7, 9), 209.3x (x=0 to 6), 209.7x (x=0 
to 5, 9). 

C00.x, C01, C02.x (x=0, 1, 2, 3, 4, 8, 9), C03.x (x=0, 1, 9), C04.0, 
C04.1, C04.8, C04.9, C05.0, C05.1, C05.2, C05.8, C05.9, C06.0, C06.1, 
C06.2, C06.80, C06.89, C06.9, C07, C08.0, C08.1, C08.9, C09.0, C09.1, 
C09.8, C09.9, C10.x (x=0, 1, 2, 3, 4, 8, 9), C11.x (x=0, 1, 2, 3, 8, 9), C12, 
C13.x (x=0, 1, 2, 3, 8, 9), C14.0, C14.2, C14.8, C15.3, C15.4, C15.5, 
C15.8, C15.9, C16.x (x=0, 1, 2, 3, 4, 5, 6, 8, 9), C17.x (x=0, 1, 2, 3, 8, 9),  
C18.x, C19, C20, C21.x (x=0, 1, 2, 8), C22.x (x=0, 1, 2, 3, 4, 7, 8, 9), C23, 
C24.x (x=0, 1, 8, 9), C24.1, C24.8, C24.9, C25.x (x=0, 1, 2, 3, 4, 7, 8, 9), 
C26.0, C26.1, C26.9, C30.0, C30.1, C31.x (x=0, 1, 2, 3, 8, 9), C32.x (x=0, 
1, 2, 3, 8, 9), C33, C34.00, C34.01, C34.02, C34.10, C34.11, C34.12, 
C34.2, C34.30, C34.31, C34.32, C34.80, C34.81, C34.82, C34.90, 
C34.91, C34.92, C37, C38.x (x=0, 1, 2, 3, 4, 8), C39.0, C39.9, C40.x0 
(x=0, 1, 2, 3, 8, 9), C40.x1 (x=0, 1, 2, 3, 8, 9), C40.02 (x=0, 1, 2, 3, 8, 9), 
C41.x (x=0, 1, 2, 3, 4, 9), C43.0, C43.10, C43.11, C43.12, C43.20, 
C43.21, C43.22, C43.30, C43.31, C43.39, C43.4, C43.51, C43.52, 
C43.59, C43.60, C43.61, C43.62, C43.70, C43.71, C43.72, C43.8, C43.9, 
C45.0, C45.1, C45.2, C45.7, C45.9, C46.0, C46.1, C46.2, C46.3, C46.4, 
C46.50, C46.51, C46.52, C46.7, C46.9, C47.0, C47.10, C47.11, C47.12, 
C47.20, C47.21, C47.22, C47.3, C47.4, C47.5, C47.6, C47.8, C47.9, 
C48.0, C48.1, C48.2, C48.8, C49.0, C49.10, C49.11, C49.12, C49.20, 
C49.21, C49.22, C49.x (x=3, 4, 5, 6, 8, 9), C49.Ax (x=0, 1, 2,3 ,4, 5, 9), 
C4A.0, C4A.1x (x=0, 1, 2), C4A.2x (x=0, 1, 2),  
C4A.3x (x=0, 1, 9), C4A.4, C4A.5x (x=1, 2, 9), C4A.6x (x=0, 1, 2), C4A.7x 
(x=0, 1, 2), C4A.8, C4A.9, C50.x11 (x=0, 1, 2, 3, 4, 5, 6, 8, 9), C50.x12 
(x=0, 1, 2, 3, 4, 5, 6, 8, 9), C50.x19 (x=0, 1, 2, 3, 4, 5, 6, 8, 9),  C50.x21 
(x=0, 1, 2, 3, 4, 5, 6, 8, 9), C50.x22 (x=0, 1, 2, 3, 4, 5, 6, 8, 9), C50.x29 
(x=0, 1, 2, 3, 4, 5, 6, 8, 9), C51.x (x=0, 1, 2, 8, 9), C52, C53.x (x=0, 1, 3, 
8, 9), C54.x (x=2, 3, 8, 9), C55, C56.1, C56.2, C56.9,  C57.x0 (x=0, 1, 2), 
C57.x1 (x=0, 1, 2), C57.02 (x=0, 1, 2), C57.3, C57.4, C57.7, C57.8, 
C57.9, C58, C60.x (x=0, 1, 2, 8, 9), C61, C62.0x (x=0, 1, 2), C62.1x (x=0, 
1, 2), C62.9x (x=0, 1, 2), C63.0x (x=0, 1, 2), C63.1x (x=0, 1, 2), C63.2, 
C63.7, C63.8, C63.9, C64.1, C64.2, C64.9, C65.1, C65.2, C65.9, C66.1, 
C66.2, C66.9, C67.x (x=0 to 9), C68.x (x=0, 1, 8, 9), C69.x0 (x=0, 1, 2, 3, 
4, 5, 6, 8, 9), C69.x1 (x=0, 1, 2, 3, 4, 5, 6, 8, 9), C69.x2 (x=0, 1, 2, 3, 4, 5, 
6, 8, 9), C70.0, C70.1, C70.9, C71.x, C72.0, C72.1, C72.x0 (x=2 to 5), 
C72.x1 (x=2 to 4), C72.x2 (x=2 to 4), C72.59, C72.9, C73, C74.0x (x=0, 1, 
2), C74.1x (x=0, 1, 2), C74.9x (x=0, 1, 2), C75.x (x=0, 1, 2, 3, 4, 5, 8, 9). 
C76.x (x=0 to 3), C76.4x (x=0, 1, 2), C76.5x (x=0, 1, 2, 8), C77.x (x=0, 1, 
2, 3, 4, 5, 8, 9), C78.0x (x=0, 1, 2), C78.1, C78.2, C78.30, C78.39, C78.4, 
C78.5, C78.6, C78.7, C78.80, C78.89, C79.0x (x=0, 1, 2), C79.10, 
C79.11, C79.19, C79.2, C79.31, C79.32, C79.40, C79.49, C79.51, 
C79.52, C79.6x (x=0, 1, 2), C79.7x (0, 1, 2), C79.8x (x=1, 2, 9), C79.9, 
C7A.00, C7A.010, C7A.011, C7A.012, C7A.019, C7A.02x (x=0 to 6, and 
9), C7A.09x (x=0 to 6 and 8), C7A.1, C7A.8, C7B.0x (x=0, 1, 2, 3, 4, 9), 
C7B.1, C7B.8, C81.0x, C81.1x, C81.2x, C81.3x, C81.4x, C81.7x, C81.9x, 
C82.0x, C82.1x, C82.2x, C82.3x, C82.4x, C82.5x, C82.6x, C82.8x, 
C82.9x, C83.0x, C83.1x, C83.3x, C83.5x, C83.7x, C83.8x, C83.9x, 
C84.0x, C84.1x, C84.4x, C84.6x, C84.7x, C84.9x, C84.Ax, C84.Zx, 
C85.1x, C85.2x, C85.8x, C85.9x, C86.x (x=0 to 6), C88.x (x=0, 2, 3, 4, 8, 
9), C90.x0 (x=0 to 3), C90.x1 (x=0 to 3), C90.x2 (x=0 to 3), C91.x0 (x=A, 
Z, 0, 1, 3, 4, 5, 6, 9), C91.x1 (x=A, Z, 0, 1, 3, 4, 5, 6, 9),  C92.x2 (x=A, Z, 
0, 1, 3, 4, 5, 6, 9), C92.9x (x=0, 1, 2), C92.Ax (x=0, 1, 2), C92.Zx (x=0, 1, 
2), C93.0x (x=0, 1, 2), C93.1x (x=0, 1, 2), C93.3x (x=0, 1, 2), C93.9x (x=0, 
1, 2), C93.Zx (x=0, 1, 2), C94.0x (x=0, 1, 2), C94.2x (x=0, 1, 2), C94.3x 
(x=0, 1, 2), C94.4x (x=0, 1, 2), C94.6, C94.8x (x=0, 1, 2), C95.0x (x=0, 1, 
2), C95.1x (x=0, 1, 2), C95.9x (x=0, 1, 2), C96.x (x=0, 2, 4, 5, 6, 9, A, Z) 
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eTable 2. Diagnosis codes for identifying opioid overdose 

