Supplementary Online Content

Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P. Accuracy of computer-aided diagnosis of melanoma: a meta-analysis. *JAMA Dermatol*. Published online June 19, 2019. doi:10.1001/jamadermatol.2019.1375

eTable 1. General Characteristics of All Included Studies (n=132)

eTable 2. Assessment of Bias Risk and Applicability Concerns of the Included Studies (n=132) Using the QUADAS-2 Tool

eTable 3. Sensitivity, Specificy and Covariable Effects Calculated With Two Identified Outliers (Wolf 2013 and Jiji 2017) Excluded

eFigure. Risk of Bias, Applicability Concerns, and Methodologic Quality

eReferences.

This supplementary material has been provided by the authors to give readers additional information about their work.

eTable 1: General characteristics of all included studies (n=132)

NMLs = non-melanocytic lesions, nr= not reported, SVM= support vector machine, ANN= artificial neural network, *histopathology was only used for suspicious lesions

STUDY ID	METHOD	TEST SET SOURCE	TOTAL DATA SET SIZE	# OF MELANOMA	NMLS INCLUDED	CLASSIFIER	INDEPENDENT TEST SET	GOLD STANDARD FOR THE TEST SET	INCLUDED IN QUANTITATIVE ANALYSIS
ABUZAGHLEH 2015 ¹	computer vision	public	200	40	no	SVM	no	histopathology*, dermatoscopy	
AFIFI 2017 ²	computer vision	public	356	168	nr	SVM	no	nr	
AMOABEDINI 2018 ³	computer vision	public	76	38	no	threshold	no	nr	Yes
ASCIERTO 2010 ⁴	hardware- based	proprietary	54	12	no	nr	yes	histopathology	Yes
BARATA 2015A⁵	computer vision	public	482	241	nr	ensemble classifier	no	expert consensus	
BARATA 2015B ⁶	computer vision	public	200	40	no	random forests	no	histopathology*, dermatoscopy	Yes
BARROS MENDES 2018 ⁷	deep learning	public	5286	374	yes	ANN	no	nr	
BARZEGARI 20058	computer vision	proprietary	122	6	yes	ANN	no	histopathology	Yes
BAUR 20189	deep learning	public	2000	2000	yes	ANN	no	histopathology*, expert consensus	
BHATTACHARYA 2017 ¹⁰	deep learning	public	275	128	no	SVM	no	nr	
BI 2017 ¹¹	deep learning	public	4350	nr	nr	ANN	yes	histopathology*, expert consensus	Yes
BISSOTO 201812	deep learning	public	nr	nr	yes	ANN	yes	nr	
BONO 2002 ¹³	hardware- based	proprietary	313	66	yes	discriminant analysis	yes	histopathology	
CARCAGNI 2018 ¹⁴	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
CELEBI 2007 ¹⁵	computer vision	public	596	88	yes	SVM	no	histopathology*, follow-up	
CELEBI 2008 ¹⁶	computer vision	public	545	186	yes	decision tree	no	histopathology*, follow-up	
CHAKRAVATI 2015 ¹⁷	computer vision	public	456	251	nr	ANN	no	histopathology*, clinical evaluation	

CHANG H 2017 ¹⁸	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
CHANG WY 2013 ¹⁹	computer vision	proprietary	769	8	yes	SVM	no	histopathology	
CHANG WY 2015 ²⁰	computer vision	proprietary	347	7	yes	SVM	yes	histopathology	
CHOU 2017 ²¹	deep learning	public	200	40	no	SVM	no	histopathology*, dermatoscopy	
CODELLA 2016 ²²	deep learning	public	1279	248	no	SVM	yes	histopathology*, expert consensus, nr for part of the lesions	Yes
CODELLA 2018 ²³	deep learning	public	2750	521	yes	kNN	no	histopathology*, expert consensus	
DEL ROSARIO 2018 ²⁴	computer vision	proprietary	1076	71	yes	threshold	yes	histopathology	Yes
DING 2015 ²⁵	hardware- based	proprietary	46	12	yes	SVM	no	nr	Yes
DO 2014 ²⁶	computer vision	proprietary	81	29	nr	SVM	no	nr	
DO 2017 ²⁷	computer vision	proprietary	184	67	no	SVM	no	histopathology*, expert consensus	Yes
DREISEITL 2009 ²⁸	computer vision	proprietary	3827	31	no	ANN	yes	histopathology*, follow-up	Yes
ESTEVA 2017 ²⁹	deep learning	proprietary	129450	nr	yes	ANN	no	test set histopathology, rest unspecified (dermatologist-labelled)	
FERRI 2010 ³⁰	computer vision	proprietary	977	50	no	SVM	no	histopathology*, follow-up	Yes
FINK 2016 ³¹	hardware- based	proprietary	360	3	no	threshold	yes	histopathology*, dermoscopy follow-up	Yes
FORNACIALI 2016 ³²	deep learning	public	1052	267	nr	SVM	no	histopathology*, clinical evaluation	
FORSCHNER 2018 ³³	hardware- based	proprietary	529	101	yes	ANN	no	histopathology	Yes
FRIEDMAN 2008 ³⁴	hardware- based	proprietary	99	49	no	threshold	no	histopathology	
GAREAU 2017 ³⁵	computer vision	proprietary	120	60	no	decision tree	no	histopathology	Yes
GARNAVI 2012 ³⁶	computer vision	proprietary	289	114	nr	random forests	no	nr	Yes
GAUTAM 2018 ³⁷	computer vision	public	294	138	nr	random forests	no	nr	Yes

GILMORE 2009 ³⁸	computer vision	proprietary	312	102	no	nr	no	histopathology*, dermatoscopy	
GILMORE 2010 ³⁹	computer vision	proprietary	199	101	no	SVM	no	histopathology	Yes
GILMORE 2018 ⁴⁰	computer vision	proprietary	250	85	no	SVM	no	histopathology*, dermoscopy evaluation	
GONZALEZ DIAZ 2017 ⁴¹	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
GOYAL 2018 ⁴²	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
GUO S 2017 ⁴³	deep learning	public	2750	521	yes	ensemble classifier	yes	histopathology*, expert consensus	Yes
GUO Y 2018 ⁴⁴	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
HAENSSLE 2018 ⁴⁵	deep learning	proprietary	>100000	nr	no	ANN	no	histopathology*, dermoscopy follow-up	Yes
HAIDER 2014 ⁴⁶	computer vision	public	206	119	nr	bayesian	no	histopathology	Yes
HARANGI 201747	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
HARANGI 201848	deep learning	public	2750	521	yes	ensemble on ANNs	no	histopathology*, expert consensus	
HARDIE 201849	computer vision	public	10015	1113	yes	SVM	no	histopathology*, follow-up, confocal microscopy, expert consensus	Yes
HAR-SHAI 200550	hardware- based	proprietary	449	69	yes	threshold	yes	histopathology	Yes
HAUSCHILD 2014 ⁵¹	hardware- based	proprietary	130	65	yes	threshold	yes	histopathology	
HUNGER 2012 ⁵²	hardware- based	proprietary	45	12	no	threshold	yes	histopathology*, follow-up	
JAWOREK- KORJAKOWSKA 2016A ⁵³	computer vision	public	300	60	no	SVM	no	histopathology	Yes
JAWOREK- KORJAKOWSKA 2016B ⁵⁴	computer vision	public	200	70	nr	SVM	no	histopathology	
JIJI 2017 ⁵⁵	computer vision	public	2750	521	yes	SVM	yes	histopathology*, expert consensus	Yes
KAUR 2015 ⁵⁶	computer vision	proprietary	192	114	no	linear regression	no	histopathology*, follow-up	

