
Supplementary Material: Appendix

The appendix is organized as follows. In section A we prove some properties of

Jλ norm, which are useful for the article. In section B we prove the convexity of

the objective of group SLOPE. Dual norm and the stopping criterion for the group

SLOPE algorithm are discussed in section C. Section D presents the formulation of

the group SLOPE in case when different groups are orthogonal to each other. Section

E is concerned with the properties of SLOPE when the design matrix is positive on

the diagonal and has zeros at off-diagonal entries. These properties are crucial for the

Theorem about gFDR control of gSLOPE (Theorem 2.5). The Theorem 2.6 on the

minimax properties of SLOPE is proven in Section F, while Section G describes in

detail the heuristic procedure for deriving the λ sequence when variables from different

groups are independent. Sections H focuses on the calculation of the expected maximal

group “effect” under the total null hypothesis, while the screening procedure used to

obtain SNPs for the simulation study is described in Appendix I.

A Jλ norm properties

For nonnegative, nonincreasing sequence λ1 ≥ . . . ≥ λp ≥ 0 consider function Rp 3

b 7−→ Jλ(b) ∈ R given by Jλ(b) =
∑p

i=1 λi · |b|(i), where |b|(1) ≥ . . . ≥ |b|(p) is the vector

of sorted absolute values.

Proposition A.1. If a, b ∈ Rp are such that |a| � |b|, then |a|(·) � |b|(·).

Proof. Without loss of generality we can assume that a and b are nonnegative and that

it occurs a1 ≥ . . . ≥ ap. We will show that ak ≤ b(k) for k ∈ {1, . . . , p}. Fix such k and

consider the set Sk := {bi : bi ≥ ak}. It is enough to show that |Sk| ≥ k. For each

j ∈ {1, . . . , k} we have
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bj ≥ aj ≥ ak =⇒ bj ∈ Sk,

what proves the last statement. �

Corollary A.2. Let a ∈ Rp, b ∈ Rp and |a| � |b| then Proposition (A.1) instantly

gives that Jλ(a) ≤ Jλ(b), since Jλ(a) = λT|a|(·) ≤ λT|b|(·) = Jλ(b).

Proposition A.3. For fixed sequence λ1 ≥ . . . ≥ λp ≥ 0, let b ∈ Rp be such that

b � 0 and bj > bl for some j, l ∈ {1, . . . , p}. For 0 < ε ≤ (bj − bl)/2, define bε ∈ Rp

by conditions (bε)l := bl + ε, (bε)j := bj − ε and (bε)i := bi for i /∈ {j, l}. Then

Jλ(bε) ≤ Jλ(b).

Proof. Let π : {1, . . . , p} −→ {1, . . . , p} be permutation such as
∑p

i=1 λi(bε)(i) =∑p
i=1 λπ(i)(bε)i for each i in {1, . . . , p} and λπ(j) ≥ λπ(l). From the rearrangement

inequality (Theorem 368 in Hardy et al., 1952),

Jλ(b)− Jλ(bε) =

p∑
i=1

λib(i) −
p∑
i=1

λi(bε)(i) =

p∑
i=1

λib(i) −
p∑
i=1

λπ(i)(bε)i

≥
p∑
i=1

λπ(i)bi −
p∑
i=1

λπ(i)(bε)i = ε
(
λπ(j) − λπ(l)

)
≥ 0.

(A.1)

�

B Convexity of the objective function

To show that the objectives in problems (2.2) and (2.4) are convex functions, we will

prove the following propositions

Proposition B.1. Function Jλ,I,W (b) := Jλ

(
W JbKI

)
is a norm for any nonnegative,

nonincreasing sequence {λi}mi=1 containing at least one nonzero element, partition I of

the set {1, . . . , p̃} and diagonal matrix W with positive elements on diagonal.

Proof. It is easy to see that Jλ,I,W (c) = 0 if and only if c = 0 and that for any

scalar α ∈ R it occurs Jλ,I,W (αc) = |α|Jλ,I,W (c). We will show that Jλ,I,W satisfies the
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triangle inequality. Let b, c be any vectors from Rp̃. From the positivity of wi’s we have

W Ja+ bKI � W JaKI +W JbKI. Therefore, Corollary A.2 yields

Jλ,I,W
(
a+ b

)
= Jλ

(
W Ja+ bKI

)
≤ Jλ

(
W JaKI +W JbKI

)
≤ Jλ

(
W JaKI

)
+ Jλ

(
W JbKI

)
= Jλ,I,W (a) + Jλ,I,W (b),

(B.1)

since Jλ is a norm. �

Proposition B.2. Function Jλ

(
W JbKI,X

)
is a seminorm for any nonnegative, nonin-

creasing sequence {λi}mi=1, partition I of the set {1, . . . , p}, design matrix X ∈M(n, p)

and diagonal matrix W with positive elements on diagonal.

Proof. Clearly, Jλ

(
W JαbKI,X

)
= |α|Jλ

(
W JbKI,X

)
, for any scalar α ∈ R. Moreover, for

any a, b ∈ Rp, it holds W Ja+ bKI,X � W JaKI,X + W JbKI,X , and the triangle inequality

could be proved similarly as in the previous proposition. �

C Stopping criterion

C.1 Dual norm and conjugate of grouped sorted `1 norm

Let f : Rp → R be a norm. We will use notation fD to refer to the dual norm to

f , i.e function defined as fD(x) := max
b

{
xTb : f(b) ≤ 1

}
. It could be shown (see

Bogdan et al., 2015), that the set Cλ, defined as Cλ :=
{
x ∈ Rp :

∑k
i=1 |x|(i) ≤∑k

i=1 λi, k = 1, . . . , p
}

, is unit ball of the dual norm to Jλ for any nonnegative,

nonincreasing sequence {λi}pi=1 with at least one nonzero element. We will now consider

the dual norm to Jλ,I,W (b) = Jλ
(
W JbKI

)
. It holds

JDλ,I,W (x) = max
b

{
xTb : Jλ,I,W (b) ≤ 1

}
= max

b

{
xTb : Jλ(W JbKI) ≤ 1

}
=

max
b,c

{
xTb : Jλ(c) ≤ 1, c = W JbKI

}
= max

c

{
xTbc : Jλ(c) ≤ 1, c � 0

}
,

(C.1)
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where bc is defined as bc := argmaxb
{
xTb : c = W JbKI

}
. This problem is separable

and for each i we have bcIi = argmax
{
xTIibIi : c2

i = w2
i ‖bIi‖2

2

}
. Applying the Lagrange

multiplier method quickly yields xTIib
c
Ii

= ciw
−1
i ‖xIi‖2. Consequently,

JDλ,I,W (x) = max
c

{
(W−1JxKI)Tc : Jλ(c) ≤ 1, c � 0

}
=

max
c

{
(W−1JxKI)Tc : Jλ(c) ≤ 1

}
= JDλ

(
W−1JxKI

)
.

(C.2)

Therefore,
{
x : JDλ,I,W (x) ≤ 1

}
=
{
x : JDλ (W−1JxKI) ≤ 1

}
=
{
x : W−1JxKI ∈ Cλ

}
.

Since the conjugate of a norm is equal to zero for arguments from the unit ball of the

dual norm, and equal to infinity otherwise, we immediately get

Corollary C.1. The conjugate function for Jλ,I,W is the function J∗λ,I,W defined as

J∗λ,I,W (x) =

{
0, W−1JxKI ∈ Cλ
∞, otherwise

. (C.3)

C.2 Stopping criteria for numerical algorithm

Without loss of generality assume that σ = 1. We will start with optimization problem

presented in subsection 2.2, namely

minimize
η

f(η) =
1

2
‖y − X̃Mη‖2

2 + Jλ
(
JηKI

)
(C.4)

for JηKI =
(
‖ηI1‖2, . . . , ‖ηIm‖2

)T
and MIi,Ii = 1

wi
Ili , i = 1, . . . ,m. This problem could

be written in equivalent form

minimize
η,r,c

1
2
‖r‖2

2 + c

s.t.