N/A: not available (i.e., no corresponding ICD-10 codes identified) 

  

ICD-9 Description ICD-10 Description 
965.00 Poisoning by opium 

(alkaloids) unspecified 
T40.0X1A Poisoning by opium, accidental (unintentional), initial encounter 
T40.0X2A Poisoning by opium, intentional self-harm, initial encounter 
T40.0X3A Poisoning by opium, assault, initial encounter 
T40.0X4A Poisoning by opium, undetermined, initial encounter 

965.01 Poisoning by heroin T40.1X1A Poisoning by heroin, accidental (unintentional), initial encounter 
T40.1X2A Poisoning by heroin, intentional self-harm, initial encounter 
T40.1X3A Poisoning by heroin, assault, initial encounter 
T40.1X4A Poisoning by heroin, undetermined, initial encounter 

965.02 Poisoning by 
methadone 

T40.3X1A Poisoning by methadone, accidental (unintentional), initial encounter 
T40.3X2A Poisoning by methadone, intentional self-harm, initial encounter 
T40.3X3A Poisoning by methadone, assault, initial encounter 
T40.3X4A Poisoning by methadone, undetermined, initial encounter 

965.09 Poisoning by other 
opiates and related 
narcotics 

T40.2X1A Poisoning by other opioids, accidental (unintentional), initial encounter 
T40.2X2A Poisoning by other opioids, intentional self-harm, initial encounter 
T40.2X3A Poisoning by other opioids, assault, initial encounter 
T40.2X4A Poisoning by other opioids, undetermined, initial encounter 
T40.4X1A Poisoning by other synthetic narcotics, accidental (unintentional), initial 

encounter 
T40.4X2A Poisoning by other synthetic narcotics, intentional self-harm, initial 

encounter 
T40.4X3A Poisoning by other synthetic narcotics, assault, initial encounter 
T40.4X4A Poisoning by other synthetic narcotics, undetermined, initial encounter 
T40.601A Poisoning by unspecified narcotics, accidental (unintentional), initial 

encounter 
T40.602A Poisoning by unspecified narcotics, intentional self-harm, initial 

encounter 
T40.603A Poisoning by unspecified narcotics, assault, initial encounter 
T40.604A Poisoning by unspecified narcotics, undetermined, initial encounter 
T40.691A Poisoning by other narcotics, accidental (unintentional), initial encounter 
T40.692A Poisoning by other narcotics, intentional self-harm, initial encounter 
T40.693A Poisoning by other narcotics, assault, initial encounter 
T40.694A Poisoning by other narcotics, undetermined, initial encounter 

E.850.0 Accidental poisoning 
by heroin 

N/A N/A 

E.850.1 Accidental methadone 
poisoning  

N/A N/A 

E.850.2 Accidental opioid 
poisoning- not 
elsewhere classified. 

N/A N/A 

E935.0 Heroin causing 
adverse effects in 
therapeutic use 

N/A N/A 

E935.1 Methadone causing 
adverse effects in 
therapeutic use 

N/A N/A 

E935.2 Other opiates and 
related narcotics 
causing adverse 
effects in therapeutic 
use 

N/A N/A 
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eTable 3. Other diagnosis codes used to identify the likelihood of opioid overdosea 
ICD 
type 

ICD code ICD codes description 

Other drug/substance-related overdose or substance use disorders 

ICD-9 965* Poisoning by analgesics antipyretics and anti-rheumatics 

ICD-9 966 Poisoning by anticonvulsants and anti-parkinsonism drugs 

ICD-9 967 Poisoning by sedatives and hypnotics 

ICD-9 968 Poisoning by other central nervous system depressants and anesthetics 

ICD-9 969 Poisoning by psychotropic agents 

ICD-9 970 Poisoning by central nervous system stimulants 

ICD-9 971 Poisoning by drugs primarily affecting the autonomic nervous system 

ICD-9 972 Poisoning by agents primarily affecting the cardiovascular system 

ICD-9 973 Poisoning by agents primarily affecting the gastrointestinal system 

ICD-9 975 Poisoning by agents primarily acting on the smooth and skeletal muscles and respiratory system 