KAWAHARA 2018 ⁵⁷	deep learning	proprietary	1011	252	yes	ANN	no	nr	Yes
KHAN 201858	computer vision	public	4752	1057	yes	SVM	no	histopathology*, follow-up, expert consensus, unknown for partof the lesions	Yes
KITADA 2018 ⁵⁹	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
KOSTOPOULOS 2017 ⁶⁰	computer vision	public	399	69	no	ANN	no	nr	Yes
LAI 2018 ⁶¹	deep learning	public	2000	374	yes	ANN	no	histopathology*, expert consensus	
LEE 2018 ⁶²	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
LI K 2018 ⁶³	deep learning	public	10015	1113	yes	ANN	no	histopathology*, follow-up, confocal microscopy, expert consensus	Yes
LI L 2014 ⁶⁴	hardware- based	public	187	19	no	bayesian	no	histopathology	
LI Y 2017 ⁶⁵	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
LINGALA 2014 ⁶⁶	computer vision	proprietary	888	195	no	logistic regression model	no	nr	
LIU 2015 ⁶⁷	computer vision	public	258	76	yes	SVM	no	histopathology*, clinical evaluation	Yes
LU 2018 ⁶⁸	deep learning	public	10015	1113	yes	ANN	no	histopathology*, follow-up, confocal microscopy, expert consensus	
MAGLIOGIANNIS 2004 ⁶⁹	computer vision	proprietary	17	7	no	SVM	no	histopathology	
MAGLIOGIANNIS 2015 ⁷⁰	computer vision	proprietary	208	100	no	SVM	no	histopathology	Yes
MAHBOD 2017 ⁷¹	deep learning	public	2750	521	yes	SVM	yes	histopathology*, expert consensus	Yes
MAITNER 2018 ⁷²	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
MALVEHY 2014 ⁷³	hardware- based	proprietary	2416	265	yes	threshold	yes	histopathology	Yes
MANOUSAKI 2006 ⁷⁴	computer vision	proprietary	132	23	no	logistic regression model	no	histopathology	Yes
MARCHETTI 201875	deep learning	public	379	75	no	threshold	no	histopathology*, expert consensus	Yes
MARQUES 2012 ⁷⁶	computer vision	proprietary	163	17	no	nr	no	nr	Yes

MATSUNAGA 2017 ⁷⁷	deep learning	public	4194	930	yes	ANN	yes	histopathology*, expert consensus	Yes
MENEGOLA 2016 ⁷⁸	deep learning	public	nr	nr	yes	SVM	no	histopathology	
MENEGOLA 2017A ⁷⁹	deep learning	public	nr	nr	yes	SVM	no	histopathology*, expert consensus, nr for part of the lesions	Yes
MENEGOLA 2017B ⁸⁰	deep learning	public	18000	nr	yes	SVM	yes	nr	Yes
MESSADI 2009 ⁸¹	computer vision	proprietary	180	72	no	ANN	no	clinical evaluation	
MIRUNALINI 2017 ⁸²	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
MOLLERSEN 2015 ⁸³	computer vision	proprietary	877	45	yes	nr	yes	histopathology	Yes
MONHEIT 2011 ⁸⁴	hardware- based	proprietary	1632	127	yes	threshold	yes	histopathology	
MUNIA 2017 ⁸⁵	computer vision	public	170	70	no	SVM	no	nr	Yes
MURPHREE 2017 ⁸⁶	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
NADER VASCONCELOS 2017 ⁸⁷	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
NANNI 2018 ⁸⁸	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
NASIRI 2018 ⁸⁹	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
NASR-ESFAHANI 2016 ⁹⁰	deep learning	public	170	70	no	ANN	yes	nr	
NICOLAS 2014 ⁹¹	computer vision	proprietary	150	nr	yes	kNN	no	histopathology	
PAL 201892	deep learning	public	10015	1113	yes	ANN	yes	histopathology*, follow-up, confocal microscopy, expert consensus	
PATWARDHAN 2005 ⁹³	hardware- based	proprietary	90	30	no	bell membership function	no	histopathology	Yes
PELLACANI 200494	computer vision	proprietary	339	113	no	discriminant analysis	no	histopathology	Yes
PEREZ 201895	deep learning	public	2750	512	yes	ANN	no	histopathology*, expert consensus	
PICCOLO 2014 ⁹⁶	computer vision	proprietary	165	33	no	threshold	no	histopathology	Yes

POLAP 201897	computer vision	public	200	40	no	ANN	no	histopathology*, dermoscopy evaluation	Yes
QUINZAN 201398	hardware- based	proprietary	32	7	no	qualified majority voting with 5 SVMs	no	histopathology	Yes
RADHAKRISHNAN 2017 ⁹⁹	deep learning	public	1279	248	no	ANN	no	histopathology*, expert consensus, nr for part of the lesions	Yes
RADHAKRISHNAN 2018 ¹⁰⁰	deep learning	public	2750	512	yes	ANN	no	histopathology*, expert consensus	
RAMEZANI 2014 ¹⁰¹	computer vision	public	282	133	nr	SVM	no	nr	Yes
RAY 2018 ¹⁰²	deep learning	public	10015	1113	yes	deep forest	no	histopathology*, follow-up, confocal microscopy, expert consensus	
REZVANTALAB 2018 ¹⁰³	deep learning	public	10135	1153	yes	ANN	no	histopathology*, follow-up, confocal microscopy, expert consensus, dermoscopy evaluation	Yes
ROCHA 2017 ¹⁰⁴	hardware- based	proprietary	160	6	no	threshold	yes	histopathology*, follow-up	Yes
RUBEGNI 2015 ¹⁰⁵	computer vision	proprietary	856	272	no	logistic regression model	no	histopathology	Yes
RUIZ 2008 ¹⁰⁶	computer vision	public	110	nr	nr	voting system based on ANNs and a bayesian classifier	no	nr	
SABBAGHI 2018 ¹⁰⁷	computer vision	proprietary	825	181	no	SVM	no	histopathology*, dermoscopy follow-up	
SATHEESHA 2017 ¹⁰⁸	computer vision	public	263	nr	no	SVM	no	nr	
SBONER 2003 ¹⁰⁹	computer vision	proprietary	152	42	no	ensemble classifier	no	histopathology	Yes
SHAIFIEE 2017 ¹¹⁰	deep learning	public	9152	567	yes	ANN	no	histopathology	
SITU 2008 ¹¹¹	computer vision	proprietary	100	30	no	SVM	no	nr	
SITU 2010 ¹¹²	computer vision	proprietary	100	30	no	SVM	no	nr	Yes
SITU 2011 ¹¹³	computer vision	public	360	90	nr	SVM	no	histopathology	
STANLEY 2007 ¹¹⁴	computer vision	public	226	113	no	threshold	no	histopathology	Yes
STOECKER 2005 ¹¹⁵	computer vision	proprietary	512	165	no	ANN	no	histopathology	