{
Jλ,I(η)− c ≤ 0

y − r − X̃Mη = 0

(C.5)

(
notice that for (η∗, r∗, c∗) to be a solution, it must be that c∗ = Jλ,I(η

∗)
)
. Since (C.5)

is convex and (η0, r0, c0), for η0 = 0, r0 = y and c0 = 1, is strictly feasible, the strong
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duality holds. The Lagrange dual function for this problem is given by

g(µ, ν) = inf
η,r,c

{
1

2
‖r‖2

2 + c+ µT
(
y − r − X̃Mη

)
+ ν
(
Jλ,I(η)− c

)}
=

µTy + inf
r

{
1

2
‖r‖2

2 − µTr

}
+ inf

c

{
c− νc

}
+ inf

η

{
− µTX̃Mη + νJλ,I(η)

}
.

Now, since the minimum of 1
2
‖r‖2

2 − µTr is taken for r = µ, we have

g(µ, ν) = µTy − 1

2
‖µ‖2

2 + inf
c

{
c− νc

}
− J∗νλ,I

(
(X̃M)Tµ

)
. (C.6)

Then ν∗ = 1 and from Corollary C.1, the dual problem to (C.5) is equivalent to

maximize
µ

µTy − 1
2
‖µ‖2

2

s.t. JMX̃TµKI ∈ Cλ
. (C.7)

Let (η∗, r∗, c∗) be primal and (µ∗, 1) be dual solution to (C.5). Obviously, µ∗ = r∗ =

y − X̃Mη∗ and c∗ = Jλ,I(η
∗). Furthermore, from strong duality we have

1

2
‖y − X̃Mη∗‖2

2 + Jλ,I(η
∗) = (y − X̃Mη∗)Ty − 1

2
‖y − X̃Mη∗‖2

2, (C.8)

which gives (X̃Mη∗)T(y − X̃Mη∗) = Jλ,I
(
η∗
)
. Now, for current approximate η[k] of

solution to (C.4), achieved after applying proximal gradient method, we define the

current duality gap for k step as

ρ(η[k]) = (X̃Mη[k])T(y − X̃Mη[k])− Jλ,I
(
η[k]
)

(C.9)

and we will determine the infeasibility of µ[k] := y − X̃Mη[k] by using the measure

infeas
(
µ[k]
)

:= max
{
JDλ,I
(
MX̃Tµ[k]

)
− 1, 0

}
(C.10)

To define the stopping criteria we have applied the widely used procedure: treat ρ(η[k])

as indicator telling how far η[k] is from true solution and terminate the algorithm when

this difference and infeasibility measure are sufficiently small. Summarizing, we have

derived algorithm according to scheme
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Procedure 1 group SLOPE

input: infeas.tol: positive number determining the tolerance for infeasibility;
dual.tol: positive number determining the tolerance for duality gap;
k := 0, η[0], µ[0] := µ(η[0]), infeas[0] := infeas

(
µ[0]
)
, ρ[0] := ρ(η[0]);

while ( infeas[k] > infeas.tol or ρ[k] > dual.tol) do
1. k ← k + 1;
2. get η[k] from Procedure 1;
3. µ[k] := µ(η[k]);
4. infeas[k] := infeas

(
µ[k]
)
, ρ[k] := ρ(η[k]);

end while
βgS := Mη[k].

D Alternative representation in the orthogonal case

Suppose that the experiment matrix is orthogonal at group level, i.e. it holds XT
Ii
XIj =

0, for every i, j ∈ {1, . . . ,m}, i 6= j. In such a case, X̃ in problem (2.4) is orthogonal

matrix, i.e. X̃TX̃ = Ip̃. If n = p̃, i.e. X̃ is a square and orthogonal matrix, we also

have X̃X̃T = Ip̃ and it obeys ‖X̃Tb‖2
2 = bTX̃X̃Tb = ‖b‖2

2 for b ∈ Rp̃. For the general

case with n ≥ p̃, we can extend X̃ to a square matrix by adding new orthonormal

columns and defining X̃C :=
[
X̃ C

]
, where C is composed of vectors (columns) being

some complement to orthogonal basis of Rp̃. For y ∈ Rn and b ∈ Rp̃ we get:∥∥∥y − X̃b∥∥∥2

2
=
∥∥∥X̃T

C

(
y − X̃b

)∥∥∥2

2
=

∥∥∥∥[ X̃T

CT

]
y −

[
b
0

]∥∥∥∥2

2

=
∥∥∥X̃Ty − b

∥∥∥2

2
+ const, (D.1)

which implies that under orthogonal situation the optimization problem in (2.4) could

be recast as
argmin

b

{
1

2

∥∥ỹ − b∥∥2

2
+ σJλ

(
W JbKI

)}
, (D.2)

for ỹ := X̃Ty. After introducing new variable to problem (D.2), namely c ∈ Rm, we

get the equivalent formulation

argmin
b,c

{
1

2

∥∥ỹ − b∥∥2

2
+ σJλ(c) : c = W JbKI

}
. (D.3)

Proposition D.1. Let f(b, c) : Rp×Rm −→ R be any function and consider optimiza-

tion problem argminb,c
{
f(b, c) : (b, c) ∈ D

}
with unique solution (b∗, c∗) and feasible
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set D ⊂ Rp × Rm. Define Dc :=
{
c ∈ Rm| ∃b ∈ Rp : (b, c) ∈ D

}
. Suppose that for

any c ∈ Dc, there exists unique solution, bc, to problem argminb
{
f(b, c) : (b, c) ∈ D

}
.

Moreover, assume that the solution to argminc
{
f(bc, c) : c ∈ Dc

}
is unique. Then, it

occurs {
c∗ = argminc

{
f(bc, c) : c ∈ Dc

}
b∗ = bc

∗ . (D.4)

Proof. Suppose that there exists (b0, c0) ∈ D, such that f(b0, c0) < f(b∗, c∗), where b∗

and c∗ are defined as in (D.4). We have

f(bc
0

, c0) ≤ f(b0, c0) < f(b∗, c∗) = f(bc
∗
, c∗), (D.5)

which leads to the contradiction with definition of c∗. �

We will apply the above proposition to (D.3). Let (b∗, c∗) be solution to (D.3).

Then b∗ is also solution to convex problem (D.2) with strictly convex objective func-

tion and therefore is unique. Since c∗ = W Jb∗KI, c∗ is unique as well. In con-

sidered situation Dc =
{
c : c � 0

}
. We will start with solving the problem bc =

argminb

{
1
2

∥∥ỹ − b∥∥2

2
+ σJλ(c) : c = W JbKI

}
. The additive constant in the objective

could be omitted. Moreover, for each i ∈ {1, . . . ,m} we have

bcIi = argmin
bIi

{∥∥ỹIi − bIi∥∥2

2
: w2

i ‖bIi‖2
2 − c2

i = 0
}
. (D.6)

The Lagrange Multipliers method quickly yields bcIi = (wi‖ỹIi‖2)−1ciỹIi and, conse-

quently, it holds
∥∥ỹIi − bcIi∥∥2

2
=
(
‖ỹIi‖2 − w−1

i ci
)2
. From Proposition D.1, we get the

following procedure for solution, b∗, to problem (D.2)c∗ = argminc

{
1
2

∑m
i=1

(
‖ỹIi‖2 − w−1

i ci
)2

+ Jσλ(c)
}

b∗Ii = c∗i
(
wi‖ỹIi‖2

)−1
ỹIi , i = 1, . . . ,m

(D.7)

(notice that we applied Proposition E.2 to omit the constraints c � 0 and that the

objective function in definition of c∗ is strictly feasible, which guarantees the unique

solution. The above procedure yields conclusion, that indices of groups estimated by
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gSLOPE as relevant coincide with the support of solution to SLOPE problem with

diagonal matrix having inverses of weights w1, . . . , wm on diagonal. Moreover, after

defining β̃ ∈ Rp̃ by conditions β̃Ii := RiβIi , i = 1, . . . ,m, we simply have Jβ̃KI = JβKI,X

and

ỹ = X̃Ty = X̃T

( m∑
i=1

UiRiβIi+z

)
= X̃T

(
X̃β̃+z

)
= β̃+X̃T z, hence ỹ ∼ N

(
β̃, σ2Ip̃

)
.