ICD-9 977 Poisoning by other and unspecified drugs and medicinal substances 

ICD-9 980 Toxic effect of alcohol 

ICD-9 989 Toxic effect of other substances chiefly nonmedicinal as to source 

ICD-9 303 Alcohol dependence syndrome 

ICD-9 304 Drug dependence 

ICD-9 305 Nondependent abuse of drugs 

ICD-10 F10 Alcohol related disorders 

ICD-10 F11 Opioid related disorders 

ICD-10 F12 Cannabis related disorders 

ICD-10 F13 Sedative, hypnotic, or anxiolytic related disorders 

ICD-10 F14 Cocaine related disorders 

ICD-10 F15 Other stimulant related disorders 

ICD-10 F16 Hallucinogen related disorders 

ICD-10 F17 Nicotine dependence 

ICD-10 F18 Inhalant related disorders 

ICD-10 F19 Other psychoactive substance related disorders 

ICD-10 T39 Poisoning by, adverse effect of and underdosing of nonopioid analgesics, antipyretics and antirheumatics 

ICD-10 T40 Poisoning by, adverse effect of and underdosing of narcotics and psychodysleptics [hallucinogens] 

ICD-10 T41 Poisoning by, adverse effect of and underdosing of anesthetics and therapeutic gases 

ICD-10 T42 Poisoning by, adverse effect of and underdosing of antiepileptic, sedative- hypnotic and antiparkinsonism drugs 

ICD-10 T43 Poisoning by, adverse effect of and underdosing of psychotropic drugs, not elsewhere classified 

ICD-10 T48 Poisoning by, adverse effect of and underdosing of agents primarily acting on smooth and skeletal muscles and 
the respiratory system 

ICD-10 T51 Toxic effect of alcohol 

ICD-10 T65 Toxic effect of other and unspecified substances 

 
*: excluding codes for opioid and heroin overdose. 

a: Based on Dunn KM, Saunders KW, Rutter CM, et al. Opioid prescriptions for chronic pain and overdose: a cohort study. Ann Intern Med. 
2010; 152 (2):85-92 but excluding E950-959 (suicide and self-inflicted injury codes).  
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eTable 4. Summary of predictor candidates (n=268) measured in 3-month windows for predicting subsequent opioid overdose a 
Patterns of prescription 

opioid useb 
Patterns of non-opioid 

prescription use 
Beneficiaries 

sociodemographics 
Health status factors Opioid prescriber-

level variablesd 
Regional-level factorse 

 Average opioid daily 
dose in MMEc 

 Cumulative MME 
 Cumulative duration 

for any opioids, 
SAO, and LAO 

 Duration of longest 
continuous use for 
any opioids, SAO, 
and LAO 

 No. fills of any 
opioids, SAO, and 
LAO  

 No. standardized 30-
day prescriptions for 
any opioids, SAO, 
and LAO 

 Cumulative duration 
of 30-day use of any 
opioids, SAO, and 
LAO 

 No. fills by opioid 
ingredient and type 
(e.g., any fentanyl, 
SAO-type fentanyl, 
LAO-type fentanyl) 

 Type of opioids by 
Schedule and 
SAO/LAO (e.g., 
SAO, Schedule I 
only) 

 No. unique opioid 
prescribers 

 No. unique 
pharmacies 

 No. early refills for 
opioids 

 Cumulative 
overlapping days of 
early refills 

 No. BZD fills 
 No. muscle relaxants 

fills 
 Cumulative 

overlapping days of 
concurrent opioid and 
BZD use 

 Cumulative 
overlapping days of 
concurrent opioid and 
muscle relaxants use 

 Cumulative 
overlapping days of 
concurrent opioid, 
BZD and muscle 
relaxants use 

 Cumulative duration 
of buprenorphine for 
opioid use disorder 

 Cumulative duration 
of naltrexone 

 No. gabapentinoid fills 
 Cumulative duration 

of gabapentinoid use 
 No. antidepressants 

fills 
 Cumulative duration 

of antidepressant use 
 No. average monthly 

non-opioid 
prescriptions 

 No. naltrexone fills 
 Received methadone 

opioid agonist 
therapyf 

 Received 
buprenorphine for 
OUDf 

 Cumulative duration 
of buprenorphine 
therapy for OUDf 

 Age 
 Sex 
 Race 
 State of residence 
 County of residence 
 Zip code of 

residence 
 Type of resided 

county (metro vs. 
non-metro) 

 Disability status,  
 Receipt of low-

income subsidy 

 No. outpatients visits 
 No. ED visits 
 No. inpatient visits 
 History of prescription opioid overdose 
 History of heroin overdose 
 Days from the last opioid overdose episode 
 History of naloxone administration 
 Non-opioid drug use disorders 
 Any SUD or alcohol use disorders 
 Alcohol use disorders 
 History of urine drug tests 
 History of SUD counseling 
 OUD 
 Adjustment disorders 
 Personality disorders 
 Psychoses  
 Delusional disorders 
 Schizophrenia 
 Mood disorders 
 Anxiety disorders 
 Alcohol-induced mental disorders 
 Drug-induced mental or sleep disorders 
 Other mental health disorders 
 Osteoarthritis 
 Rheumatoid arthritis 
 Back pain 
 Neck pain 
 Headache or migraine 
 Temporomandibular disorder pain 
 Abdominal pain or hernia 
 Chest pain 
 Kidney or gall bladder stones 
 Menstrual or genital reproductive pain 
 Fractures, concussion, injuries 
 Fibromyalgia 
 Internal orthopedic device implant/graft 
 Other pain conditions 
 Surgical procedures (e.g., ischemic heart 

diseases) 
 Diseases of musculoskeletal system and 

connective tissues 
 Neuropathies (excluding alcoholic, drug, 

and optic-related) 
 Ischemic heart disease 
 HIV/AIDS 
 Elixhauser index and individual categories 

 Prescriber’s sex 
 Prescriber’s 

specialties 
 Average monthly 

opioid prescribing 
volume 

 Average monthly 
opioid prescribing 
dose in MME 

 Average monthly 
patients receiving 
opioids 

 AHRF total health 
facilities variables 

 AHRF health professions 
variables 

 AHRF resource scarcity 
variables 

 AHRF health training 
programs variables  

 AHRF hospital 
expenditure, Medicare 
costs, VA expenditure 

 AHRF inpatient 
days/discharges variables 

 AHRF other health 
services utilization 
variables 

 AHRF census-based 
variables (e.g., medium 
household income, 
employment) 