SWANSON 2010 ¹¹⁶	computer vision	proprietary	118	11	yes	threshold	no	histopathology	Yes
TEIXEIRA SOUSA 2017 ¹¹⁷	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
TENENHAUS 2010 ¹¹⁸	computer vision	proprietary	227	32	no	partial least squares model	no	histopathology*, clinical evaluation	Yes
TOMATIS 2003 ¹¹⁹	hardware- based	proprietary	573	132	yes	ANN	no	histopathology	
TOMATIS 2005 ¹²⁰	hardware- based	proprietary	2507	184	yes	ANN	no	histopathology*, clinical evaluation	
TSCHANDL 2018 ¹²¹	deep learning	public	20329	3044	yes	ANN	no	histopathology*, expert consensus, nr for part of the lesions	Yes
VALLE 2017 ¹²²	deep learning	public	19931	2401	yes	ANN	no	nr	
WADHAWAN 2011 ¹²³	computer vision	public	347	110	nr	SVM	no	dermatoscopy	Yes
WOLF 2013 ¹²⁴	computer vision	proprietary	188	60	yes	nr	yes	histopathology	Yes
WU 2018 ¹²⁵	deep learning	public	10015	1113	yes	ANN	no	histopathology*, follow-up, confocal microscopy, expert consensus	
YANG 2017 ¹²⁶	deep learning	public	2750	521	yes	ANN	yes	histopathology*, expert consensus	Yes
YAP 2018 ¹²⁷	deep learning	proprietary	2917	727	yes	ANN	no	histopathology	Yes
YI 2018 ¹²⁸	deep learning	public	1479	288	no	ANN	no	histopathology*, dermoscopy evaluation, expert consensus	
YU C 2018 ¹²⁹	deep learning	proprietary	724	350	no	ANN	no	histopathology	Yes
YU L 2017 ¹³⁰	deep learning	public	1279	248	no	ANN	no	histopathology*, expert consensus, nr for part oft he lesions	Yes
ZEKOVIC 2014 ¹³¹	hardware- based	proprietary	48	11	yes	partial least squares model	no	histopathology	
ZHOU 2011132	hardware- based	proprietary	76	23	nr	ensemble classifier	no	nr	

STUDY ID	SAMPLE SELECTION (BR)	INDEX TEST (BR)	REFERENCE STANDARD (BR)	FLOW AND TIMING (BR)	SAMPLE SELECTION (AP)	INDEX TEST (AP)	REFERENCE STANDARD (AP)
ABUZAGHLEH 2015 ¹	high	high	low	low	low	low	low
AFIFI 2017 ²	high	high	moderate	high	low	low	low
AMOABEDINI 2018 ³	high	high	moderate	high	low	low	low
ASCIERTO 2010 ⁴	low	low	low	low	low	low	low
BARATA 2015A ⁵	high	high	low	low	low	low	low
BARATA 2015B ⁶	high	high	low	low	low	low	low
BARROS MENDES 20187	high	high	moderate	high	low	low	low
BARZEGARI 20058	low	high	low	low	low	low	low
BAUR 20189	high	high	low	low	low	low	low
BHATTACHARYA 2017 ¹⁰	high	high	moderate	moderate	low	low	low
BI 2017 ¹¹	high	low	moderate	low	low	low	low
BISSOTO 201812	high	low	moderate	low	moderate	moderate	low
BONO 2002 ¹³	high	low	low	low	moderate	moderate	low
CARCAGNI 201814	high	low	low	low	moderate	moderate	low
CELEBI 2007 ¹⁵	high	high	low	high	low	low	low
CELEBI 2008 ¹⁶	high	high	low	low	moderate	moderate	low
CHAKRAVATI 2015 ¹⁷	high	high	moderate	high	low	low	low
CHANG H 2017 ¹⁸	high	low	moderate	low	low	low	moderate
CHANG WY 2013 ¹⁹	high	high	low	low	moderate	moderate	low
CHANG WY 2015 ²⁰	high	high	low	low	moderate	moderate	low
CHOU 2017 ²¹	high	high	low	low	low	low	low
CODELLA 2016 ²²	high	high	high	low	low	low	low
CODELLA 2018 ²³	high	high	low	low	low	low	low
DEL ROSARIO 2018 ²⁴	high	high	low	high	low	low	low
DING 2015 ²⁵	high	high	moderate	moderate	low	low	moderate
DO 2014 ²⁶	high	high	moderate	moderate	moderate	low	moderate

eTable 2: Assessment of bias risk (br) and applicability concerns (ap) of the included studies (n=132) using the QUADAS-2 tool.

DO 2017 ²⁷	high	high	low	low	low	low	low
DREISEITL 2009 ²⁸	low	low	low	high	low	low	low
ESTEVA 2017 ²⁹	high	low	low	low	low	low	low
FERRI 2010 ³⁰	high	low	low	low	low	low	low
FINK 2016 ³¹	high	low	high	high	low	low	low
FORNACIALI 2016 ³²	high	high	low	low	low	low	low
FORSCHNER 2018 ³³	high	low	low	low	moderate	moderate	low
FRIEDMAN 2008 ³⁴	high	low	low	low	moderate	moderate	low
GAREAU 2017 ³⁵	high	high	low	high	low	low	low
GARNAVI 2012 ³⁶	high	high	high	moderate	low	low	moderate
GAUTAM 2018 ³⁷	high	high	moderate	moderate	low	low	low
GILMORE 2009 ³⁸	high	high	high	low	low	low	low
GILMORE 2010 ³⁹	high	high	low	low	low	low	low
GILMORE 2018 ⁴⁰	high	high	low	low	low	low	low
GONZALEZ DIAZ 2017 ⁴¹	high	low	low	low	low	low	low
GOYAL 2018 ⁴²	high	low	low	low	moderate	moderate	low
GUO S 2017 ⁴³	high	low	low	low	low	low	low
GUO Y 201844	high	low	low	low	moderate	moderate	low
HAENSSLE 201845	high	low	low	low	low	low	low
HAIDER 2014 ⁴⁶	high	high	low	low	low	low	low
HARANGI 2017 ⁴⁷	high	low	low	low	low	low	low
HARANGI 2018 ⁴⁸	high	high	low	low	low	low	low
HARDIE 2018 ⁴⁹	high	high	low	low	moderate	moderate	low
HAR-SHAI 2005 ⁵⁰	low	low	low	high	low	low	low
HAUSCHILD 2014 ⁵¹	high	low	low	low	moderate	moderate	low
HUNGER 2012 ⁵²	low	low	low	low	low	low	low
JAWOREK-KORJAKOWSKA 2016A ⁵³	high	high	low	low	low	low	low
JAWOREK-KORJAKOWSKA 2016B ⁵⁴	high	high	low	low	low	low	low
JIJI 2017 ⁵⁵	high	low	low	low	low	low	low
KAUR 2015 ⁵⁶	high	high	low	low	low	low	low

