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Machine learning model based on experimental data only 

  
 

Figure S1. (a) Ternary diagram showing the Young’s modulus values from 109 experiments as a function 
of composition in the CaO–Al2O3–SiO2 glass system. (b) Ternary diagram showing the Young’s modulus 
values predicted by a back-propagation ANN model with 1 hidden layer and 5 neurons trained based on 
the experimental data presented in (a). 
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Overfitting and underfitting 

  
Figure S2. Comparison between the Young’s modulus values computed by molecular dynamics 
simulations (wherein the training and test sets are indicated as white and red symbols, respectively) and 
predicted by select polynomial regression models with polynomial degrees of 1 (underfitted), 3 (optimal), 
and 20 (overfitted) for the series of compositions (a) (CaO)x(Al2O3)40–x(SiO2)60 and (b) 
(CaO)x(Al2O3)x(SiO2)100–2x. 

We investigate the manifestations of underfitting and overfitting in ML-based modelling. To this 
end, we focus on the example of PR—since the other methods considered herein do not yield any clear 
signature of overfitting. To this end, Fig. S2 shows the Young’s modulus values predicted by select PR 
models trained with varying polynomial degrees, namely, 1 (underfitted), 3 (optimal degree), and 20 
(overfitted). Overall, we observe that the underfitted model (linear model with degree = 1) is obviously 
too simple to properly capture the non-linear nature of the dataset. In contrast, due to its high complexity, 
the overfitted model is able to memorize the “noise” of the simulation data used in the training set. By 
encoding such noise in high-degree polynomes, the overfitted model offers a poor prediction of the test 
set. Specifically, overfitting results in the appearance of some intense spurious ripples toward the edges 
of the compositional domain. Overall, the optimal model (i.e., degree 3) offers the best ability to capture 
the non-linearity of the data while filtering out the noise of the simulation data. These results illustrate 
the requirement of properly tuning the level of complexity of ML models. 

Machine learning algorithms.   We now detail the different learning methods used herein. We first focus 
on the polynomial regression (PR) method1. PR is a special case of multiple linear regression that includes 
higher degree polynomial terms and treats these higher degree polynomes as other independent 
variables. In general, the Nth degree PR method can be described as: 
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where 𝑋 is the input, Y is the output, and the 𝛽(  terms are the fitting parameters corresponding to each 
degree i. Here, we adopt the multivariate polynomial regression with two independent variables, which 
can be expressed as: 
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where 𝑋, and 𝑋. are the two input variables (i.e., the composition terms x and y herein). The least-square 
method is then used to identify the coefficients 𝛽(  that minimize the sum of squared difference between 
the “real” stiffness values (i.e., computed by MD) and those predicted by the PR method (i.e., Y) during 
the training phase. The complexity of PR models depends on the choice of the Nth polynomial degree 
considered during training.  

     One of the major disadvantages of the least-squares approximation is that it tends to overfit the 
training data. LASSO (least absolute shrinkage and selection operator) regression offers a useful solution 
to decrease the complexity of the model and, thereby, limit the risk of overfitting2. This is accomplished 
by starting with the cost function used in PR (i.e., the sum of squared difference between “real” and 
“predicted” values) and adding an additional term that further penalizes complex models. The new cost 
function that needs to be minimized is then defined as: 
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where 𝜆  is a hyperparameter that is used to control the weight of the penalty associated with the 
complexity of the model. In practice, LASSO will force some of the 𝛽-  coefficients to be zero to minimize 
the value of the cost function, which results in a decrease in the complexity of the model. The degree of 
complexity of LASSO models can be tuned by adjusting the value of 𝜆, namely, increasing values of 𝜆 yield 
simpler models. 

     The random forest (RF) method relies on the creation of a “forest,” that is, an ensemble of decision 
trees3. The RF approach builds a tree by randomly choosing n samples from the training set (bootstrap 
method). Then, at each node, it uses a randomly selected subset of variables to choose the best split to 
construct trees. Random forest runs input data on all 𝑛8 trees and yields a prediction that is the average 
of all values returned by each tree: 
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where 𝑌((𝑋)  is the individual value predicted by one of the trees for an input vector 𝑋 and 𝑌(𝑋) is the 
overall output of the random forest model with 𝑛> trees4. The degree of complexity of RF models are 
characterized by the number of variables in the random subset and trees in the forest5. 

     Artificial neural networks (ANN) aim to mimic the learning process of human brains. ANN models 
consist of an input layer that is connected to an output layer via some “hidden” layers of neurons. Each 
neuron takes as inputs the signals from the previous layer and produces a new output (to be used as input 
by the neurons from the next layer). The output 𝑌(  of a neuron 𝑖 in one of the hidden layers is calculated 
as: 
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where 𝑠() is an activation function, 𝑁 is the number of input neurons in the previous layer, 𝑋(  are the 
input values, 𝑤(	are the weight associated with each edge of the network, and 𝑇(CDE is the threshold term 
of hidden neurons4. To capture the non-linearity in the relationship between composition and stiffness 
data, we adopt herein a sigmoid function as activation function:  

𝑠(𝑢) = 	
1
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We adopt here the resilient backpropagation (BP) algorithm to train the neural network model, which 
allows the network to learn from its errors6. The BP algorithm is an efficient method as it allows one to 
adjust the weight 𝑤(  by calculating the gradient of loss function 𝐸KLMM. To measure the error between the 
predicted and real outputs after a training sample has propagated through the network, we use the square 
of Euclidean distance to calculate the loss function 𝐸KLMM over 𝑛 training outputs as: 
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where 𝑌(  are the predicted outputs and 𝑌(Q is the read values (i.e., the simulated Young’s modulus values). 
Then, after 𝑘 iterations, each weight	𝑤(  is modified by applying an increment: 

𝑤((/S,) = 	𝑤((/) + ∆(/)𝑤(  (11) 
where  𝑤((/S,) is the updated weight, 𝑤((/) is the weight before update, and	∆(/)𝑤(  is the increment. The 
latter is calculated by following the steepest decreasing gradient in the error function as: 

∆(/)𝑤( = 	−𝛾(
(/)sgn(∇(𝐸(/)) (12) 

where sgn() denotes the “sign function”, ∇(𝐸(/) denotes the partial derivative (i.e., gradient) of the error 
function 𝐸(/) with respect to weight 𝑤(  at the kth iteration, and 𝛾(

(/) is the learning rate at kth iteration. 
The model is iteratively refined until all the absolute values of partial derivatives of the error function 
become smaller than a threshold value.  
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