 AHRF health insurance 
status variables 

 AHRF housing statistics 
 Area deprivation index  

County-health ranking 
variables 

Abbreviations: AHRF: Area Health Resources Files; BZD: benzodiazepines; LAO: long-acting opioids; MME: morphine milligram equivalent; No: Number of; OUD: opioid use disorder; SAO: short-
acting opioids; SUD: substance use disorders; 
a: Details for the operational definitions for each variable and corresponding diagnosis and procedure codes and National Drug Codes can be provided per request to the corresponding author. 
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b: We used an “as-prescribed” approach that assumes patients taking all prescribed opioids on the schedule recommended by their clinicians.21 Patients who received refills for the same drug at the same  
dose and schedule while still having opioid prescriptions within 3 days from a prior fill were assumed to have taken the medication from the prior fill before taking medication from the second fill. (Gellad 
WF et al. Am J Public Health. 2018;108(2):248-255. doi: 10.2105/AJPH.2017.304174.) 
c: We calculated morphine milligram equivalent (MME) for each opioid prescription, defined by the quantity dispensed multiplied by the strength in milligrams, multiplied by a conversion factor.22 For each 
person, the average daily MME during the 3-month window was calculated by summing MMEs across all opioids and dividing by the number of days supplied. 
d: Prescribers were identified by their National Provider Identifiers. Primary opioid prescribers were defined as the prescribers who dominantly prescribed the most opioid prescriptions. If patients only had 
2 opioid prescriptions, then the first prescriber was considered as the primary prescriber. 
e: AHRF variables (https://data.hrsa.gov/topics/health-workforce/ahrf),  area deprivation index (https://www.hipxchange.org/ADI), and county-health ranking variables 
(http://www.countyhealthrankings.org/explore-health-rankings/use-data) are publicly available and downloadable. 
f: Methadone for opioid use disorder was identified using the procedure codes (H0020, J1230) and buprenorphine for opioid use disorder was identified from prescription sublingual buprenorphine or 
buprenorphine/naloxone using NDC codes
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eTable 5. Opioid overdose and sociodemographic characteristics among Medicare beneficiaries 
(n=560,057), divided into training, testing, and validation samples. 

Characteristic Training 
(n=186,686) 

Testing 
(n=186,685) 

Validation 
(n=186,686) 

Any opioid overdose  1,103 (0.59) 1,054 (0.56) 1,031 (0.55) 
Age ≥ 65 years 119,769 (64.2) 119,675 (64.1) 119,606 (64.1) 
Female 117,750 (63.1) 118,159 (63.3) 117,985 (63.2) 
Race    
    White 153,477 (82.2) 153, 613 (82.3) 154,083 (82.5) 
    Black 20,325 (10.9) 20,280 (10.9) 19,909 (10.7) 
    Hispanic 4,377 (2.3) 4,496 (2.4) 4,437 (2.4) 
    Others 8,506 (4.5) 8,297 (4.4) 8,257 (4.4) 
With disability status 64,538 (34.6) 64,675 (34.6) 64,800 (34.7) 
Medicaid dual eligible 75,478 (40.4) 75,949 (40.7) 76,002 (40.7) 
Low income subsidy 82,296 (44.1) 82,779 (44.3) 82,760 (44.3) 
End stage renal disease 58,015 (31.1) 58,061 (31.1) 57,924 (31.0) 
County of residence    
    Metropolitan 138,445 (74.2) 138,466 (74.2) 138,288 (74.1) 
    Non-metropolitan 47,971 (25.7) 47,944 (25.7) 48,159 (25.8) 
    Unknown 269 (0.1) 276 (0.1) 239 (0.1) 
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eTable 6. Prediction performance measures for predicting opioid overdose, across different machine learning 
methods with varying sensitivity and specificity. 

Methods Score 
threshold 

(range 0-100)a 

Predicted 
overdose (%) 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

F1 score 
(%) 

PLR NNE 

MLR                  
Sensitivity                  
    100% 0 99.48 100 0.52 0.05 100 0.001 1.01 2,041 
    99% 0 85.39 98.9 14.62 0.06 100 0.0011 1.16 1,771 
    98% 0 81.27 97.8 18.74 0.06 99.99 0.0012 1.20 1,705 
    97% 0 81.18 96.7 18.83 0.06 99.99 0.0012 1.19 1,722 
    96% 0 79.84 95.6 20.17 0.06 99.99 0.0012 1.20 1,713 
    95% 0 79.27 94.51 20.74 0.06 99.99 0.0012 1.19 1,721 
    94% 0 79.27 94.51 20.74 0.06 99.99 0.0012 1.19 1,721 
    93% 0 78.19 93.41 21.81 0.06 99.99 0.0012 1.19 1,717 
    92% 0 78.16 92.31 21.85 0.06 99.98 0.0012 1.18 1,737 
    91% 0 76.57 91.21 23.44 0.06 99.98 0.0012 1.19 1,722 
    90% 0 76.15 90.11 23.85 0.06 99.98 0.0012 1.18 1,734 
Optimized 
thresholdb 