Summarizing, if the assumption about the orthogonality at groups level is in use, one

can consider the statistically equivalent model ỹ ∼ N
(
β̃, σ2Ip̃

)
, define truly relevant

groups via the support of Jβ̃KI and treat the vector Jb∗KI =
( c∗1
w1
, . . . , c

∗
m

wm

)
as an gSLOPE

estimate of group effect sizes, where b∗ and c∗ are defined in (2.12), i.e. it holds

Jb∗KI = JβgSKI,X for any solution βgS to problem (2.2).

E SLOPE with diagonal experiment matrix

In this section we investigate the SLOPE properties in the situation when the design

matrix is square and has only diagonal entries, which are all positive. The key results

are two final Propositions: E.5 and E.6 which are used in the proof of Theorem 2.5.

The remaining content of this section is needed to prove these two crucial results.

Let y ∈ Rp be fixed vector and d1, . . . , dp be positive numbers. We will use notation

diag(d1, . . . , dp) to define the diagonal matrix D such as Di,i = di for i = 1, . . . , p.

Denote d := (d1, . . . , dp)
T and let b∗ be the solution to SLOPE optimization problem

with diagonal experiment matrix, i.e. the solution to

argmin
b

f(b) :=
{ 1

2

∥∥y −Db∥∥2

2
+ Jλ

(
b
) }

. (E.1)

Since f is strictly convex function, the solution to (E.1) is unique. It is easy to observe,

that changing sign of yi corresponds to changing sign at ith coefficient of solution as

well as permuting coefficients of y together with d′is permutes coefficients of b∗. We
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will summarize this observation below without proofs.

Proposition E.1. Let π : {1, . . . , p} −→ {1, . . . , p} be given permutation with Pπ as

corresponding matrix. Then:

A.1 PπDP
T
π = diag(dπ(1), . . . , dπ(p)),

A.2 bπ := Pπb
∗ is solution to minimize

b
fπ(b) := 1

2

∥∥Pπy − PπDPT
π b
∥∥2

2
+ Jλ(b),

A.3 bS := Sb∗ is solution to minimize
b

fS(b) := 1
2

∥∥Sy −Db∥∥2

2
+ Jλ(b),

where S is diagonal matrix with entries on diagonal coming from set {−1, 1}.

Proposition E.2. If y � 0, then b∗ � 0.

Proof. Suppose that for some r it occurs br < 0 for any b ∈ Rp. If yr = 0, then taking b̂

defined as b̂i :=

{
0, i = r

bi, otherwise
, we get |̂b| � |b| and Corollary A.2 gives Jλ(̂b) ≤ Jλ(b).

Consequently,

f(b)− f (̂b) ≥ 1

2

∥∥y−Db∥∥2

2
− 1

2

∥∥y−Db̂∥∥2

2
=

1

2
(yr − drbr)2− 1

2
(yr + drb̂r)

2 =
1

2
d2
rb

2
r > 0.

Hence b could not be the solution. Now consider case when yr > 0 and define b̂ by

putting b̂i :=

{
−br, i = r

bi, otherwise
. Then we have Jλ(b) = Jλ(̂b) and

f(b)− f (̂b) =
1

2
(yr − drbr)2 − 1

2
(yr + drbr)

2 = −2yrdrbr > 0.

and, as before, b could not be optimal. �

Proposition E.3. Let b∗ be the solution to problem (E.1), {yi}pi=1 be nonnegative

sequence, {di}pi=1 be the sequence of positive numbers and assume that

d1y1 ≥ . . . ≥ dpyp. (E.2)

If b∗ has exactly r nonzero entries for r > 0, then the set {1, . . . , r} corresponds to the

support of b∗.

Proof. It is enough to show that
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(
j ∈ {2, . . . ,m}, b∗j 6= 0

)
=⇒ b∗j−1 6= 0. (E.3)

Suppose that this is not true. From Proposition E.2 we know that b∗ is nonnegative,

hence we can find i from {2, . . . ,m} such as b∗j > 0 and b∗j−1 = 0. For ε ∈
(
0, b∗j/2]

define vector bε by putting (bε)j−1 := ε, (bε)j := b∗j − ε and (bε)i := b∗i for i /∈ {j, l}.

From Proposition A.3 we have that Jλ(bε) ≤ Jλ(b
∗), which gives

f(b∗)− f(bε) ≥
1

2

(
yj−1 − dj−1b

∗
j−1

)2
+

1

2

(
yj − djb∗j

)2

− 1

2

(
yj−1 − dj−1bε(j − 1)

)2 − 1

2

(
yj − djbε(j)

)2
=

ε

(
A−

d2
j−1 + d2

j

2
· ε
)
,

for A := (yj−1dj−1 − yjdj) + d2
jb
∗
j > 0.

(E.4)

Therefore, f(b∗) > f(bε) for some ε > 0, which contradicts the optimality of b∗. �

Consider now problem (E.1) with arbitrary sequence {yi}pi=1. Suppose that b∗ has

exactly r > 0 nonzero coefficients and that π : {1, . . . , p} −→ {1, . . . , p} is permutation

which gives the order of magnitudes for Dy, i.e. dπ(1)|y|π(1) ≥ . . . ≥ dπ(p)|y|π(p). Basing

on our previous observations, we get an important

Corollary E.4. If b∗ is the solution to (E.1) having exactly r > 0 nonzero coefficients

and π is permutation which places components of D|y| in a nonincreasing order, i.e.

dπ(i)|y|π(i) = |Dy|(i) for i = 1, . . . , p, then the support of b∗ is composed of the set

{π(1), . . . , π(r)}.

The next three lemmas were proven in (Bogdan et al., 2013) in situation when

d1 = . . . = dp = 1. We will follow the reasoning from this paper to prove the generalized

claims. The main difference is that in general case the solution to the considered

problem (E.1) does not have to be nonincreasingly ordered, under assumption that

d1y1 ≥ . . . ≥ dpyp ≥ 0 (which is the case for d1 = . . . = dp = 1). This means that

generalizations of proofs presented in (Bogdan et al., 2013) are not straightforward.
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Lemma E.5. Consider nonnegative sequence {yi}pi=1 and sequence of positive numbers

{di}pi=1 such that d1y1 ≥ . . . ≥ dpyp. If b∗ is solution to problem (E.1) having exactly r

nonzero entries, then for every j ≤ r it holds that

r∑
i=j

(diyi − λi) > 0 (E.5)

and for every j ≥ r + 1 j∑
i=r+1

(diyi − λi) ≤ 0. (E.6)

Proof. From Proposition E.3 we know that b∗i > 0 for i ∈ {1, . . . , r}. Let us define

b̃i :=

{
b∗i − h, i ∈ {j, . . . , r}

b∗i , otherwise.
,

where we restrict only to sufficiently small values of h, so as to the condition b̃i > 0

is met for all i from {j, . . . , r}. For such h we have b∗(r+1) = . . . = b∗(p) = b̃(r+1) =

. . . = b̃(p) = 0. Therefore there exists permutation π : {1, . . . , r} −→ {1, . . . , r} such as∑r
i=1 λib̃(i) =

∑r
i=1 λπ(i)b̃i. For such permutation we have

Jλ(b
∗)− Jλ(̃b) =

r∑
i=1

λib
∗
(i) −

r∑
i=1

λib̃(i) =
r∑
i=1

λib
∗
(i) −

r∑
i=1

λπ(i)b̃i

≥
r∑
i=1

λπ(i)b
∗
i −

r∑
i=1

λπ(i)b̃i = h
r∑
i=j

λπ(i) ≥ h
r∑
i=j

λi,

(E.7)

where the first inequality follows from the rearrangement inequality and second is the

consequence of monotonicity of {λi}pi=1. We also have

‖y −Db∗‖2
2 − ‖y −Db̃‖2

2 =
r∑
i=j

(yi − dib∗i )2 −
r∑
i=j

(yi − dib∗i + dih)2

= 2h
r∑
i=j

(d2
i b
∗
i − diyi)− h2

r∑
i=j

d2
i .

(E.8)

Optimality of b∗, (E.7) and (E.8) yield

0 ≥ f(b∗)− f (̃b) ≥ h
r∑
i=j

(d2
i b
∗
i − diyi + λi)−

1

2
h2

r∑
i=j

d2
i , (E.9)

for each h from the interval [0, ε], where ε > 0 is some (sufficiently small) value. This
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gives
∑r

i=j(d
2
i b
∗
i − diyi + λi) ≤ 0 and consequently

r∑
i=j

(diyi − λi) ≥
r∑
i=j

d2
i b
∗
i > 0. (E.10)

To prove claim (E.6), consider a new sequence defined as b̃i :=

{
h, i ∈ {r + 1, . . . , j}
b∗i , otherwise.

