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SUPPLEMENTARY METHODS 
 

Probabilistic mixed graphical models used in this paper 

Probabilistic graphical models (PGMs) are a robust way to represent the dependencies and conditional 
dependencies in the data and they can also be used to build predictive models.  Until recently, PGMs 
could learn graphs only if all data were the same type (continuous, discrete). We developed MGM-FCI-
MAX (1), an extension of standard PGMs that allows for the analysis of datasets with mixed data types, 
and used it to learn the informative features for lung cancer identification from multi-scale data 
(demographics, CT scans, etc.).  MGM-FCI-MAX works in two steps. First, it calculates the undirected 
graph, which is equivalent to partial correlation or graphical lasso for mixed data types.  We do so by 
modeling the likelihood of all variables in a composite model (Equation 1). 
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In this equation, 𝑥 refers to one of 𝑝 continuous variables, and 𝑦 refers to one of 𝑞 categorical variables. 
𝛽-. is the linear coefficient between two continuous variables, 𝜌-5is a vector of coefficients that 
represents the interaction between each category of 𝑦A and 𝑥-, and 𝛶85 is a matrix of coefficients between 
pairs of categorical variables: 𝑦5, 𝑦8 . To ensure a sparse graph and avoid overfitting we use separate 
regularization parameters for each type of edge (𝜆CC , 𝜆DD, 𝜆CD for edges between two continuous, two 
discrete or a continuous and discrete variables) (Equation 2): 
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Here, 𝑙M(Θ) refers to the negative log-likelihood of the model, which we minimize using a proximal 
gradient approach as the original authors did. In addition, to optimize the λ parameters of the model, we 
use the StEPS procedure proposed before (2). 
 
The second step of MGM-FCI-MAX consists of orienting edges considering that unmeasured 
confounders (latent variables) might influence the variables in the dataset. This is an important 
improvement, especially for analysis of clinical datasets, because most of them are expected to have many 
unmeasured relevant variables due to technical inability to measure them or lack of knowledge of their 
importance in this disease. MGM-FCI-MAX is more accurate than other methods, and it has 
demonstrated usefulness in biomedical data (3). 
 
The output of the algorithm is a graphical causal model where edges have three possible endpoints. An 
edge of the form (“AàB”) suggests that B is not a cause of A (“>” means not a cause), and A is a cause 
of B (“-“ means cause). An edge (“A<-->B”) suggests that neither A nor B is a cause of the other, that is, 
a latent variable causes both.  Finally, an edge of the form (“Ao-oB”) suggests that both endpoints are 
inconclusive from the data.  We note that in high dimensional datasets (small sample size, large number 
of variables) all these algorithms are not as accurate in inferring the causal orientation as they are in 
inferring the presence of an edge(4). 
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SUPPLEMENTARY TABLE S1.  The PLuSS cohort variables (training cohort) used in the analysis and 

the development of LCCM.  Bin: binary; Cat: categorical; Cont: continuous; Num: numerical;  
 

Type Definition 
Diagnosis 

  

Cancer status Bin 0: Benign nodule, 1: Cancer    

Demographics 
  

Age Num Subject's age  
BMI Cont Body Mass Index  
Education Cat Five categories describing the highest educational level 
Sex Bin Male, Female    

Comorbidites 
  

Bronchitis Bin 0: No, 1: Yes 
Emphysema Bin 0: No, 1: Yes 
Pack Years Num Average number of cigarettes smoked daily divided by 20 X 

number of years smoked 
Years since quit smoking Num Years since subject quit smoking     

CT scan 
  

Area (cm2) Cont the surface area of a nodule 
Cavity ratio Cont the ratio between the cavity volume and the nodule volume 
Ground glass opacity Cont the difference between the nodule density and the air density 
Irregularity Cont the ratio between the surface area and the volume of a nodule 
Max diameter (cm) Cont the largest distance of two points on the nodule surface 
Mean diameter (cm) Cont the mean distance of two points on the nodule surface 
Mean diameter solid 
portion (cc) 

Cont the mean diameter of the solid part of a nodule 

Mean intensity (HU) Cont the mean intensity of a nodule in Hounsfield Units 
Mean vessel intensity (HU) Cont  the mean intensity of the surrounding vessels in Hounsfield Units 
Nodule type Bin solid or non-solid 
Nodules, Number of Num number of nodules detected in this subject 
Vessel volume (mL) Cont the volume of the vessels surrounding a nodule 
Vessel, Number of Num Number of vessels around the examined nodule 
Volume (mL) Cont nodule volume 
Volume cal score (mm3) Cont nodule calcification volume 
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SUPPLEMENTARY TABLE S2. Characteristics of all the nodules in the validation cohort. 
 