0.22 11.8 58.24 88.22 0.24 99.98 0.0048 4.94 416 

Specificity                  
    90% 0.24 10.98 54.95 89.04 0.24 99.98 0.0049 5.01 410 
    91% 0.3 9 53.85 91.02 0.29 99.98 0.0058 6.00 343 
    92% 0.3 8.93 52.75 91.09 0.29 99.97 0.0057 5.92 347 
    93% 0.38 7.04 51.65 92.98 0.36 99.97 0.0071 7.36 280 
    94% 0.5 5.43 50.55 94.6 0.45 99.97 0.009 9.36 220 
    95% 0.54 4.98 48.35 95.04 0.47 99.97 0.0094 9.75 211 
    96% 0.65 4.13 42.86 95.89 0.51 99.97 0.01 10.43 198 
    97% 0.88 2.88 38.46 97.14 0.65 99.97 0.0128 13.45 154 
    98% 1.21 1.97 34.07 98.05 0.84 99.97 0.0165 17.47 119 
    99% 2.1 1 25.27 99.01 1.23 99.96 0.0235 25.53 81 
    100% 93.25 0 0 100 0 99.95 N/A N/A inf 
Maximized PPV 56.6 0 1.1 100 33.33 99.95 0.0213 N/A 3 
LASSO                  
Sensitivity                  
    100% 0.05 99.21 100.00 0.79 0.05 100.00 0.0010 1.01 2,035 
    99% 0.05 90.09 98.90 9.91 0.05 99.99 0.0011 1.10 1,869 
    98% 0.05 90.09 98.90 9.91 0.05 99.99 0.0011 1.10 1,869 
    97% 0.05 79.33 96.70 20.67 0.06 99.99 0.0012 1.22 1,683 
    96% 0.05 79.33 96.70 20.67 0.06 99.99 0.0012 1.22 1,683 
    95% 0.05 79.33 96.70 20.67 0.06 99.99 0.0012 1.22 1,683 
    94% 0.05 56.34 92.31 43.68 0.08 99.99 0.0016 1.64 1,252 
    93% 0.05 56.34 92.31 43.68 0.08 99.99 0.0016 1.64 1,252 
    92% 0.05 56.34 92.31 43.68 0.08 99.99 0.0016 1.64 1,252 
    91% 0.05 48.93 91.21 51.09 0.09 99.99 0.0018 1.86 1,100 
    90% 0.05 40.04 90.11 59.99 0.11 99.99 0.0022 2.25 912 
Optimized 
thresholda 

0.05 10.98 74.73 89.05 0.33 99.99 0.0066 6.82 301 

Specificity                  
    90% 0.05 10.07 72.53 89.96 0.35 99.99 0.0070 7.22 285 
    91% 0.05 9.01 68.13 91.02 0.37 99.98 0.0073 7.59 271 
    92% 0.05 8.03 64.84 91.99 0.39 99.98 0.0078 8.09 254 
    93% 0.05 7.05 61.54 92.97 0.43 99.98 0.0084 8.75 235 
    94% 0.05 6.02 57.14 94.00 0.46 99.98 0.0092 9.52 216 
    95% 0.05 5.04 53.85 94.98 0.52 99.98 0.0103 10.73 192 
    96% 0.05 4.01 49.45 96.01 0.60 99.97 0.0119 12.39 166 
    97% 0.05 3.02 43.96 97.00 0.71 99.97 0.0139 14.65 141 
    98% 0.05 2.01 34.07 98.00 0.82 99.97 0.0161 17.04 121 
    99% 0.05 1.01 23.08 99.00 1.11 99.96 0.0213 23.08 90 
    100% 36.50 0.00 2.20 100.00 100.00 99.95 0.0430 N/A 1 

Maximized PPV 36.52 0.00 1.10 100.00 100.00 99.95 0.0217 N/A 1 
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eTable 6 (continued). 
Methods Score 

threshold 
(range 0-100)a 

Predicted 
overdose 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

F1 score 
(%) 

PLR NNE 

RF                  
Sensitivity                  
    100% 26.26 94.95 100 5.05 0.05 100 0.001 1.05 1,948 
    99% 60.43 86.6 98.9 13.41 0.06 100 0.0011 1.14 1,796 
    98% 70.76 79.7 97.8 20.31 0.06 99.99 0.0012 1.23 1,672 
    97% 75.03 74.96 96.7 25.05 0.06 99.99 0.0013 1.29 1,590 
    96% 76.83 72.63 95.6 27.39 0.06 99.99 0.0013 1.32 1,558 
    95% 82.63 62.45 94.51 37.57 0.07 99.99 0.0015 1.51 1,356 
    94% 82.63 62.45 94.51 37.57 0.07 99.99 0.0015 1.51 1,356 
    93% 83.39 60.76 93.41 39.25 0.07 99.99 0.0015 1.54 1,335 
    92% 85.24 56.24 92.31 43.78 0.08 99.99 0.0016 1.64 1,250 
    91% 85.24 56.22 91.21 43.8 0.08 99.99 0.0016 1.62 1,264 
    90% 86.41 53.05 90.11 46.97 0.08 99.99 0.0017 1.70 1,208 
Optimized 
thresholda 

92.59 31.86 79.12 68.16 0.12 99.99 0.0024 2.48 826 

Specificity                  
    90% 97.26 10.04 42.86 89.97 0.21 99.97 0.0041 4.27 481 
    91% 97.39 9.42 39.56 90.59 0.2 99.97 0.0041 4.20 489 
    92% 97.69 7.88 38.46 92.14 0.24 99.97 0.0047 4.89 420 
    93% 97.78 7.4 36.26 92.61 0.24 99.97 0.0047 4.91 419 
    94% 98.03 6.15 32.97 93.86 0.26 99.97 0.0052 5.37 383 
    95% 98.25 5.08 27.47 94.94 0.26 99.96 0.0052 5.43 379 
    96% 98.45 4.11 25.27 95.9 0.3 99.96 0.0059 6.16 334 
    97% 98.7 2.99 20.88 97.02 0.34 99.96 0.0067 7.01 294 
    98% 98.96 1.94 16.48 98.06 0.41 99.96 0.0081 8.49 242 
    99% 99.22 1 8.79 99 0.43 99.96 0.0082 8.79 234 
    100% 99.86 0 0 100 0 99.95 N/A N/A INF 
Maximized PPV 99.76 0.02 1.1 99.98 3.23 99.95 0.0164 55.0 31 
GBM                  
Sensitivity                  
    100% 8.01 91.98 100 8.02 0.05 100 0.0011 1.09 1,887 
    99% 9.77 83.75 98.9 16.26 0.06 100 0.0012 1.18 1,737 
    98% 15.59 57.43 97.8 42.59 0.08 100 0.0017 1.70 1,205 
    97% 15.75 56.92 96.7 43.1 0.08 100 0.0017 1.70 1,208 
    96% 17.89 50.32 95.6 49.7 0.09 100 0.0019 1.90 1,080 
    95% 18.8 47.92 94.51 52.1 0.1 99.99 0.0019 1.97 1,040 
    94% 18.8 47.92 94.51 52.1 0.1 99.99 0.0019 1.97 1,040 
    93% 21.51 42.05 93.41 57.98 0.11 99.99 0.0022 2.22 924 
    92% 21.54 41.98 92.31 58.05 0.11 99.99 0.0021 2.20 933 
    91% 27.75 32.62 91.21 67.41 0.14 99.99 0.0027 2.80 734 
    90% 32.42 27.72 90.11 72.31 0.16 99.99 0.0032 3.25 631 
Optimized 
thresholda 