.

We will restrict our attention only to 0 < h < min{b∗i : i ≤ r}, so as to b∗(·) and b̃(·) are

given by applying the same permutation to b∗ and b̃, respectively. Moreover, for each

i from {r + 1, . . . , j} it holds b̃(i) = b̃i = h. From optimality of b∗

0 ≥ f(b∗)−f (̃b) =
1

2

j∑
i=r+1

(
y2
i − (yi − dih)2

)
−

j∑
i=r+1

λih = h

j∑
i=r+1

(diyi−λi)−
1

2
h2

j∑
i=r+1

d2
i ,

for all considered h, which leads to (E.6). �

Lemma E.6. Let b∗ be solution to problem (E.1) with nonnegative, nonincreasing

sequence {λi}pi=1. Let R(b∗) be number of all nonzeros in b∗ and r ≥ 1. Then, for any

i ∈ {1, . . . , p}{
y : b∗i 6= 0 and R(b∗) = r

}
=
{
y : di|yi| > λr and R(b∗) = r

}
. (E.11)

Proof. Suppose that b∗ has r > 0 nonzero coefficients and let π be permutation which

places components of D|y| in a non-increasing order. From Corollary E.4 it holds that

{i : b∗i 6= 0} = {π(1), . . . , π(r)}. Define ỹ := PπSy and D̃ := PπDP
T
π , for S being the

diagonal matrix such as Si,i = sgn(yi). Then PπSb
∗ is solution to problem

argmin
b

{ 1

2

∥∥ỹ − D̃b∥∥2

2
+ Jλ(b)

}
, (E.12)

which satisfies the assumptions of Lemma E.5. Taking j = r in (E.5) and j = r + 1 in

(E.6) we immediately get

dπ(r)|y|π(r) > λr and dπ(r+1)|y|π(r+1) ≤ λr+1. (E.13)

We will now show that
{
y : b∗i 6= 0 and R(b∗) = r

}
⊂
{
y : di|yi| > λr and R(b∗) = r

}
.
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Fix i ∈ {1, . . . , p} and suppose that b∗i is nonzero coefficient. Then i ∈ {π(1), . . . , π(r)}

and therefore di|yi| ≥ dπ(r)|y|π(r) > λr, thanks to first inequality from (E.13). To show

the second inclusion assume that di|yi| > λr. Then, from the second inequality in

(E.13), di|yi| > λr+1 ≥ dπ(r+1)|y|π(r+1), which gives i ∈ {π(1), . . . , π(r)}. �

Lemma E.7. For given sequence {yi}pi=1, sequence of positive numbers {di}pi=1, nonin-

creasing, nonnegative sequence {λi}pi=1 and fixed j ∈ {1, . . . , p}, consider the following

procedure

P.1 define ỹ := (y1, . . . , yj−1, yj+1, . . . , yp)
T, D̃ := diag(d1, . . . , dj−1, dj+1, . . . , dp),

d̃i := D̃i,i for i = 1, . . . , p− 1 and λ̃ := (λ2, . . . , λp)
T;

P.2 find b̃∗ := argminb∈Rp−1
1
2

∥∥ỹ − D̃b∥∥2

2
+ Jλ̃(b);

P.3 define R̃j (̃b∗) := |{i : b̃∗i 6= 0}|.

Then for r ≥ 1 it holds
{
y : dj|yj| > λr and R(b∗) = r

}
⊂
{
y : dj|yj| >

λr and R̃j (̃b∗) = r − 1
}
.

Proof. We have to show that solution b̃∗ to problem

minimize
b

F (b) :=
1

2

p−1∑
i=1

(
ỹi − d̃ibi

)2

+

p−1∑
i=1

λ̃ib(i) (E.14)

has exactly r− 1 nonzero coefficients. From Proposition E.1 we know that the change

of signs of yi’s does not affect the support, hence without loss of generality we can

assume that ỹ � 0, and b̃∗ � 0 as a result (from Proposition E.2). We will start with

situation when d1y1 ≥ . . . ≥ dpyp and consequently d̃1ỹ1 ≥ . . . ≥ d̃p−1ỹp−1. If j is fixed

index such as dj|yj| > λr and R(b∗) = r, this gives

j ∈ {1, . . . , r}. (E.15)

To show that solution to (E.14) has at least r − 1 nonzero entries, suppose by contra-

diction that b̃∗ has exactly k− 1 nonzero entries with k < r. Let us define b̂ ∈ Rp−1 as

13



b̂i :=

{
h, i ∈ {k, . . . , r − 1}
b̃∗i , otherwise

, (E.16)

where 0 < h < min{b̃∗1, . . . , b̃∗k−1}. Then

F (̃b∗)− F (̂b) = h

r−1∑
i=k

(d̃iỹi − λ̃i)− h2

r−1∑
i=k

1

2
d̃2
i . (E.17)

Now
r−1∑
i=k

(d̃iỹi − λ̃i) =
r∑

i=k+1

(d̃i−1ỹi−1 − λi) ≥
r∑

i=k+1

(diyi − λi) > 0, (E.18)

where the first equality follows from λ̃i = λi+1, the first inequality from d̃i−1ỹi−1 ≥ diyi

and the second from Lemma E.5. If h is small enough, we get F (̂b) < F (̃b∗) which

leads to contradiction.

Suppose now by contradiction that b̃∗ has k nonzero entries with k ≥ r and define

b̂i :=

{
b̃∗i − h, i ∈ {r, . . . , k}
b̃∗i , otherwise

. (E.19)

Analogously to (E.7), we get Jλ̃(̃b
∗)− Jλ̃(̂b) ≥ h

∑k
i=r λ̃i and consequently

F (̃b∗)− F (̂b) ≥ h

[
k∑
i=r

(λ̃i − d̃iỹi) +
k∑
i=r

d̃2
i b̃
∗
i

]
− 1

2
h2

k∑
i=r

d̃2
i . (E.20)

Now k∑
i=r

(λ̃i − d̃iỹi) =
k+1∑
i=r+1

(λi − diyi) ≥ 0, (E.21)

where the first equality follows from definition of λ̃ and (E.15), while the inequality

follows from Lemma E.5. If h is small enough, we get F (̂b) < F (̃b∗), which contradicts

the optimality of b̃∗.

Consider now general situation, i.e. without assumption concerning the order of

D|y|. Suppose that π, with corresponding matrix Pπ, is permutation which orders

D|y|. Define yπ := Pπy and Dπ := PπDP
T
π . Applying the procedure described in the

statement of Lemma simultaneously to (y,D, λ) for j, and to (yπ, Dπ, λ) for π(j) we

end with
(
ỹ, D̃, λ̃, R̃j

1(̃b∗)
)

and
(
ỹπ, D̃π, λ̃, R̃

π(j)
2 (̃b∗π)

)
. It is straightforward to see, that

there exists permutation π̃ : {1, . . . , p− 1} −→ {1, . . . , p− 1} such that ỹπ = Pπ̃ỹ and
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D̃π = Pπ̃D̃P
T
π̃ . From Proposition E.1 we have that b̃∗π = Pπ̃ b̃

∗ and R̃j
1(̃b∗) = R̃

π(j)
2 (̃b∗π).

Moreover, from the first part of proof R̃
π(j)
2 (̃b∗π) = r − 1, which gives the claim. �

F Minimax properties of gSLOPE

Proof of Theorem 2.6. Once again we will employ the equivalent formulation of gS-

LOPE under assumption about orthogonality at the groups level, i.e. problem (2.12),

and we will consider statistically equivalent model ỹ ∼ N
(
β̃, σ2Ip̃

)
, with β̃Ii = RiβIi ,

i = 1, . . . ,m. Then JβKI,X = Jβ̃KI and for solution b∗ to (2.12) it holds Jb∗KI = JβgSKI,X

for any solution βgS to problem (2.2). Without loss of generality, assume σ = 1. Note

that ‖ỹIi‖2
2 is distributed as the noncentral χ2

li
(‖β̃Ii‖2

2), where ‖β̃Ii‖2
2 is the noncentrality.