KAWAHARA 201857	high	high	moderate	low	moderate	moderate	low
KHAN 2018 ⁵⁸	high	high	moderate	moderate	low	low	low
KITADA 2018 ⁵⁹	high	low	low	low	moderate	moderate	low
KOSTOPOULOS 201760	high	low	moderate	low	low	low	low
LAI 2018 ⁶¹	high	high	low	low	low	low	low
LEE 2018 ⁶²	high	low	low	low	moderate	moderate	low
LI K 2018 ⁶³	high	high	low	low	moderate	moderate	low
LI L 2014 ⁶⁴	high	high	low	low	low	low	low
LI Y 2017 ⁶⁵	high	low	low	low	low	low	low
LINGALA 2014 ⁶⁶	high	high	low	low	low	low	low
LIU 2015 ⁶⁷	high	low	high	low	low	low	low
LU 2018 ⁶⁸	high	high	low	low	moderate	moderate	low
MAGLIOGIANNIS 200469	high	high	low	low	low	low	low
MAGLIOGIANNIS 2015 ⁷⁰	high	high	low	low	low	low	low
MAHBOD 2017 ⁷¹	high	low	low	low	low	low	low
MAITNER 2018 ⁷²	high	low	low	low	moderate	moderate	low
MALVEHY 2014 ⁷³	low	low	low	low	moderate	moderate	low
MANOUSAKI 200674	high	high	low	low	low	low	low
MARCHETTI 201875	high	high	low	low	low	low	low
MARQUES 2012 ⁷⁶	high	low	low	low	low	low	low
MATSUNAGA 201777	high	low	low	low	low	low	low
MENEGOLA 2016 ⁷⁸	high	high	low	low	low	low	low
MENEGOLA 2017A ⁷⁹	high	high	low	low	low	low	low
MENEGOLA 2017B ⁸⁰	high	low	low	low	low	low	low
MESSADI 2009 ⁸¹	high	high	high	low	low	low	low
MIRUNALINI 2017 ⁸²	high	low	low	low	low	low	low
MOLLERSEN 2015 ⁸³	low	low	low	low	moderate	moderate	low
MONHEIT 2011 ⁸⁴	high	low	low	high	moderate	moderate	low
MUNIA 2017 ⁸⁵	high	high	moderate	low	low	low	low
MURPHREE 2017 ⁸⁶	high	low	low	low	low	low	low
NADER VASCONCELOS 2017 ⁸⁷	high	low	low	low	low	low	low

NANNI 2018 ⁸⁸	high	low	low	low	moderate	moderate	low
NASIRI 201889	high	low	low	low	moderate	moderate	low
NASR-ESFAHANI 201690	high	high	moderate	low	low	low	low
NICOLAS 2014 ⁹¹	high	high	low	low	low	low	low
PAL 201892	high	low	low	low	moderate	moderate	low
PATWARDHAN 200593	high	high	low	low	low	low	low
PELLACANI 200494	high	high	low	low	low	low	low
PEREZ 201895	high	high	low	low	low	low	low
PICCOLO 201496	high	low	low	low	low	low	low
POLAP 201897	high	high	low	low	low	low	low
QUINZAN 201398	low	high	low	low	low	low	low
RADHAKRISHNAN 201799	high	high	high	low	low	low	low
RADHAKRISHNAN 2018 ¹⁰⁰	high	high	low	low	low	low	low
RAMEZANI 2014 ¹⁰¹	high	high	moderate	moderate	low	low	low
RAY 2018 ¹⁰²	high	high	low	low	moderate	moderate	low
REZVANTALAB 2018 ¹⁰³	high	high	low	low	moderate	moderate	low
ROCHA 2017 ¹⁰⁴	low	low	low	low	low	low	low
RUBEGNI 2015 ¹⁰⁵	high	high	low	low	low	low	low
RUIZ 2008 ¹⁰⁶	high	high	moderate	moderate	low	low	low
SABBAGHI 2018 ¹⁰⁷	high	high	low	low	low	low	low
SATHEESHA 2017 ¹⁰⁸	high	high	moderate	low	low	low	low
SBONER 2003 ¹⁰⁹	high	high	low	low	low	low	low
SHAIFIEE 2017 ¹¹⁰	high	low	low	low	moderate	moderate	low
SITU 2008 ¹¹¹	high	high	moderate	low	low	low	moderate
SITU 2010 ¹¹²	high	high	moderate	low	low	low	moderate
SITU 2011 ¹¹³	high	low	low	low	low	low	low
STANLEY 2007 ¹¹⁴	high	high	low	low	low	low	low
STOECKER 2005 ¹¹⁵	high	low	low	low	low	low	low
SWANSON 2010 ¹¹⁶	low	high	low	low	low	low	low
TEIXEIRA SOUSA 2017 ¹¹⁷	high	low	low	low	low	low	low
TENENHAUS 2010 ¹¹⁸	high	low	moderate	high	low	low	low

 $\ensuremath{\mathbb{C}}$ 2019 American Medical Association. All rights reserved. 12

TOMATIS 2003 ¹¹⁹	low	high	low	low	low	low	low
TOMATIS 2005120	high	low	low	low	low	low	low
TSCHANDL 2018 ¹²¹	high	high	low	low	low	low	low
VALLE 2017 ¹²²	high	low	high	low	low	low	low
WADHAWAN 2011 ¹²³	high	low	high	low	low	low	low
WOLF 2013 ¹²⁴	high	low	low	low	low	low	low
WU 2018 ¹²⁵	high	high	low	low	moderate	moderate	low
YANG 2017 ¹²⁶	high	low	low	low	low	low	low
YAP 2018 ¹²⁷	high	high	low	low	moderate	moderate	low
YI 2018 ¹²⁸	high	high	low	low	low	low	low
YU C 2018 ¹²⁹	high	high	low	low	low	low	low
YU L 2017 ¹³⁰	high	low	high	low	low	low	low
ZEKOVIC 2014 ¹³¹	high	low	low	low	low	low	low
ZHOU 2011 ¹³²	high	high	moderate	moderate	low	low	low

eTable3: Sensitivity, specificy and covariable effects calculated with two identified outliers (Wolf 2013¹²⁴ and Jiji 2017⁵⁵) excluded.