44.54 18.93 86.81 81.11 0.22 99.99 0.0045 4.60 447 

Specificity                  
    90% 67.66 8.94 74.73 91.09 0.41 99.99 0.0081 8.39 245 
    91% 67.66 8.94 74.73 91.09 0.41 99.99 0.0081 8.39 245 
    92% 70.09 8.03 70.33 92 0.43 99.98 0.0085 8.79 234 
    93% 73.85 6.61 68.13 93.42 0.5 99.98 0.01 10.35 199 
    94% 75.55 5.9 63.74 94.13 0.53 99.98 0.0104 10.86 190 
    95% 76.83 5.38 59.34 94.65 0.54 99.98 0.0107 11.09 186 
    96% 80.17 4.04 57.14 95.99 0.69 99.98 0.0136 14.25 145 
    97% 82.48 3.05 54.95 96.98 0.88 99.98 0.0173 18.20 114 
    98% 84.87 2.08 45.05 97.94 1.05 99.97 0.0206 21.87 95 
    99% 87.72 1.02 32.97 98.99 1.57 99.97 0.03 32.64 64 
    100% 93.83 0 0 100 0 99.95 N/A N/A INF 
Maximized PPV 92.25 0.05 9.89 99.95 9.37 99.96 0.0963 197.80 11 
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eTable 6 (continued). 
Methods Score 

threshold 
(range 0-100)a 

Predicted 
overdose 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

F1 score 
(%) 

PLR NNE 

DNN                  
Sensitivity                  
    100% 5.74 89.04 100 10.97 0.05 100 0.0011 1.12 1827 
    99% 9.32 75.38 98.9 24.63 0.06 100 0.0013 1.31 1564 
    98% 10.27 72.29 97.8 27.73 0.07 100 0.0013 1.35 1516 
    97% 22.65 47.23 96.7 52.79 0.1 100 0.002 2.05 1002 
    96% 34.52 33.77 95.6 66.26 0.14 100 0.0028 2.83 725 
    95% 35.98 32.42 94.51 67.61 0.14 100 0.0028 2.92 704 
    94% 35.98 32.42 94.51 67.61 0.14 100 0.0028 2.92 704 
    93% 40.16 28.74 93.41 71.29 0.16 100 0.0032 3.25 631 
    92% 45.73 24.39 92.31 75.65 0.18 100 0.0037 3.79 542 
    91% 46.06 24.13 91.21 75.9 0.18 99.99 0.0037 3.78 543 
    90% 47.62 23.05 90.11 76.98 0.19 99.99 0.0038 3.91 525 
Optimized 
thresholda 

45.73 24.39 92.31 75.65 0.18 100 0.0037 3.79 542 

Specificity                  
    90% 70.52 10.09 70.33 89.94 0.34 99.98 0.0068 6.99 294 
    91% 72.74 9.07 68.13 90.96 0.37 99.98 0.0073 7.54 273 
    92% 75.04 8.06 68.13 91.97 0.41 99.98 0.0082 8.48 243 
    93% 77.15 7.12 67.03 92.91 0.46 99.98 0.0091 9.45 218 
    94% 79.87 6.02 62.64 94.01 0.51 99.98 0.0101 10.46 197 
    95% 82.61 4.96 61.54 95.07 0.6 99.98 0.012 12.48 165 
    96% 84.95 4 59.34 96.03 0.72 99.98 0.0143 14.95 138 
    97% 87.44 3.06 54.95 96.97 0.88 99.98 0.0172 18.14 114 
    98% 90.58 1.93 50.55 98.1 1.28 99.98 0.0249 26.61 78 
    99% 93.48 0.99 34.07 99.02 1.67 99.97 0.0319 34.77 60 
    100% 99.73 0 0 100 0 99.95 N/A N/A INF 
Maximized PPV 99.62 0 1.1 100 33.33 99.95 0.0213 N/A 3 

Abbreviations: DNN: deep neural network; GBM: gradient boosting machine; INF: infinity; LASSO: least absolute shrinkage and 
selection operator-type regularized regression; MLR: multivariate logistic regression; N/A: not able to calculated; NNE: number needed 
to evaluate; NPV: negative predictive values; PLR: positive likelihood ratio; PPV: positive predictive values; RF: random forest. 
a: Scores were calculated by predicted probability multiplied 100. Score threshold refers to the score used to classify or predict 
individuals with overdose (i.e., ≥ the threshold) vs. non-overdose (i.e., <threshold) 
b: Optimized threshold was calculated by the Youden Index to achieve balanced sensitivity and specificity. 
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eTable 7. Comparison of Prediction Performance Using Any of Centers for Medicaid & Medicaid Services (CMS) High-Risk Opioid Use Measures vs. 
Deep Neural Network (DNN) and Gradient Boosting Machine (GBM) in the Validation sample (n=166,580) over a 12 month period 

eTable 7A. Using the Top 5th Percentile of Predicted Score to Define the High-Risk Groups in DNN and GBM 

 

Abbreviations: N/A: not able to calculate; NNE: number needed to evaluate;  
a: Risk subgroups were classified into 3 subgroups: low-risk (below optimized score threshold), medium-risk (predicted score between the optimized score 
threshold and the top 5th percentile score), and high-risk (predicted score in the top 5th percentile). The optimized score thresholds are 39 (or probability of 0.39) 
for GBM and 46.5 (or probability of 0.465) for DNN; respectively. In contrast to Table 3, the measures are defined based on a 12 month period rather than 3 
months. The sample size was smaller than in the main analysis because it required people had at least 12 months period of follow up. 
b: If classifying medium and high-risk groups as overdose for DNN and GBM, and low-risk group as non-overdose.  If classifying those with any of CMS high-risk 
opioid use measures as overdose, and the remaining will consider as non-overdose. 