The lower bound of the minimax risk can be obtained as follows. For each Ii, only

β̃j with the smallest index j ∈ Ii is possibly nonzero and the rest li − 1 components of

β̃Ii are fixed to be zero. Then, this is reduced to a simple Gaussian sequence model with

length m and sparsity at most k. Given the condition k/m→ 0, this classical sequence

model has minimax risk (1 + o(1))2k log(m/k) (see e.g. Donoho and Johnstone, 1994).

Our next step is to evaluate the worst risk of gSLOPE over the nearly black object.

We would completes the proof if we show this worst risk is bounded above by (1 +

o(1))2k log(m/k). For simplicity, assume that ‖β̃Ii‖2 = 0 for all i ≥ k + 1 and write

µi = ‖β̃Ii‖2, ζi = ‖ỹIi‖2 ∼ χli(µ
2
i ). Denote by ζ̂ the SLOPE solution. Then, the risk is

E‖ζ̂ − µ‖2
2 = E

k∑
i=1

(ζ̂i − µi)2
2 + E

m∑
i=k+1

ζ̂2
i .

Then, it suffices to show

E

[
k∑
i=1

(ζ̂i − µi)2

]
≤ (1 + o(1))2k log(m/k) (F.1)

and
E

[
m∑

i=k+1

ζ̂2
i

]
= o(1)2k log(m/k). (F.2)
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Below, Lemmas F.1, F.2, and F.3 together give (F.2). The remaining part of this

proof serves to validate (F.1). To start with, we employ the representation ζ2
i =

(ξi1 + µi)
2 + ξ2

i2 + · · · + ξ2
ili

for i.i.d. ξij ∼ N (0, 1) (we can assume this representation

without loss of generality, since the distribution of (ξi1+a1)2+(ξi2+a2)2+· · ·+(ξili+ali)
2

depends only on the non-centrality a2
1 + · · ·+a2

li
). As in the proof of Lemma 3.2 in (Su

and Candès, 2016), we get

k∑
i=1

(ζ̂i − µi)2 ≤
(
‖ζ̂[1:k] − ζ[1:k]‖2 + ‖ζ[1:k] − µ[1:k]‖2

)2

≤
(
‖λ[1:k]‖2 + ‖ζ[1:k] − µ[1:k]‖2

)2
.

(F.3)

As l is fixed and k/m→ 0, (Inglot, 2010) gives λi ∼
√

2 log m
qi

for all i ≤ k. From this

we know
‖λ[1:k]‖2

2 =
k∑
i=1

λ2
i ∼ 2k log

m

k
. (F.4)

Next, we see∣∣∣√(ξi1 + µi)2 + ξ2
i2 + · · ·+ ξ2

ili
− µi

∣∣∣ ≤√ξ2
i2 + · · ·+ ξ2

ili
+ |ξi1|

≤ 2
√
ξ2
i1 + ξ2

i2 + · · ·+ ξ2
ili
≡ 2‖ξi‖2,

which yields
‖ζ[1:k] − µ[1:k]‖2

2 ≤ 4
k∑
i=1

‖ξi‖2
2 (F.5)

Note that
∑k

i=1 ‖ξi‖2
2 is distributed as the chi-square with l1 + · · ·+ lk ≤ lk degrees of

freedom. Taking (F.4) and (F.5) together, from (F.3) we get

E

[
k∑
i=1

(ζ̂i − µi)2

]
≤ ‖λ[1:k]‖2

2 + E‖ζ[1:k] − µ[1:k]‖2
2 + 2‖λ[1:k]‖2E‖ζ[1:k] − µ[1:k]‖2

≤ (1 + o(1))2k log
m

k
+ 4lk + 2

√
(1 + o(1))2k log

m

k
·
√

4lk

∼ (1 + o(1))2k log
m

k
,

where the last step makes use of m/k →∞. This establishes (F.1) and consequently
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completes the proof.

�

The following three lemmas aim to prove (F.2). Denote by ζ(1) ≥ · · · ≥ ζ(m−k) the

order statistics of ζk+1, . . . , ζm. Recall that ζi ∼ χli for i ≥ k + 1. As in the proof of

Lemma 3.3 in (Su and Candès, 2016), we have

m∑
i=k+1

ζ̂2
i ≤

m−k∑
i=1

(ζ(i) − λk+i)
2
+,

where x+ = max{x, 0}. For a sufficiently large constant A > 0 and sufficiently small

constant α > 0 both to be specified later, we partition the sum into three parts:

m−k∑
i=1

E(ζ(i)−λk+i)
2
+ =

bAkc∑
i=1

E(ζ(i)−λk+i)
2
+ +

bαmc∑
i=dAke

E(ζ(i)−λk+i)
2
+ +

m−k∑
i=dαme

E(ζ(i)−λk+i)
2
+

The three lemmas, respectively, show that each part is negligible compared with

2k log(m/k). We indeed prove a stronger version in which the order statistics ζ(1) ≥

· · · ≥ ζ(m−k) ≥ ζ(m−k+1) ≥ · · · ≥ ζ(m) come from m i.i.d. χl. Let U1, . . . , Um be i.i.d.

uniform random variables on (0, 1), and U(1) ≤ U(2) ≤ · · · ≤ U(m) be the increasing

order statistics. Hence, we have the representation ζ(i) = F−1
χl

(1 − U(i)). Below in the

proof of Lemma F.1, we write am . bm for two positive sequences am and bm if there

exists some positive constant C such that am ≤ Cbm for all m.

Lemma F.1. Under the preceding conditions, for any A > 0 we have

1

2k log(m/k)

bAkc∑
i=1

E(ζ(i) − λk+i)
2
+ → 0.

Proof of Lemma F.1. Recognizing that l is fixed, from (Inglot, 2010) it follows that

lim
q1,q2→0,q2>q1

F−1
χl

(1− q1)− F−1
χl

(1− q2)√
2 log 1

q1
−
√

2 log 1
q2

= 1.

We also know that ζi is distributed as F−1
χl

(1−U(i)). Making use of these facts, we get
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E(ζ(i) − λk+i)
2
+ = E(F−1

χl
(1− U(i))− F−1

χl
(1− q(k + i)/m))2

+

∼ E

(√
2 log

1

U(i)

−
√

2 log
m

q(k + i)

)2

+

≤ E

(√
2 log

1

U(i)

−
√

2 log
m

q(k + i)

)2

. E
(

log2(q(k + i)/mU(i))

log(m/q(k + i))

)
.

Now, we proceed to evaluate

E
[
log2 q(k + i)

mU(i)

]
= log2 q(k + i)

m
+ E log2 U(i) − 2 log

q(k + i)

m
E logU(i).

Here, U(i) follows the Beta(i,m+ 1− i) distribution and, hence, it has mean i/(m+ 1).

Similar results concerning the logarithm of U(i) are given in (Abramowitz and Stegun,

1964):
E logU(i) = − log

m+ 1

i
+ δ1,

E log2 U(i) =

(
log

m+ 1

i
− δ1

)2

+
1

i
− 1

m+ 1
+ δ2

for some δ1 = O(1/i) and δ2 = O(1/i2). Thus we can evaluate E log2 q(k+i)
mU(i)

as

E log2 q(k + i)

mU(i)

= log2 q(k + i)

m
− 2 log

q(k + i)

m
E logU(i) + E log2 U(i)

= log2 q(k + i)

m
+2 log

q(k + i)

m

(
log

m+ 1

i
− δ1

)
+

(
log

m+ 1

i
− δ1

)2

+
1

i
− 1

m+ 1
+δ2

= log2 q(k + i)(m+ 1)

im
− 2δ1 log

q(k + i)(m+ 1)

im
+

1

i
− 1

m+ 1
+ δ2

1 + δ2.

Hence, we get
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bAkc∑
i=1

E(ζ(i) − λk+i)
2
+

.
1

log m
q(A+1)k


bAkc∑
i=1

log2 q(k + i)(m+ 1)

im︸ ︷︷ ︸
I

−
bAkc∑
i=1

2δ1 log
q(k + i)(m+ 1)

im︸ ︷︷ ︸
II

+

bAkc∑
i=1

(1

i
− 1

m+ 1
+ δ2

1 + δ2

)
︸ ︷︷ ︸

III


≤ 1

log m
q(A+1)k

(I + |II|+ |III|).