			Summary Estimate with 95% Cl	Univariate p-value
Overall		Sensitivity	0.74 (0.66-0.81)	
Overall		Specificity	0.85 (0.80-0.89)	
Dataset Independence	Independent	Sensitivity	0.51 (0.32-0.70)	
		Specificity	0.85 (0.74-0.92)	
	Non-Independent	Sensitivity	0.82 (0.77-0.86)	p<0.001
		Specificity	0.85 (0.80-0.88)	p=0.967
Dataset Public	Public	Sensitivity	0.57 (0.44-0.69)	
		Specificity	0.92 (0.88-0.94)	
	Proprietary	Sensitivity	0.87 (0.83-0.91)	p<0.001
		Specificity	0.73 (0.64-0.80)	p<0.001
CAD Method	Computer Vision	Sensitivity	0.86 (0.82-0.89)	
		Specificity	0.79 (0.71-0.85)	
	Deep Learning	Sensitivity	0.44 (0.30-0.59)	p<0.001*
		Specificity	0.92 (0.89-0.95)	p<0.001*
	Hardware Based	Sensitivity	0.86 (0.77-0.92)	p=0.899*
		Specificity	0.70 (0.54-0.82)	p=0.352*

* Compared to Computer Vision

eFigure. Risk of Bias, Applicability Concerns, and Methodologic Quality

eFigure A, Summary of bias risk and applicability concern evaluations for studies included in the quantitative analysis (n = 70) using the QUADAS-2 tool.

eFigure B, Assessment of the methodologic quality of studies from the medical field (n = 27) using predefined criteria.

of studies meeting methodological quality criteria

eReferences

[1] Abuzaghleh O, Barkana B, Faezipour M. Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J Transl Eng Health Med. 2015; 3:2900310.

[2] Afifi S, Gholamhosseini H, Sinha R. SVM classifier on chip for melanoma detection. Conf Proc IEEE Eng Med Biol Soc. 2017; 270–274. doi:10.1109/embc.2017.8036814.

[3] Amoabedini A, Saffari M, Saberkani H, Aminian E. Employing the local radon transform for melanoma segmentation in dermoscopic images. J Med Signals Sens. 2018;8(3):184–194.

[4] Ascierto PA, Palla M, Ayala F et al. The role of spectrophotometry in the diagnosis of melanoma, BMC Dermatol. 2010;10:5.

[5] Barata C, Celebi ME, Marques M. A clinically oriented system for melanoma diagnosis using a color representation. Conf Proc IEEE Eng Med Biol Soc. 2015. 2015:7462-5. doi: 10.1109/EMBC.2015.7320117

[6] Barata C, Celebi ME, Marques J. Melanoma detection algorithm based on feature fusion. Conf Proc IEEE Eng Med Biol Soc. 2015; 2653– 6.doi:10.1109/embc.2015.7318937.

[7] Barros Mendes D, Correia da Silva N. Skin lesion classification using convolutional neural networks in clinical images. https://arxiv.org/abs/1812.02316. 2018.

[8] Barzegari M, Ghaninezhad H, Mansoori P, Taheri A, Naraghi Z, Asgari M. Computer-aided dermoscopy for diagnosis of melanoma. BMC Dermatol. 2005;5(1):8. doi:10.1186/1471-5945-5-8.

[9] Baur C, Albarqouni S, Navab N. MelanoGANs: High resolution skin lesion synthesis with GANs. https://arxiv.org/abs/1804.04338. 2018.

[10] Bhattacharya A, Young A, Wong A, Stalling S, Wei M, Hadley D. Precision diagnosis of melanoma and other skin lesions from digital images. AMIA Jt Summits Transl Sci Proc. 2017; 220–226.

[11] Bi L, Kim J, Ahn E, Feng DDF. Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. https://arxiv.org/abs/1703.04197. 2017.

[12] Bissoto A, Perez F, Ribeiro V, Fornaciali M, Avila S, Valle E. Deep-learning ensembles for skin lesion segmentation, analysis, classification: RECOD titans at ISIC challenge 2018. https://arxiv.org/abs/1808.08480. 2018.

[13] Bono A, Bartoli C, Cascinelli N et al. Melanoma detection. a prospective study comparing diagnosis with the naked

eye, dermatoscopy and telespectrophotometry. Dermatology. 2002;205(4):362-6.

[14] Carcagni P, Cunna A, Distante C. A dense CNN approach for skin lesion classification. https://arxiv.org/abs/1807.06416. 2018.

[15] Celebi ME, Kingravi HA, Uddin B et al. A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph. 2007;31(6):362–73. doi:10.1016/j.compmedimag.2007.01.003.

[16] Celebi ME, Iyatomi H, Stoecker WV et al. Automatic detection of blue-white veil and related structures in dermoscopy images. Comput Med Imaging Graph. 2008;32(8):670–7. doi:10.1016/j.compmedimag.2008.08.003.

[17] Chakravati M, Kothari T. A comprehensive study on the applications of machine learning for diagnosis of cancer. https://arxiv.org/abs/1505.01345. 2015.

[18] Chang H. Skin cancer reorganization and classification with deep neural network. https://arxiv.org/abs/1703.00534. 2017.

[19] Chang WY, Huang A, Yang CY et al. Computer-aided diagnosis of skin lesions using conventional digital photography: A reliability and feasibility study. PLoS ONE. 2013; 8(11):e76212. doi: 10.1371/journal.pone.0076212.

[20] Chang WY, Huang A, Chen Y et al. The feasibility of using manual segmentation in a multifeature computer-aided diagnosis system for classification of skin lesions: a retrospective comparative study. BMJ Open. 2015; 5(4):e007823. doi: 10.1136/bmjopen-2015-007823.

[21] Chou C, Shie C, Chang F, Chang J, Chang E. Representation learning in large and small data. https://arxiv.org/abs/1707.09873. 2017.

[22] Codella N, Nguyen QB, Pankanti S et al. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev. 2016;64(4). doi:10.1147/jrd.2017.2708299..

[23] Codella N, Hind M, Ramamurthy KN et al. Teaching meaningful explanations. https://arxiv.org/abs/1805.11648. 2018.

[24] Del Rosario F, Farahi J, Drendel J et al. Performance of a computer-aided digital dermoscopic image analyzer for melanoma detection in 1076 pigmented skin lesion

biopsies. J Am Acad Dermatol. 2018;78:927-34.

[25] Ding Y, John N, Smith L, Sun J, Smith M. Combination of 3D skin surface texture features and 2D ABCD features for improved melanoma diagnosis. Med Bio En Comput. 2015;53(10):961–74. doi:10.1007/s11517-015-1281-z

[26] Do T, Zhou Y, Zheng H, Cheung N, Koh D. Early melanoma diagnosis with mobile imaging. Conf Proc IEEE Eng Med Biol Soc. 2014;6752–7.

[27] Do T, Hoang T, Pomponiu V et al. Accessible melanoma detection using smartphones and mobile image analysis. https://arxiv.org/abs/1711.09553. 2017.

[28] Dreiseitl S, Binder M, Hable K, Kittler H. Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial. Melanoma Res. 2009;19(3):180–4. doi:10.1097/CMR.0b013e32832a1e41.