 GBM 

(using the top 5th percentile as high risk)a 

DNN 

(using the top 5th percentile as high risk)a 

CMS opioid safety measuresc 

Risk subgroups Low 

(n=116,939, 

70.1%) 

Medium 

(n=35,812, 

21.5%) 

High 

(n=13,829, 

8.3%) 

Low 

(n=112,548, 

67.6%) 

Medium 

(n=38,846, 

23.3%) 

High 

(n=15,186, 

9.1%) 

Low or no risk 

opioid use 

(n=157,299, 

94.4%) 

High-risk 

opioid use 

(n=9,281, 5.5%) 

Medium predicted score 

(min, max) 

15.1 
(1.4, 39.0) 

56.5  
(39.0, 77.7) 

84.8 
 (77.7, 93.8) 

14.0  
(2.1, 46.5) 

62.8  
(46.5, 81.9) 

88.1  
(81.9, 99.7) 

N/A N/A 

Number of actual 

overdose (% of each 

subgroup) 

8 
(0.006%) 

54  
(0.15%) 

235  
(1.70%) 

7 
(0.006%) 

21 
(0.05%) 

269 
(1.77%) 

210  

(0.13%) 

87  

(0.93%) 

No. actual non-overdose 

(% of each subgroup) 

116,931 
(99.99%) 

35,758 
(99.85%) 

13,594 
(98.3%) 

112,541 
(99.99%) 

38,825 
(99.94%) 

14,917 
(98.22%) 

157,089 

(99.86%) 

9,194 

(99.06%) 

NNE N/A 663 58 N/A 2,000 56 N/A 108 

Overall no. misclassified 

(% of overall cohort)b 

8 
(0.004%) 

37,758 
(21.47%) 

13,594 
(8.16%) 

7 
(0.004%) 

38,825 
(23.3%) 

14,917 
(8.95%) 

210  

(0.12%) 

9,194  

(5.51%) 

% of actual overdose 

captured among all 

overdose over 12 months 

(n=297) 

2.69% 18.18% 79.12% 2.35% 7.07% 90.57% 70.7% 29.29% 
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eTable 7B. Using the top 10th percentile of predicted score to define the high-risk groups in DNN and GBM 

 

Abbreviations: N/A: not able to calculate; NNE: number needed to evaluate;  
a: Risk subgroups were classified into 3 subgroups: low-risk (below optimized score threshold), medium-risk (predicted score between the optimized score 
threshold and the top 10th percentile score), and high-risk (predicted score in the top 10th percentile). The optimized score thresholds are 39 (or probability of 
0.39) for GBM and 46.5 (or probability of 0.465) for DNN; respectively. In contrast to Table 3, the measures are defined based on a 12 month period rather than 3 
months. The sample size was smaller than in the main analysis because it required people had at least 12 months period of follow up. 
b: If classifying medium and high-risk groups as overdose for DNN and GBM, and low-risk group as non-overdose.  If classifying those with any of CMS high-risk 
opioid use measures as overdose, and the remaining will consider as non-overdose. 

 

 

 

 GBM  

(using the top 10th percentile as high risk)a 

DNN  

(using the top 10th percentile as high risk)a 

CMS opioid safety measuresc 

Risk subgroups Low 

(n=116,939, 

70.1%) 

Medium 

(n=22,812, 

13.6%) 

High 

(n=26,829, 

16.1%) 

Low 

(n=112,548, 

67.6%) 

Medium 

(n=24,888,  

14.9%) 

High 

(n=29,144,  

17.5%) 

Low or no risk 

opioid use 

(n=157,299, 94.4%) 

High-risk 

opioid use 

(n=9,281, 5.5%) 

Medium predicted score 

(min, max) 

15.1 
(1.4, 39.0) 

51.4 
(39.0, 62.3) 

79.2 
(62.3, 93.8) 

14.0  
(2.1, 46.5) 

56.5 
(46.5-67.9) 

82.5  
(67.9-99.7) 

N/A N/A 

Number of actual 

overdose (% of each 

subgroup) 

8 
(0.006%) 

25 
(0.1%) 

264 
(0.98%) 

7 
(0.006%) 

7 
(0.03%) 

 

283 
(0.97%) 

 

210  

(0.13%) 

87  

(0.93%) 

No. actual non-overdose 

(% of each subgroup) 

116,931 
(99.99%) 

22,787 
(99.89%) 

26,565 
(99.01%) 

112,541 
(99.99%) 

24,881 
(99.97%) 

 

28,861 
(99.03%) 

157,089 

(99.86%) 

9,194 

(99.06%) 

NNE N/A 1000 102 N/A 3,555 102 N/A 108 

Overall no. misclassified 

(% of overall cohort)b 

8 
(0.004%) 

22,787 
(13.67%) 

26,565 
(15.94%) 

7 
(0.004%) 

24,881 
(14.94%) 

28,861 
(17.33%) 

210  

(0.12%) 

9,194  

(5.51%) 

% of actual overdose 

captured among all 

overdose over 12 months 

(n=297) 

2.69% 8.41% 88.88% 2.36% 2.36% 95.29% 70.7% 29.29% 
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eFigure 1. Sample Size Flow Chart 

 

Total beneficiaries in a 5% national Medicare sample 
during 2011-2015 (N=3,610,823) 

Beneficiaries who had at least one prescription fill for 
non-injectable, non-buprenophine (for opioid use 

disorder) opioids during 2011-2015 (N=1,536,855) 

Excluded those who (1) did not have any opioid 
prescription (N=2,069,998), (2) only had cough or 
cold opioid prescriptions (N=3,199), (3) only had 
injectable opioid prescriptions (N=769), (4) had both 
cough/cold and injectable opioid prescriptions (N=2)  

Final analytical cohort: Non-cancer, fee-for-service 
Medicare patients who had ≥1 eligible opioid 

prescription (N=560,057) 

Excluded those who (1) were non-US citizen 
(N=20,638), (2) had cancer diagnosis (N=264,161), 
(3) were in hospice (N=93,708), (3) enrolled in 
Medicare advantage plans during study period 
(N=579,620), and then (4) index date occurred after 
October 1, 2015 (N=18,671) 

Randomly and equally split the final analytical cohort 
into training, testing and validation samples 

Training sample 
(N=186,686; 

0.59% had ≥1 
opioid overdose) 
for developing 

algorithms 

Testing sample 
(N=186,685; 

0.56% had ≥1 
opioid overdose) 

for refining 
algorithms 

Validation sample 
(N=186,686; 

0.55% had ≥1 
opioid overdose) 
for evaluating 
algorithm’s 
prediction 

performance 
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eFigure 2. Illustrations two study designs: 3-month Windows for measuring predictor candidates and overdose events 