Since m
q(A+1)k

→ ∞, the proof would be completed once we show I, |II|, and |III| are

bounded. To this end, first note that

I =

bAkc∑
i=1

log2 q(k + i)(m+ 1)

im

≤
bAkc∑
i=1

max

{
k

∫ i/k

(i−1)/k

log2 q(m+ 1)(1 + x)

mx
dx, k

∫ (i+1)/k

i/k

log2 q(m+ 1)(1 + x)

mx
dx

}

≤ 2k

∫ A+1

0

log2 q(m+ 1)(1 + x)

mx
dx � k = o

(
2k log

m

k

)
.

The second term II obeys

|II| ≤
bAkc∑
i=1

2
∣∣∣δ1 log

q(k + i)(m+ 1)

im

∣∣∣ . bAkc∑
i=1

1

i

∣∣∣ log
q(k + i)(m+ 1)

im

∣∣∣
≤
bAkc∑
i=1

max

{
k

∫ i/k

(i−1)/k

∣∣∣ log
q(m+ 1)(1 + x)

mx

∣∣∣dx, k ∫ (i+1)/k

i/k

∣∣∣ log
q(m+ 1)(1 + x)

mx

∣∣∣dx}

≤ 2k

∫ A+1

0

∣∣∣ log
q(m+ 1)(1 + x)

mx

∣∣∣dx � k = o
(

2k log
m

k

)
,

where we use the fact that
∫ A+1

0

∣∣∣ log q(m+1)(1+x)
mx

∣∣∣dx is bounded by some constant. The

last term is simply bounded as
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|III| ≤
bAkc∑
i=1

∣∣∣1
i
− 1

m+ 1
+ δ2

1 + δ2

∣∣∣
=

bAkc∑
i=1

∣∣∣1
i
− 1

m+ 1
+O(1/i2) +O(1/i2)

∣∣∣
.
bAkc∑
i=1

1

i
. log(Ak) = o

(
2k log

m

k

)
,

where the last equality is due to the fact that m/k →∞. Combining these established

bounds on I, II, and III finishes proof. �

Lemma F.2. Under the preceding conditions, let A be any constant satisfying q(1 +

A)/A < 1 and α be sufficiently small such that l/λk+bαmc < 1/2. Then,

1

2k log(m/k)

bαmc∑
i=dAke

E(ζ(i) − λk+i)
2
+ → 0.

Proof of Lemma F.2. Note that λk+bαmc ∼
√

2 log m
q(k+bαmc) ∼

√
2 log 1

qα
. So it is clear

that such α exists. Pick any fixed i between dAke and bαmc. As in the proof of Lemma

A.4 in (Su and Candès, 2016), denote by αu = P(χl > λk+i + u). Note that

αu = P(χl > λk+i + u) =

∫ ∞
(λk+i+u)2

1

el/2Γ(l/2)
xl/2−1e−x/2dx

=

∫ ∞
λ2k+i

1

el/2Γ(l/2)

(
(λk+i + u)2

λ2
k+i

y

)l/2−1

exp

(
−(λk+i + u)2

2λ2
k+i

y

)
d

(λk+i + u)2

λ2
k+i

y

=

(
1 +

u

λk+i

)l ∫ ∞
λ2k+i

1

el/2Γ(l/2)
yl/2−1 exp

(
−(λk+i + u)2

2λ2
k+i

y

)
dy

≤
(

1 +
u

λk+i

)l
e−λk+iu

∫ ∞
λ2k+i

1

el/2Γ(l/2)
yl/2−1e−y/2dy

=

(
1 +

u

λk+i

)l
e−λk+iuα0

≤ exp

(
l

λk+i

u− λk+iu

)
α0.

With the proviso that l/λk+bαmc < 1/2 < λk+bαmc/2, it follows that
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αu ≤ e−λk+iu/2α0.

The remaining proof follows from exactly the same reasoning as that of Lemma A.4 in

(Su and Candès, 2016).

�

Lemma F.3. Under the preceding conditions, for any constant α > 0 we have

1

2k log(m/k)

m−k∑
i=dαme

E(ζ(i) − λk+i)
2
+ → 0.

Proof of Lemma F.3. Recognizing that the value of the summation increases as α de-

creases, we only prove the lemma for sufficiently small α. In the case of U(i) ≥ α/3, we

get
(ζ(i) − λk+i)+ =

(
F−1
χl

(1− U(i))− F−1
χl

(1− q(k + i)/m)
)

+

�
(
1− U(i) − (1− q(k + i)/m)

)
+

= (q(k + i)/m− U(i))+,

since both U(i) and q(k + i)/m are bounded below away from zero. Otherwise, we use

the trivial inequality (ζ(i) − λk+i)+ ≤ ζ(i). In either case, we get

(ζ(i) − λk+i)
2
+ . ζ2

(i)1U(i)<
α
3

+

(
q(k + i)

m
− U(i)

)2

+

=
(
F−1
χl

(1− U(i))
)2

1U(i)<
α
3

+

(
q(k + i)

m
− U(i)

)2

+

� 2 log

(
1

U(i)

)
1U(i)<

α
3

+

(
q(k + i)

m
− U(i)

)2

+

. log

(
1

U(i)

)
1U(i)<

α
3

+ 1
U(i)≤

q(k+i)
m

.

Hence,

m−k∑
i=dαme

E(ζ(i) − λk+i)
2
+ .

m−k∑
i=dαme

E
(

log

(
1

U(i)

)
;U(i) <

α

3

)
+

m−k∑
i=dαme

P
(
U(i) ≤

q(k + i)

m

)
In the remaining proof we aim to show

m−k∑
i=dαme

E
(

log

(
1

U(i)

)
;U(i) <

α

3

)
→ 0 (F.6)
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and m−k∑
i=dαme

P
(
U(i) ≤

q(k + i)

m

)
→ 0. (F.7)

This is more than we need since 2k log(m/k)→∞.

Each summand of (F.6) is bounded above by

E
(

log

(
1

U(dαme)

)
;U(dαme) <

α

3

)
=

∫ α
3

0

xdαme−1(1− x)m−dαme log 1
x

B(dαme,m+ 1− dαme)
dx

≤
∫ α

3

0

xdαme−1 log 1
x

B(dαme,m+ 1− dαme)
dx

=
1

dαme2 B(dαme,m+ 1− dαme)

∫ (α
3

)dαme

0

log
1

y
dy

∼
(α/3)dαme log 3

α

dαmeB(dαme,m+ 1− dαme)
.

The last line obeys

log

[
(α/3)dαme

B(dαme,m+ 1− dαme)

]
∼ −αm log

3

α
+ αm log

1

α
+ (1− α)m log

1

1− α

= −αm log 3 + (1− α)m log
1

1− α
.

For small α, we get −α log 3 + (1 − α) log 1
1−α = −α log 3 + (1 + o(1))(1 − α)α =

−(log 3− 1 + o(1))α. (Note that log 3− 1 = 0.0986 . . . > 0.) This immediately yields

E
(

log

(
1

U(dαme)

)
;U(dαme) <

α

3

)
∼ e−(log 3−1+o(1))αm,

which implies (F.6) since me−(log 3−1+o(1))αm → 0.

Next, we turn to show (F.7). Note that P
(
U(i) ≤ q(k+i)

m

)
actually is the tail proba-

bility of the binomial distribution with m trials and success probability q(k+i)
m

. Hence,

by the Chernoff bound, this probability is bounded as

P
(
U(i) ≤

q(k + i)

m

)
≤ exp (−mKL(i/m||q(k + i)/m)) ,

where KL(a||b) := a log a
b

+ (1− a) log 1−a
1−b is the Kullback-Leibler divergence. Thanks

to i ≥ dαme � k, simple analysis reveals that
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KL(i/m||q(k + i)/m) ≥ (1 + o(1))i

(
log

1

q
− 1 + q

)
/m.

Combining the last two displays gives

P
(
U(i) ≤

q(k + i)

m

)
≤ e−(1+o(1))(log 1

q
−1+q)i.