Features  
Lung cancer  

(n = 39) 

Benign nodules  

(n = 87) 
P value† 

Male, n (%) 22 (56) 52 (60) 0.874 

Age, mean, years (SD) 65.28 (9.14) 67.95 (8.42) 0.125 

Current smoker, n (%) 32 (82) 41 (47) <0.001 

Pack-Years, mean (SD)* 50.45 (23.25) 58.48 (27.04) 0.099 

Years since quit smoking, mean (SD) 0.538 (1.59) 2.76 (4.17) <0.001 

Nodule size in diameter (mm), mean (SD) 18.69 (6.24) 10.81 (4.51) <0.001 

Nodule number, n (%) °   0.152 

      Solid 25 (78) 52 (62)  

      Non-solid/mixed 7 (22) 32 (38)  

Vessel number, mean (SD) 15.92 (11.85) 3.59 (3.80) <0.001 

Abbreviations: SD, standard deviation 
† Two-sided p-values were based on t test and chi-square test for continuous and categorical variables, 

respectively. 
° Nodule type was unmeasured for nine subjects (seven with cancer) 
* Pack-Years was unmeasured for three subjects (two with cancer) 
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SUPPLEMENTARY TABLE S3.  The features included in the MGM-FCI-MAX Markov blanket 

around “cancer status” in each of the 10X cross-validation rounds. 

Cross Validation 
Round 

Vessel 
Number 

Number of 
Nodules 

Years 
quit 

Nodule 
Location 

Nodule 
Type 

1 ü ü ü   
2 ü ü ü   
3 ü ü ü   
4 ü ü ü ü  
5 ü ü ü  ü 
6 ü ü    
7 ü ü    
8 ü ü ü   
9 ü ü ü   

10 ü ü ü   
Total 10 10 8 1 1 
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SUPPLEMENTARY FIGURE S1. Comparison of MGM-FCI-MAX derived to published lung 

cancer prediction models with their original coefficients on the training cohort.  (A) Receiver 

operating characteristic (ROC) curves from the cross-validation results on the training cohort for LCCM 

and various published models with their original coefficients.  ROC curves were computed using nested 

10-fold cross validation, and model discrimination was measured by area under the ROC curve (AUC). 

(B) Detailed numerical results of model comparison. p-values are computed via a paired t-test between 

our Lung Cancer Causal Model (LCCM) and previously published models.  

 

 

  

A

MGM-FCI-MAX features

B Model No. of 
Features

AUC
[25%, 75%]

p-value Features Used

MGM-FCI-MAX 
features 3

0.882 
(0.786, 1.000)

- Smoking: Years Quit
Radiographic: Nodule Count, Vessel Number

Brock Full (Original) 8

0.768 
(0.650,0.917)

0.11 Demographics: Age, Sex, Family History Ca
Comorbidities: Emphysema
Radiographic: Nodule Size, Nodule Type, Nodule Location, 
Nodule Count

Brock Parsimonious 
(Original) 3

0.712 
(0.500,0.857)

0.05 Demographics: Sex
Radiographic: Nodule Location, Nodule Size

PLCO (Original) 10
0.466 

(0.214,0.640)
<0.01 Demographics: BMI, Education, Family History Ca, Race

Comorbidities: Ca History, COPD
Smoking: Duration, Intensity, Smoking Status, Years Quit
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SUPPLEMENTARY FIGURE S2.  Receiver operating characteristic (ROC) curves from the external 

(validation) cohort results for LCCM and two Brock Parsimonious models: the one with the parameters in 

the original publication (“Brock Parsimonious Original Model”) and the re-trained one with coefficients 

estimated in the same training cohort as LCCM (Brock Parsimonious Features”).  The p-values of the 

difference in AUC are significant for both Brock models (p-value <0.01 and 0.0176 for the re-trained and 

original models, respectively). 
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SUPPLEMENTARY FIGURE S3.  Receiver operating characteristic (ROC) curves from the external 

(validation) cohort using all benign nodules. The predicted probabilities for each model correspond to the 

probability that a subject has cancer, based upon the highest predicted probability for all of the nodules for 

this subject. Results are shown for LCCM and two Brock Parsimonious models: the one with the 

parameters in the original publication (“Brock Parsimonious Original Model”) and the re-trained one with 

coefficients estimated in the same training cohort as LCCM (Brock Parsimonious Features”).  The p-

values of the difference in AUC is significant for the retrained Brock model (p <0.01) and not significant 

for the original Brock model (p = 0.22245) 
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SUPPLEMENTARY FIGURE S4.  Receiver operating characteristic (ROC) curves from the external 

(validation) cohort results for all benign nodules <3 cm.  Comparison between LCCM and two Brock 

Parsimonious models: the one with the parameters in the original publication (“Brock Parsimonious 

Original Model”) and the re-trained one with coefficients estimated in the same training cohort as LCCM 

(Brock Parsimonious Features”).  The p-value of the difference in AUC is significant for the retrained 

Brock model (p<0.01), but not the Brock Original Model (p=0.263). 
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