 

 

For each patient who filled at least 1 opioid prescription, we followed patients starting from 3 months before the first opioid prescriptions 
(i.e., the index date) and every 3 months after the index date until they were censored because of death or the end of observation. We 
measured predictor candidates and opioid overdose episodes for the 3-month windows. Beneficiaries might have multiple opioid 
overdose episodes. In eFigure 2A, we focused on 2 consecutive 3-months windows for prediction (e.g., using the factors measured in 
the first 3 months to predict overdose risk in the 2nd 3 months, using factors measured in the 2nd 3 months to predict overdose risk in the 
3rd 3 months, …etc). In eFigure2B, we included information collected in all the historical 3-month windows to predict opioid risk for each 
3-month period. 
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eFigure 3. Classification matrix and definition of prediction performance metrics 

 

 

 

 

 

 

 

 

 

 

 

Prediction metrics Definition 
Sensitivity (Se ) or recall (Rc) The proportion of correctly predicted positive observations (i.e., predicted overdose) divided by all 

observations with actual overdose.  
Specificity (Sp) The proportion of correctly predicted negative observations (i.e., predicted non-overdose) divided by 

all observations with actual non-overdose. 
Positive predictive value 
(PPV) or precision (Pr) 

The proportion of actual overdose cases divided by all observations predicted as overdose. PPV is 
influenced by the prevalence of the outcome of interest. 

Negative predictive value 
(NPV) 

The proportion of actual non-overdose cases divided by all observations predicted as non-overdose. 
When the outcome is rare, NPV is typically high.  

Positive likelihood ratio 
(PLR) 

The probability that a person who has an actual overdose is predicted as overdose, divided by the 
probability of a person who did not have an actual overdose is predicted as overdose. The larger the 
PLR (>1), the better prediction performance of an algorithm.  

Negative likelihood ratio 
(NLR) 

The probability that a person who has an actual overdose predicted is predicted as non-overdose, 
divided by the probability that a person who did not have an actual overdose is predicted as non-
overdose. The smaller the NLR (i.e., closer to 0), the better prediction performance.  

Overall misclassification rate The proportion of correctly predicted observation (i.e., actual overdose and actual non-overdose) 
divided by the total observations.  

F1 score The weighted average of precision (or PPV) and recall (or sensitivity). F1 takes both false positives 
and false negatives into account, and it usually more useful than overall misclassification rate under 
an uneven class distribution (e.g., non-overdose individuals comprised the majority of the cohort).23 
F1 closer to 1 is desirable.  

C-statistic  The area under the receiver operating characteristics curve (ROC) curve, which is a plot of 
sensitivity vs. false positive (or 1-specificity) for all potential cut-off probability thresholds for an 
algorithm. Comparisons of C-statistics based on imbalanced data or rare outcomes can be 
misleading because C-statistics do not incorporate information about prevalence or pre-test 
probability of the outcome.5  

Precision-recall curves A precision-recall curve of precision (or PPV; y-axis) vs. recall (sensitivity; x-axis). The curve closer 
to the upper right corner (corresponding to 100% precision and 100% recall), has better 
performance.  

Number needed to evaluate 
(NNE) 

The NNE is the number of patients necessary to evaluate or screen to detect one outcome (i.e., 
overdose), similar to number needed to treat in clinical trials. A PPV of 10% is equivalent to an NNE 
of 10. 

Estimated rate of alerts Provides estimated number of alerts per number of patients screened or evaluated over a period of 
time - for example, per 100 patient per day. Too many alerts may lead to alert fatigue; too few may 
lead to unfamiliarity with the clinical response. 
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eFigure 4. Prediction performance matrix across machine learning approaches in predicting opioid overdose risk in the subsequent 3 months: sensitivity analyses 
including the information measured in all the historical 3-months windows 

A.  B.  

C.  D.  
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Figure shows 4 prediction performance matrices in the validation sample. eFigure 4A shows the areas under ROC curves (or C-statistics); eFigure  
4B shows the precision-recall curves (precision=PPV and recall=sensitivity) - precision recall curves that are closer to the upper right corner or 
above the other method have improved performance; eFigure 4C shows the number needed to evaluate by different cutoffs of sensitivity; and 
eFigure 4D shows alerts per 100 patients by different cutoffs of sensitivity. 
Abbreviations: AUC: area under the curves; DNN: deep neural network; GBM: gradient boosting machine; LASSO: least absolute shrinkage and 
selection operator-type regularized regression; RF: random forest; ROC: Receiver Operating Characteristics. 
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eFigure 5. Scatter plot between Deep Neural Network (DNN) and Gradient Boosting Machine (GBM)’s prediction 
scores 

 

 

 

 

 

 

 

 

 

  

  Validation sample (n=186,686), 
n (% of validation sample) 

Concordant prediction 
between GBM and DNN 

DNN and GBM both predicted 
as non-overdose 

140,313 (75.2%) 

DNN and GBM both predicted 
as overdose 

15,973 (8.6%) 

Discordant prediction 
between GBM and DNN 

DNN predicted as non-overdose 
and GBM predicted as overdose 

1,867 (1.0%): 3 actual 
overdose can be further 

identified from GBM 
DNN predicted as overdose and 
GBM predicted as non-overdose 

28,533 (15.3%) 
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eFigure 6. Top 50 important predictors for opioid overdose selected by random forest (RF) 

 

Abbreviations: ED: emergency department; FFS: fee-for-service; MME: morphine milligram equivalent; No: number of 
a Rather than p values or coefficients, the RF reports the importance of predictor variables included in a model using both permutation-based and Gini 
split methods. Importance is a measure of each variable’s cumulative contribution toward reducing square error, or heterogeneity within the subset, after 
the data set is sequentially split based on that variable. Thus, it is a reflection of a variable’s impact on prediction. Absolute importance is then scaled to 
give relative importance, with a maximum importance of 100. For example, the top 10 important predictors identified from RF included cumulative days 
of early refills for opioids, cumulative 30-day duration of opioid use, No. opioid prescribing pharmacies, No. methadone fills, No. oxymorphone fills, 
prescriber-level average monthly opioid prescriptions, No. long-acting fentanyl fills, No. short-acting hydromorphone fills, No. gabapentinoid fills, and 
provider-level average monthly patients prescribed opioids.
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