[29] Esteva A, Kuprel B, Novoa RA et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118.

[30] Ferri M, Stanganelli I. Size functions for the morphological analysis of melanocytic lesions. Int J Biomed Imaging. 2010;2010:621357. doi:10.1155/2010/6213575.

[31] Fink C, Jaeger C, Jaeger K, Haenssle H. Diagnostic performance of the MelaFind device in a real-life clinical setting, J Dtsch Dermatol Ges. 2017;15(4):414–20.

[32] Fornaciali M, Carvalho M, Vasques Bittencourt F, Avila S, Valle E. Towards automated melanoma screening: Proper computer vision & reliable results. https://arxiv.org/abs/1604.04024. 2016.

[33] Forschner A, Keim U, Hofmann M et al. Diagnostic accuracy of dermatofluoroscopy in cutaneous melanoma detection: results of a prospective multicentre clinical study in 476 pigmented lesions, Br J Dermatol. 2018;179:478–485.

[34] Friedman R, Gutkowicz-Krusin D, Farber M et al. The diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter

Melanomas. Arch Dermatol. 2008;144(4):476-82.

[35] Gareau D, Correa da Rosa J, Yagerman S et al. Digital imaging biomarkers feed machine learning for melanoma screening. Exp Dermatol. 2017;26:615–18.

[36] Garnavi R, Aldeen M, Bailey J. Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis. IEEE Trans Inf Technol Biomed.

2012;16(6):1239-52. doi:10.1109/titb.2012.2212282.

[37] Gautam D, Ahmed M, Meena Y, Ul Haq A. Machine learning–based diagnosis of melanoma using macro images. Int J Numer Method Biomed Eng. 2018;34(5):e2953.

[38] Gilmore S, Hofmann-Wellenhof R, Muir J, Soyer HP. Lacunarity analysis: A promising method for the automated assessment of melanocytic naevi and melanoma. PLoS ONE. 2009;4(10):e7449. doi:10.1371/journal.pone.0007449.

[39] Gilmore S, Hofmann-Wellenhof R, Soyer HP. A support vector machine for decision support in melanoma recognition. Exp Dermatol. 2010;19(9):830–5. doi:10.1111/j.1600-0625.2010.01112.x.

[40] Gilmore S. Automated decision support in melanocytic lesion management. PLoS One. 2018;13(9):e0203459.

[41] Gonzalez Diaz I. Incorporating the knowledge of dermatologists to convolutional neural networks for the diagnosis of skin lesions. https://arxiv.org/abs/1703.01976. 2017.

[42] Goyal M, Rajapakse J. Deep neural network ensemble by data augmentation and bagging for skin lesion classification. https://arxiv.org/abs/1807.05496. 2018.

[43] Guo S, Luo Y, Song Y. Random forests and VGG-NET: An algorithm for the ISIC 2017 skin lesion classification challenge. https://arxiv.org/abs/1703.05148. 2017

[44] Guo Y, Ashour A. Multiple convolutional neural network for skin dermoscopic image classification. https://arxiv.org/abs/1807.08114. 2018.

[45] Haenssle H, Fink C, Schneiderbauer R et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–1842.

[46] Haider S, Cho D, Amelard R, Wong A, Clausi DA. Enhanced classification of malignant melanoma lesions via the integration of physiological features from dermatological photographs, Conf Proc IEEE Eng Med Biol Soc. 2014;6455–8.

[47] Harangi B, Skin lesion detection based on an ensemble of deep convolutional neural network. https://arxiv.org/abs/1705.03360. 2017.

[48] Harangi B. Skin lesion classification with ensembles of deep convolutional neural networks. J Biomed Inform. 2018;86:25–32.

[49] Hardie R, Ali R, De Silva M, Kebede T. Skin lesion segmentation and classification for ISIC 2018 using traditional classifiers with hand-crafted features.

https://arxiv.org/abs/1807.07001. 2018.

[50] Har-Shai Y, Glickmann Y, Siller G et al. Electrical impedance scanning for melanoma diagnosis: A validation study. Plast Reconstr Surg. 2005;116(3):782–90.

[51] Hauschild A, Chen SC, Weichenthal M et al. To excise or not: Impact of melafind on german dermatologists' decisions to biopsy atypical lesions. J Dtsch Dermatol Ges. 2014;12:606–14. doi:10.1111/ddg.12362.

[52] Hunger RE, Torre Rocco D, Serov A, Hunziker T. Assessment of melanocytic skin lesions with a high-definition laser doppler imaging system. Skin Res Technol. 2012;18(2):207–11. doi:10.1111/j.1600-0846.2011.00555.x.

[53] Jaworek-Korjakowska J, Kleczek P. Automatic classification of specific melanocytic lesions using artificial intelligence. Biomed Res Int. 2016; 2016:8934242. doi:10.1155/2016/8934242

[54] Jaworek-Korjakowska J. Computer-aided diagnosis of micro-malignant melanoma lesions applying support vector machines, Biomed Res Int. 2016.

[55] Jiji G, Raj J. An extensive technique to detect and analyze melanoma: A challenge at the international symposium on biomedical imaging (ISBI) 2017. https://arxiv.org/abs/1702.08717. 2017.

[56] Kaur R, Albano PP, Cole JG et al. Real-time supervised detection of pink areas in dermoscopic images of melanoma:

importance of color shades, texture and location. Skin Res Technol. 2015;21(4):466-73. doi:10.1111/srt.12216.

[57] Kawahara J, Daneshvar S, Argenziano G, Hamarneh G. 7-point checklist and skin lesion classification using multi-task multi-modal neural nets. IEEE J Biomed Health

Inform. 2018;23(2):538-46.

[58] Khan M, Akram T, Sharif M et al. An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer. 2018;18(1):638

[59] Kitada S, Iyatomi H. Skin lesion classification with ensemble of squeeze-and-excitation networks and semi-supervised learning. https://arxiv.org/abs/1809.02568. 2018.

[60] Kostopoulos S, Asvestas P, Kalatzis I et al. Adaptable pattern recognition system for discriminating melanocytic nevi from malignant melanomas using plain photography images from different image databases. Int J Med Inform. 2017;105:1-10.

[61] Lai Z, Deng H. Medical image classification based on deep features extracted by deep model and statistic feature fusion with multilayer perceptron. Comput Intell Neurosci. 2018:2061516. doi: 10.1155/2018/2061516

[62] Lee Y, Jung S, Won H. WonDerM: Skin lesion classification with fine-tuned neural networks. https://arxiv.org/abs/1808.03426. 2018.

[63] Li K, Li E. Skin lesion analysis towards melanoma detection via end-to-end deep learning of convolutional neural networks. https://arxiv.org/abs/1807.08332. 2018.

[64] Li L, Zhang Q, Ding Y, Jiang H, Thiers BH, Wang JZ. Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system. BMC Med

Imaging. 2014;14:36. doi:10.1186/1471-2342-14-36.