Plugging the above inequality into (F.7) yields

m−k∑
i=dαme

P
(
U(i) ≤

q(k + i)

m

)
≤

m−k∑
i=dαme

e−(1+o(1))(log 1
q
−1+q)i → 0,

where the last step follows from log 1
q
− 1 + q > 0 and dαme → ∞. �

G gFDR control for weakly correlated groups

G.1 The proof of Theorem 2.7

We will start with the auxiliary proposition, which let us to define the subgradient of

convex function f by a weaker condition than in the original definition.

Proposition G.1. For any open set H containing zero the subgradient of convex

function f at b could be equivalently defined as a vector g satisfying f(b + h) ≥

f(b) + gTh, for all h ∈ H.

Proof. Suppose that f is convex function and for some b, g ∈ Rp it occurs f(b + h) ≥

f(b)+gTh for h ∈ H, where H is an open set containing zero. Let h0 ∈ Rp be arbitrary

vector. Function F : R → R, defined as F (t) := f(b+ th0)− tgTh0, is convex. There

exists t0 ∈ (0, 1) such that t0h0 ∈ H, what gives

f(b) ≤ F (t0) = F
(
(1− t0) · 0 + t0 · 1

)
≤ (1− t0)f(b) + t0F (1) (G.1)

and f(b+ h0) ≥ f(b) + gTh0 as a result. �

The proof of Theorem 2.7. Since objective function, f , in gSLOPE optimization
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problem is convex and subdifferentiable, the optimality condition is simply given by

0 ∈ ∂f(b), which (for all wi’s equal to w) simply leads to expression XT(y − Xb) ∈

∂Jλ
(
wJbKI

)
. Let b ∈ Rp be such that ‖bI1‖2 > . . . > ‖bIs‖2 > 0 and ‖bIj‖2 = 0 for

j > s. Set w = 1 and suppose that g is any vector belonging to ∂Jλ,I(b). Define the

set H :=
{
h ∈ Rp : ‖(b + h)I1‖2 > . . . > ‖(b + h)Is‖2, ‖(b + h)Is‖2 > ‖hIj‖2, j > s

}
.

Since g ∈ ∂Jλ,I(b), from the definition of subgradient for all h ∈ H it holds

s∑
i=1

λi‖(b+ h)Ii‖2 +
m∑

i=s+1

λi
(
Jb+ hKI

)
(i)
≥

s∑
i=1

λi‖bIi‖2 +
s∑
i=1

gTIihIi + (gc)Thc, (G.2)

for gc := (gTIs+1
, . . . , gTIm)T and hc := (hTIs+1

, . . . , hTIm)T. Define Ĩ :=
{
Ĩ1, . . . , Ĩm−s

}
, with

set Ĩi :=
{

(i−1)·l+1, . . . , i·l
}

. Then JgcKĨ = JgKIc . Consider first case, when h belongs

to the set Hc := {h ∈ H : hIi ≡ 0, i ≤ s}. This yields
∑m−s

i=1 λs+i
(
JhcKĨ

)
(i)
≥ (gc)Thc.

Since {hc : h ∈ Hc} is open in Rl(m−s) and contains zero, from Proposition G.1 we

have that gc ∈ ∂Jλc,Ĩ(0) and this inequality is true for any hc ∈ Rl(m−s) yielding

0 ≥ sup
Hc

{
(gc)Thc − Jλc,Ĩ(h

c)
}

= J∗
λc,Ĩ

(gc) =

 0, JgcKĨ ∈ Cλc

∞, otherwise
, (G.3)

see Proposition C.1. This result immediately gives condition JgcKĨ ∈ Cλc , which is

equivalent with JgKIc ∈ Cλc . To find conditions for gIi with i ≤ s, define sets Hi :=

{h ∈ H : hIj ≡ 0, j 6= i}. For h ∈ Hi, (G.2) reduces to λi‖bIi+hIi‖2 ≥ λi‖bIi‖2+gTIihIi .

Since the set {hIi : h ∈ Hi} is open in Rl and contains zero, from Proposition G.1 (see

below) we have gIi ∈ ∂fi(bIi) for fi : Rl −→ R, fi(x) := λi‖x‖2. Since fi is convex and

differentiable in bIi , it holds gIi = λi
bIi
‖bIi‖2

. Summarizing, for any w > 0 we getgIi = wλi
bIi
‖bIi‖2

, i = 1, . . . , s

JgKIc ∈ Cwλc
, (G.4)

which proves the left-hand side formulation in (2.22).

Observe now that, since XT
Ii
XIi = Il for i ≤ s, we get vIi = XT

Ii

(
y − X\Ii β̂\Ii

)
=
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β̂Ii

(
1 + wλi

‖β̂Ii‖2

)
. This means that, for i ≤ s, vectors vIi ’s are collinear with vectors

β̂Ii ’s. Since 1 + wλi
‖β̂Ii‖2

> 0, we have
vIi
‖vIi‖2

=
β̂Ii
‖β̂Ii‖2

. This yields β̂Ii =
(
1− wλi

‖vIi‖2

)
vIi and

‖β̂Ii‖2 =
∣∣‖vIi‖2 − wλi

∣∣, what justifies the right-hand side expression in (2.22). �

G.2 The proof of Theorem 2.8

The proof of Theorem 2.8 follows from the auxiliary Lemma, which we present below.

Lemma G.2. Suppose that X ∈ M(n, r), with r + 1 < n, and entries of X are

independent and identically distributed, Xij ∼ N (0, 1/n) for all i and j. Let AX and

MX,λ be matrices defined as AX := X(XTX)−1XT and MX,λ := BXHλ,βH
T
λ,βB

T
X , for

BX := X(XTX)−1 and Hλ,β defined in (2.24). Then

I.1 there exists the expected value of AX and EA := E (AX) = r
n
In;

I.2 there exists the expected value of MX,λ and EM := E (MX,λ) =
‖λS‖22
n−r−1

In.

Proof. The claim I.1 is obvious for n = 1 and we will assume that n > 1. It can

be easily noticed that AX is a symmetric, idempotent (meaning that AXAX = AX)

matrix and that trace(AX) = trace
(
XTX(XTX)−1

)
= r. We will now show that for

each i ∈ {1, . . . , n}, j ∈ {1, . . . , r} the support of a AX(i, j) distribution is bounded,

which will give us the existence of the expected value. Let ‖A‖F be the Frobenius

norm. Then ∣∣(AX)i,j
∣∣ ≤ ‖A‖F =

√
trace(AT

XAX) =
√

trace(AX) =
√
r. (G.5)

Since entries of matrix X are randomized independently with the same distribution,

EA is invariant with respect to the permutation applied to rows of X, i.e. E (AX) =

E (APX) for any permutation matrix P . This gives EA = PEAPT, which means that

applying the same permutation to rows and columns has no impact on expected value.

We will show that
(EA)i,j = (EA)1,n, for i < j. (G.6)
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Consider first the case when i = 1 and 1 < j < n. Denoting by Pj↔n matrix

corresponding to transposition which replaces elements j and n, we have (EA)1,j =(
Pj↔nEAPT

j↔n
)

1,j
= (EA)1,n. When j = n and 1 < i < n, the same reasoning works

with P1↔i. Suppose now, that 1 < i < n and 1 < j < n. We get (EA)i,j = (EA)1,n anal-

ogously by using arbitrary permutation matrix P which replaces element j with n and

element i with 1. Since EA is symmetric, (G.6) is true also for i > j. On the other hand,

for all i, j ∈ {1, . . . , n}, we have (EA)i,i =
(
Pj↔iEAPT

j↔i
)
i,i

= (EA)j,j. Consequently, all

off-diagonal entries of EA are equal to some t and all diagonal entries have the same

value d. Since nd = trace(EA) =
∑n

i=1 E
(
AX(i, i)

)
= E

(∑n
i=1(AX)i,i

)
= r, we have

d = r
n

and it remains to show that t = 0. Define S :=

[
−1 0T

0 In−1

]
. Then SX differs

from X only by signs of the first row. Since entries of matrix X have zero-symmetric

distribution, we have E (AX) = E (ASX). Now[
d 1T

n−1t

1n−1t
. . .

]
= EA = E (ASX) = SEAS =

[
d −1T

n−1t

−1n−1t
. . .

]
, (G.7)

which implies t = 0 and proves I.1.

