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Figure S1: Redundancy is related to Cross-Talk and Point-Spread Functions (related to Figure 2).
(A) Cross-Talk Function in one exemplary participant (same as in figure 2B). It shows how activity at dif-
ferent grid points leaks into estimates of activity queried at grid point of interest, here at a right AC dipole.
(B) Relationship of squared Cross-Talk Function (CTF) and Redundancy in exemplary participant. Cor-
relation in top left reports Pearson correlation. The mean of this correlation (Fisher-Z transformed before
averaging and retransformed after averaging) was 0.75 (right AC, range: [0.26, 0.91]) and 0.68 (left AC,
range: [−0.09, 0.94]). (C) Point-Spread Function in one exemplary participant. It shows how activity at
grid point of interest, here at a right AC dipole, leaks into estimates of activity queried at other positions in
source space. (D) Relationship of squared Point-Spread Function (CTF) and Redundancy in exemplary
participant. Correlation in top left reports Pearson correlation. The mean of this correlation (Fisher-Z
transformed before averaging and retransformed after averaging) was 0.60 (right AC, range: [0.16, 0.83])
and 0.51 (left AC, range: [−.10, .87]).



Figure S2: Hyperparameter choices for source model optimisation (related to Figure 3).
(A) Maximum distance between source positions used for test set prediction across all test sets and
feature spaces. Each dot is one participant in the respective hemisphere, colour codes participants. (B)
and (C) Positions of all test sets and feature spaces in meshes of individual brain volumes of two exem-
plary participants. (B) shows the participant with the largest maximum distance between chosen source
locations and (C) the participant closest to the median of maximum distances between chosen source
locations. Each dot is one test set, colour codes feature spaces. (D) Evaluation of spatial clustering of
choices of source positions for different feature spaces using the Silhouette Index. Values close to 1 re-
flect that the optimisation procedure finds positions in source space that are highly simliar within feature
spaces but dissimilar across feature spaces, lower values reflect that the found positions are randomly
arranged in source space. Each dot is one test set of one participant, colour codes participants. Black
lines denote pooled means. (E) Choices of beamformer regularisation hyperparameter λsource for each
feature space. Each dot represents one test set of one participant, colour codes participants. Black lines
denote pooled means.



Figure S3: Hyperparameter choices of forward model optimisation differ systematically across
feature (sub-)spaces (related to Figure 3).
(A) Choices of temporal extent hyperparameters for each feature (sub-)space. Shown are averages
across inner folds used for test set predictions, pooled across participants. Values that were used in all
cross-validated models of all participants are plotted as transparent bars ranging from tMin – tMax such
that the opacity codes for the number of participants and folds for which the temporal extent was chosen
correspondingly. (B) Choices of L2 regularisation hyperparameters for each feature (sub-)space. Shown
are distributions of choices averaged across inner folds used for test set predictions, pooled across
participants. Colours code feature spaces.
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Figure S4: Hyperparameter choices for phoneme related field (PRF) analysis (related to Figure
5).
(A) Maximal euclidean distances of source positions when optimised with regard to model performances
across all test sets and feature spaces subtracted from maximal euclidean distances of source positions
when positions found when optimising with regard to PRF MI are included. (B) Results of optimising
sensor covariance regularisation parameter with regard to PRF MI. Colour in (A) and (B) codes partici-
pants.



Figure S5: Raw values and comparison to noise thresholds of PID in EEG and MEG (related to
Figures 4 and 6).
(A) Raw (unnormalised) PID values (Red: redundancy, U: unique information [of competing feature
spaces and of benchmark articulatory feature space] and Syn: synergy) in MEG data from left and right
AC. Each colour codes for a single participant, each dot is one test set. Pooled medians are indicated
with black lines. (B) Comparison of PID values in MEG data to noise thresholds. Image plot shows
the fraction of data points (sources, test sets) that exceeded the corresponding noise threshold in each
participant and for each feature space and each PID atom. (C) Raw (unnormalised) PID values (redun-
dancy, unique information of competing feature spaces, unique information of benchmark articulatory
feature space and synergy) in EEG data from all 12 electrodes. Each colour codes for a single partic-
ipant, each dot is one test set. Pooled medians are indicated with black lines. (D) Comparison of PID
values in EEG data to noise thresholds. Image plot shows the fraction of data points (sources, test sets)
that exceeded the corresponding noise threshold in each participant and for each feature space and
each PID atom.



Figure S6: Comparison of 16 channel spectrogram, 16 channel spectrogram with compressive
nonlinearity and log-mel spectrogram in EEG data (related to Figure 6).
(A) Raw test set performances of feature spaces. Each dot is one test set of one participant, averaged
across electrodes. Colour codes participants. Pooled medians overlaid. Colours in x-axis labelling
refer to feature spaces. (B) Percent of samples in favour of hypotheses of differences of beta estimates
between all feature spaces. Hypotheses are colour coded using the same colour mapping as in x-axis
labelling of (A).
The performances obtained using Sg were in general higher than those obtained using Sg16, a 16-
channel spectrogram modelled after the original study [1]. The combination of Sg16&Art failed to out-
perform Sg on its own (fh1 = 0.2318).
The overall pattern of performances was largely similar regardless of using Sg or Sg16 as the spectro-
gram. In contrast to the results produced using Sg however, we found that the Sg16&Art combination
outperformed the Sg16&PhOn combination (fh1

= 0.9675).
To assess whether these differences were driven by the compressive linearity included in Sg, we addi-
tionally tested a version of Sg16 in which we raised its values to the power of 0.3 (“Sg16c”). Such nonlin-
earities are classically included in models of auditory processing, as early as the cochlea [2; 3; 4]. This
tweak indeed resulted in a pattern of performances that was largely similar to that obtained with Sg: The
combination of Sg&Deriv did not clearly outperform the combination of Sg16c&Deriv16c (fh1

= 0.8191),
and combining Sg16c&Art was not better than combining Sg16c&PhOn (fh1

= 0.6097).
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Figure S7: Mapping of phonemes to articulatory features and manners of articulation (related to
STAR Methods).
Black and white part shows articulatory features used for forward modelling [1], coloured part shows
manners of articulation used for decoding [5].



initial value lower boundary upper boundary

tMin[s] -0.2 -1.5 .5
tMax[s] 0.8 0.2 2.5
log2(λL2) 19 -30 30
λs[%] 30 0 200
Xsource Xmax(R2)|hemisphere min(Xvolume|hemisphere) max(Xvolume|hemisphere)
Ysource Ymax(R2)|hemisphere min(Yvolume|hemisphere) max(Yvolume|hemisphere)
Zsource Zmax(R2)|hemisphere min(Zvolume|hemisphere) max(Zvolume|hemisphere)

Table S1: Initial values and boundaries for hyperparameters in BADS optimisation (related to
STAR Methods).
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