[65] Li Y, Shen L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors (Basel). 2018;18(2):556.

[66] Lingala M, Stanley RJ, Rader RK et al. Fuzzy logic color detection: Blue areas in melanoma dermoscopy images. Comput Med Imaging Graph. 2014;38(5):403–410. doi:10.1016/j.compmedimag.2014.03.007.

[67] Liu Z, Zerubia J. Skin image illumination modeling and chromophore identification for melanoma diagnosis. Phys Med Biol. 2015;60(9):3415–31.

[68] Lu Y, Xu P. Anomaly detection for skin disease images using variational autoencoder. https://arxiv.org/abs/1807.01349. 2018.

[69] Maglogiannis IG, Zafiropoulos EP. Characterization of digital medical images utilizing support vector machines. BMC Med Inform Decis Mak. 2004;4:4. doi:10.1186/1472-6947-4-4.

[70] Magliogiannis I, Delibasis K. Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy. Comput Methods Programs Biomed.

2014;118(2):124-33.

[71] Mahbod A, Ecker R, Ellinger I. Skin lesion classification using hybrid deep neural networks. https://arxiv.org/abs/1702.08434. 2017

[72] Majtner T, Bajic B, Yildirim S, Hardeberg J, Lindblad J, Sladjoe N. Ensemble of convolutional neural networks for dermoscopic images classification. https://arxiv.org/abs/1808.05071. 2018.

[73] Malvehy J, Hauschild A, Curiel-Lewandrowski C et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety, Br J Dermatol. 2014;171(5):1099–107

[74] Manousaki AG, Manios AG, Tsompanaki EI et al. A simple digital image processing system to aid in melanoma diagnosis in an everyday melanocytic skin lesion

unit: a preliminary report, Int J Dermatol. 2006;45(4):402–10. doi:10.1111/j.1365-4632.2006.02726.x.

[75] Marchetti M, Codella N, Dusza S et al. Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge:

Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol. 2018;78(2):270–7.

[76] Marques J, Barata C, Mendonca T. On the role of texture and color in the classification of dermoscopy images. Conf Proc IEEE Eng Med Biol Soc. 2012;

4402-5.doi:10.1109/embc.2012.6346942.

[77] Matsunaga K, Hamada A, Minagawa A, Koga H. Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble.

https://arxiv.org/abs/1703.03108. 2017.

[78] Menegola A, Fornaciali M, Pires R, Avila S, Valle E. Towards automated melanoma screening: Exploring transfer learning schemes. https://arxiv.org/abs/1609.01228. 2016.

[79] Menegola A, Fornaciali M, Pires R, Vasques Bittencourt F, Avila S, Valle E. Knowledge transfer for melanoma screening with deep learning.

https://arxiv.org/abs/1703.07479. 2017.

[80] Menegola A, Tavares J, Fornaciali M, Li L, Avila S, Valle E. RECOD titans at ISIC challenge 2017. https://arxiv.org/abs/1703.04819. 2017

[81] Messadi M, Bessaid A, Taleb-ahmed A. Extraction of specific parameters for skin tumour classification. J Med Eng Technol. 2009;33(4):288–95. doi:10.1080/03091900802451315.

[82] Mirunalini P, Chandrabose A, Gokul V, Jaisakthi S. Deep learning for skin lesion classification. https://arxiv.org/abs/1703.04364. 2017.

[83] Møllersen K, Kirchesch H, Zortea M, Schopf TR, Hindberg K, Godtliebsen F. Computer-aided decision support for melanoma detection applied on melanocytic and nonmelanocytic skin lesions: A comparison of two systems based on automatic analysis of dermoscopic images, BioMed Res Int. 2015; 2015:579282. doi: 10.1155/2015/579282

[84] Monheit G, Cognetta AB, Ferris L et al. The performance of melafind a prospective multicenter study, Arch Dermatol. 2011;147:188–94. doi:10.1001/archdermatol.2010.302.

[85] Munia T, Alam M, Neubert J, Fazel-Rezai R. Automatic diagnosis of melanoma using linear and nonlinear features from digital image. Conf Proc IEEE Eng Med Biol

Soc 2017. 2017;4281-4284.

[86] Murphree DH, Ngufor C. Transfer learning for melanoma detection: Participation in ISIC 2017 skin lesion classification challenge. https://arxiv.org/abs/1703.05235.

2017.

[87] Nader Vasconcelos C, Nader Vasconcelos B. Convolutional neural network committees for melanoma classification with classical and expert knowledge based image transforms data augmentation. https://arxiv.org/abs/1702.07025. 2017

[88] Nanni L, Lumini A, Ghidoni S. Ensemble of deep learned features for melanoma classification. https://arxiv.org/abs/1807.08008. 2018.

[89] Nasiri S, Jung M, Helsper J, Fathi M. Deep-CLASS at ISIC machine learning challenge 2018. https://arxiv.org/abs/1807.08993. 2018.

[90] Nasr-Esfahani E, Samavi S, Karimi N et al. Melanoma detection by analysis of clinical images using convolutional neural network. Conf Proc IEEE Eng Med Biol Soc. 2016; 1373–1376.

[91] Nicolas R, Fornells A, Golobardes E, Corral G, Puig S, Malvehy J. Derma: A melanoma diagnosis platform based on collaborative multilabel analog reasoning, ScientificWorldJournal. 2014:351518. doi: 10.1155/2014/351518.

[92] Pal A, Ray S, Garain U. Skin disease identification from dermoscopy images using deep convolutional neural network. https://arxiv.org/abs/1807.09163. 2018.

[93 Patwardhan S, Dai S, Dhawan A. Multi-spectral image analysis and classification of melanoma using fuzzy membership based partitions. Comput Med Imaging Graph. 2005;29:287–96.

[94] Pellacani G, Grana C, Cucchiara R. Automated extraction and description of dark areas in surface microscopy melanocytic lesion images. Dermatology. 2004;208(1):21–26.

[95] Perez F, Vasconcelos C, Avila S, Valle E. Data augmentation for skin lesion analysis. https://arxiv.org/abs/1809.01442. 2018.

[96] Piccolo D, Crisman G, Schoinas S, Altamura D, Peris K. Computer-automated ABCD versus dermatologists with different degrees of experience in dermoscopy. Eur J

Dermatol. 2014;24(4):477-81.

[97] Polap D, Winnicka A, Serwata K, Kesik K, Wozniak M. An intelligent system for monitoring skin diseases, Sensors (Basel). 2018;18(8):2552.

[98] Quinzan I, Sotoca JM, Latorre-Carmona P, Pla F, Garcia-Sevilla P, Boldo E. Band selection in spectral imaging for non-invasive melanoma diagnosis. Biomed Opt Express.

2013;4(4):514-9. doi:10.1364/boe.4.000514.

[99] Radhakrishnan A, Durham C, Soylemezoglu A, Uhler C. Patchnet: Interpretable neural networks for image classification. https://arxiv.org/abs/1705.08078. 2017.