To prove I.2 observe that MX,λ is symmetric, positive semi-definite matrix. Denote

by ‖MX,λ‖∗ the nuclear (trace) norm of matrix MX,λ. We have

E
∣∣(MX,λ)i,j

∣∣ ≤ E
(
‖MX,λ‖∗

)
= E

(
trace(MX,λ)

)
= E

(
trace(HT

λ,βB
T
XBXHλ,β)

)
=

E
(
HT
λ,β(XTX)−1Hλ,β

)
=

n

(n− r − 1)
HT
λ,βHλ,β =

n ‖λS‖2
2

n− r − 1
,

(G.8)

since XTX follows an inverse Wishart distribution. This gives the existence of EM .

Analogously to situation from the proof of I.1, EM is invariant with respect to per-

mutation or signs changes applied to rows of X. Since E (MPX,λ) = PEMPT and

E (MSX,λ) = SEMS, as before we have that EM is a diagonal matrix with all diagonal

entries having the same value d. The value d can be easy found by using (G.8), since

we have nd = trace
(
EM
)

=
n ‖λS‖22
n−r−1

. �
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Proof of Theorem 2.8. The claim that v̂Ii has expected value equal to zero for each

i > s follows simply from the fact that Ii ∩ IS = ∅ for such i and all entries of X

are assumed to be randomized independently from the normal distribution with mean

zero. To find the covariance matrix we will express vector v̂Ii in the form

v̂Ii =

ξX,z︷ ︸︸ ︷
XT
Ii

[
In −XIS(XT

IS
XIS)−1XT

IS︸ ︷︷ ︸
AX

]
z +

ζX︷ ︸︸ ︷
wXT

Ii
XIS(XT

IS
XIS)−1︸ ︷︷ ︸

BX

Hλ,β (G.9)

Since E(ξX,zζ
T
X) = 0, it holds Cov(v̂Ii) = Cov(ξX,z) +Cov(ζX). Now thanks to Lemma

G.2 we have

Cov(ξX,z) = E
[
XT
Ii

(
In − AX

)
zzT
(
In − AX

)T
XIi

]
=

E
[
XT
Ii

(
In − AX

)(
In − AX

)T
XIi

]
= E

[
XT
Ii

(
In − AX

)
XIi

]
=

1

n

(
n− ls

)
· E
[
XT
Ii
XIi

]
=

1

n

(
n− ls

)
· Il,

(G.10)

Cov(ζX) = w2E
[
XT
Ii
BXHλ,βH

T
λ,βB

T
XXIi

]
= w2 ‖λS‖2

2

n− sl − 1
E
[
XT
Ii
XIi

]
=

w2 ‖λS‖2
2

n− sl − 1
Il.

(G.11)

�

H Expected maximal group effect under the total

null hypothesis

Consider the case when all submatrices XIi have the same rank, l > 0, w > 0 is

used as the universal weight and X is orthogonal at groups level. From the inter-

pretation of gSLOPE estimate coming from (2.12), we see that the identification of

the relevant groups could be summarized as follows: λ decides on the number, R, of

groups labeled as relevant, which correspond to indices of the R largest values among

w−1‖ỹI1‖2, . . . , w
−1‖ỹIm‖2. The random variables w−1‖ỹIi‖2 have a (possibly) non-

27



central χ distributions with l degrees of freedom and noncentrality parameters given

by the entries of Jβ̃KI. Now, the nonzero ‖β̃Ii‖2 could be perceived as a strong signal,

if with high probability the random variable having the noncentral χ distribution with

the noncentrality parameter ‖β̃Ii‖2 is large compared to the background composed of

the independent random variables with the χl distributions (then signal is likely to be

identified by gSLOPE; otherwise, the signal could be easily covered by random distur-

bances and its identification has more in common with good luck than with the usage

of particular method). The important quantity, which could be treated as a breaking

point, is the expected value of the maximum of the background noise. Group effects

being close to this value, could be perceived as medium under the orthogonal case

and weak under the occurrence of correlations between groups. The above reasoning

applied to the considered case, yields the issue of approximation of the expected value

of the maximum of m independent χl-distributed variables. Suppose that Ψi ∼ χl for

i = {1, . . . ,m}. From Jensen’s inequality we have

E
(

max
i=1,...,m

{Ψi}
)

= E
(√

max
i=1,...,m

{Ψ2
i }
)
≤

√
E
(

max
i=1,...,m

{Ψ2
i }
)
,

hence we will replace the last problem by the problem of finding a reasonable up-

per bound on the expected value of the maximum of m independent, χ2
l -distributed

variables.

Theorem H.1. Let Ψ1, . . . ,Ψm be independent variables, Ψi ∼ χ2
l for all i. Then

E
(

max
i=1,...,m

{Ψi}
)
≤ 4 ln(m)

1−m− 2
l

. (H.1)

Proof. Denote Mm := maxi=1,...,m{Ψi}. From the Jensen’s inequality applied to etMm

we have
etE[Mm] ≤ E

[
etMm

]
= E

[
max

i=1,...,m
etΨi
]
≤

m∑
i=1

E
[
etΨi
]
. (H.2)

We will consider only t ∈ [0, 1
2
). Since the moment generating function for χ2

l distribu-
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tion is given by MGF := (1 − 2t)−
l
2 , for each i it holds E

[
etΨi
]

= (1 − 2t)−
l
2 and we

get etE[Mm] ≤ m(1− 2t)−
l
2 . Applying the natural logarithm to both sides yields

E[Mm] ≤
ln(m) + ln

(
(1− 2t)−

l
2

)
t

, t ∈ [0, 1/2) . (H.3)

Define tm,l := 1−m−
2
l

2
. Then for all positive, natural numbers l and m we have tm,l ∈

[0, 1
2
). Plugging tm,l to the right side of (H.3) gives inequality (H.1) and finishes the

proof. �

The above theorem gives us the motivation to use the quantity
√

4 ln(m)/(1−m−2/l) as

the upper bound on the expected value of maximum over m independent χl-distributed

variables. In all simulations, which we have performed to investigate the performance of

gSLOPE, we have generated the effects for truly relevant groups basing on these upper

bounds. In particular, in experiments where li’s as well as weights were identical, we

aimed at E (‖ỹIi‖2) =
√

4 ln(m)/(1−m−2/l), for the truly relevant group i. Since

E (‖ỹIi‖2) ≈
√
‖β̃Ii‖2

2 + l, this yields the setting

‖β̃Ii‖2 = B(m, l), for B(m, l) :=
√

4 ln(m)/(1−m−2/l)− l (H.4)

for groups chosen to be truly relevant.

I Screening procedure for SNPs

We used the genotype and the phenotype data from the North Finland Birth Co-

hort (NFBC1966) dataset, described in detail in (Sabatti et al., 2009) and available

in dbGaP with accession number phs000276.v2.p1 (http://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000276.v2.p1). The raw data con-

tains 364,590 markers for 5,402 subjects. To obtain a set of suitable weakly correlated

SNPs for use in the simulation study, we screened the data as follows.
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a) The genotype data was filtered in PLINK using the criteria that each SNP should

be in Hardy-Weinberg equilibrium (HWE) with p-value at least 0.0001, have

minor allele frequency (MAF) at least 0.01, and have a call rate of at least 95%.

Also, copy number variants (CNVs) were excluded. This resulted in a screened

set of 334,103 SNPs.

b) We applied the PLINK clump command. This command requires as input p-

values for association to a phenotype. To obtain these, we performed association

analysis in EMMAX using a Balding-Nichols marker-based kinship matrix to

adjust for population structure (see Kang et al., 2010). As the response variable,

we used the residuals for high-density lipoproteins (HDL) after regressing out

the effects of sex, pregnancy or oral contraceptive use, following the analysis in

(Sabatti et al., 2009).

c) PLINK clump was applied using a significance threshold of 0.2 for index SNPs,

a physical distance window of 1 kb, and a linkage disequilibrium (LD) threshold

for clumping of r2 = 0.1. This corresponds to a maximum absolute correlation

for nearby SNPs of
√

0.1 = 0.316.

d) Since PLINK uses a distance-based cut-off on clumps, the resulting set of SNPs

was then re-screened in R to ensure that the maximum r2 between any two SNPs

was 0.1. The final set includes 26,315 SNPs.
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