[100] Radhakrishnan A, Durham C, Soylemezoglu A, Uhler C. Patchnet: Context-restricted architectures to provide visual features for image classification. https://arxiv.org/pdf/1705.08078.pdf. 2018.

[101] Ramezani M, Karimian A, Moallem P. Automatic detection of malignant melanoma using macroscopic images. J Med Signals Sens. 2014;4(4):281–90.

[102] Ray S. Disease classification within dermascopic images using features extracted by ResNet50 and classification through deepforest. https://arxiv.org/abs/1807.05711. 2018.

[103] Rezvantalab A, Safigholi H, Karimijeshni S. Dermatologist level dermoscopy skin cancer classification using different deep learning convolutional neural networks

algorithms. https://arxiv.org/abs/1810.10348. 2018.

[104] Rocha L, Menzies SW, Loet S al. Analysis of an electrical impedance spectroscopy system in short-term digital dermoscopy imaging of melanocytic lesions, Br J

Dermatol. 2017;177(5):1432–1438. doi:10.1111/bjd.15595.

[105] Rubegni P, Feci L, Nami N et al. Computer-assisted melanoma diagnosis: a new integrated system. Melanoma Res. 2015;25(6):537–42.

[106] Ruiz D, Berenguer V, Soriano A, Martin J. A cooperative approach for the diagnosis of the melanoma. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5144-7. doi: 10.1109/IEMBS.2008.4650372.

[107] Sabbaghi S, Aldeen M, Stoecker W, Garnavi R. Biologically inspired quadtree colour detection in dermoscopy images of melanoma. IEEE J Biomed Health Inform. 2018;23(2):570-7.

[108] Satheesha TY, Satyanarayana D, Prasad MNG, Dhruve KD. Melanoma is skin deep: A 3D reconstruction technique for computerized dermoscopic skin lesion classification. IEEE J Transl Eng Health Med. 2017;5:4300117. doi:10.1109/jtehm.2017.2648797.

[109] Sboner A, Eccher C, Blanzieri E et al. A multiple classifier system for early melanoma diagnosis. Artif Intell Med. 2003;27(1):29–44.

[110] Shafiee MJ, Wong A. Discovery radiomics via deep multi-column radiomic sequences for skin cancer detection. https://arxiv.org/abs/1709.08248. 2017.

[111] Situ N, Yuan X, Chen J, Zouridakis G. Malignant melanoma detection by bag-of-features classification. Conf Proc IEEE Eng Med Biol Soc 2008. 2008;3110–3. doi:10.1109/iembs.2008.4649862.

[112] Situ N, Wadhawan T, Yuan X, Zouridakis G. Modeling spatial relation in skin lesion images by the graph walk kernel. Conf Proc IEEE Eng Med Biol Soc 2010. 2010;6130–3. doi:10.1109/iembs.2010.5627798.

[113] Situ N, Yuan X, Zouridakis G. Assissting main task learning by heterogenous auxiliary tasks with applications to skin cancer screening. Conf Proc Artificial Intelligence and Statistics. 2011;688–97.

[114] Stanley RJ, Stoecker WV, Moss RH. A relative color approach to color discrimination for malignant melanoma detection in dermoscopy images. Skin Res Technol. 2007;13(1):62–72. doi:10.1111/j.1600-0846.2007.00192.x.

[115] Stoecker WV, Gupta K, Stanley RJ, Moss RH, Shrestha B. Detection of asymmetric blotches (asymmetric structureless areas) in dermoscopy images of malignant melanoma using relative color. Skin Res Technol. 2005;11(3):179–84. doi:10.1111/j.1600-0846.2005.00117.x.

[116] Swanson DL, Laman SD, Biryulina M et al. Optical transfer diagnosis of pigmented lesions. Dermatol Surg. 2010;36(12):1979-86. doi:10.1111/j.1524-

4725.2010.01808.x.

[117] Teixeira Sousa R, Vasconcellos de Moraes L. Araguaia medical vision lab at ISIC 2017 skin lesion classification challenge. https://arxiv.org/abs/1703.00856. 2017.

[118] Tenenhaus A, Nkengne A, Horn JF, Serruys C, Giron A, Fertil B. Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions. Skin Res Technol. 2010;16(1):85–97. doi:10.1111/j.1600-0846.2009.00385.x.

[119] Tomatis S, Carrara M, Bono A et al. Automated melanoma detection: multispectral imaging and neural network approach for classification. Med Phys. 2003;30(2):212–21. doi:10.1088/0031-9155/50/8/004.

[120] Tomatis S, Carrara M, Bono A et al. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study. Phys Med Biol. 2005;50(8):1675–87. doi:10.1118/1.1538230.

[121] Tschandl P, Argenziano G, Razmara M, Yap J. Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features. British Journal of Dermatology. 2018. doi: 10.1111/bjd.17189.

[122] Valle E, Fornaciali M, Menegola A et al. Data, depth, and design: Learning reliable models for melanoma screening. IEEE J Biomed Health Inform. 2017;20(10).

[123] Wadhawan T, Situ N, Rui H, Lancaster K, Yuan X, Zouridakis G. Implementation of the 7-point checklist for melanoma detection on smart handheld devices. Conf Proc IEEE Eng Med Biol Soc 2011. 2011;3180–3. doi:10.1109/iembs.2011.6090866.

[124] Wolf JA, Moreau JF, Akilov O et al. Diagnostic inaccuracy of smartphone applications for melanoma detection. JAMA Dermatol.2013;149(4):422–6. doi:https://dx.doi.org/10.1001/jamadermatol.2013.2382.

[125] Wu J, Li X, Chen E, Jiang H, Dong X, Rong R. What evidence does deep learning model

use to classify skin lesions? https://arxiv.org/abs/1811.01051. 2018.

[126] Yang X, Zeng Z, Yeo SY, Tan C, Tey HL, Su Y. A novel multi-task deep learning model for skin lesion segmentation and classification. <u>https://arxiv.org/abs/1703.01025</u>.

2017.

[127] Yap J, Yolland W, Tschandl P. Multimodal skin lesion classification using deep learning. Exp Dermatol. 2018;27(11):1261-1267. doi: 10.1111/exd.13777

[128] Yi X, Walia E, Babyn P. Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification. https://arxiv.org/abs/1804.03700. 2018.

[129] Yu C, Yang S, Kim W et al. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS One. 2018;13(3):e0193321.

[130] Yu L, Chen H, Dou Q, Qin J, Heng PA. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging. 2017;36(4):994–1004. doi:10.1109/tmi.2016.2642839.

[131] Zekovic I, Dramicanin T, Lenhardt L, Bandic J, Dramicanin MD. Discrimination among melanoma, nevi, and normal skin by using synchronous luminescence spectroscopy. Appl Spectrosc. 2014;68(8):823–830.

[132] Zhou Y, Smith M, Smith L, Farooq A, Warr R. Enhanced 3d curvature pattern and melanoma diagnosis. Comput Med Imaging Graph. 2011;35(2):155-65.