

Supplemental Fig. 1: Role of DCs for T cell expansion induced by peptide vaccination. a-f Percentages of tetramer+ T cells (OT-I cells) among the total CD8 population in blood 7 days after the prime and the boost of the experiments in Fig. 1 (shown following the same order). Results are presented as individual mice (each symbol) with the mean \pm SD for each group.

Supplemental Fig. 2: DC depletion diminishes cytokine production by poly-ICLC. a, CD11cDTR BM chimeric mice were treated or not with diphtheria toxin (DT) and were injected with 50 µg poly-ICLC (i.v.) b-d, 18 h later the levels of IFN-I, soluble IL15/IL15R α complexes and IL12p40 were measured in serum. Results are presented as individual mice (each symbol) with the mean \pm SD for each group.

Supplemental Fig. 3: Cytokine production by DCs from mixed BM

(CD11cDTR+ β 2M-KO) chimeras. a, Flow cytometry analysis showing efficient depletion of MHC-I+ CD11c+ spleen cells in double BM chimeras after 2 DT doses (right panel). b-d, Mixed BM reconstituted mice were stimulated as described in Supplemental Fig. 2a and 18 h later the levels of IFN-I, IL15/IL15R α complexes and IL12p40 were measured in serum. Results are presented as individual mice (each symbol) with the mean \pm SD for each group.

Supplemental Fig. 4: Poly-ICPEI induces IFN-I production in the absence of DCs.

a-b, DC (CD11c+ cells)-depleted mice (+DT) or control (-DT) mice were injected with 50 µg poly-ICLC or 50 µg poly-ICPEI and 18 h later IFN-I and IL15/IL15R α complexes levels were measured in serum. Results are presented for individual mice (each symbol) with the mean \pm SD for each group. Percentages denote the reduction of IFN-I and IL15/IL15R α induced by DC depletion.

Supplemental Fig. 5: Cytokine production by poly-ICLC can occur in the absence of plasmacytoid DCs (pDCs). a, Percentages of pDCs (B220/CD45R+, PDCA-1+) in WT mice injected with 400 μ g of α PDCA-1 mAb (clone BX444) or PBS, gated on the MHC-II+ population and using a different α PDCA-1 mAb (clone eBio927). b-d, Production of IFN-I, IL15/IL15R α complexes and IL12p40 in serum 18 h after poly-ICLC injection. Results are presented as individual mice (each symbol) with the mean \pm SD for each group.

Supplemental Fig. 6: Differences in poly-IC formulations affect CTL responses. a-c, Percentages of tetramer+ CD8+ T cells (OT-I cells) among the total CD8 population in blood 7 days after the prime and boost of mice described in **Fig. 3a-c** (shown following the same order). Results are presented as individual mice (each symbol) with the mean \pm SD for each group.

Supplemental Fig. 7: Poly-ICLC stimulates MDA5 in DCs via the proton sponge effect. a-b, Immortalized DC lines, DC2.4 and D1 DC were stimulated with serial dilutions of poly-IC or poly-ICLC and IFN-I production was evaluated 18 h later. **c**, The CD8 α DC cell line was incubated with bafilomycin A1 6 h before stimulation with poly-IC (100 µg/ml) or poly-ICLC (25 µg/ml) and the production of IFN-I was quantified. **d**, DC2.4 cells were stained with acridine orange, were incubated with 50 µg poly-IC or poly-ICLC and the decrease of fluorescence emission at 600–650 nm reflecting endosomal escape (pH increase) was assessed 18 h later.

Supplemental Fig. 8: Peptide + poly-ICLC vaccines are effective in expanding low numbers of T cells independently of their expression of IFN $\alpha\beta$ R. WT and IFN $\alpha\beta$ R-KO mice received equal numbers (1000 each) of IFN $\alpha\beta$ R-KO OT-I cells (CD45.1+/CD45.2+) and WT OT-I cells (CD45.1+/CD45.2-) followed by pam-Ova + poly-ICLC prime-boost vaccination administered 14 days apart and numbers of the OT-I populations in spleens obtained 7 days after the boost are shown.

Supplemental Fig. 9: Poly-ICLC and IFN-I can generate IL15 in vivo. a, WT or IFN $\alpha\beta$ R-KO mice were injected (i.v.) with 50 µg poly-ICLC and 18 h later the production of IL15/IL15R α complexes was measured in serum. **b**, CD11cDTR chimeric mice were depleted (or not) of DCs by 2 sequential DT injections (2 days apart) followed by 2 doses of IFN- β (10,000 IU/mouse, 12 h apart) and 6 h later levels of soluble IL15/IL15R α complexes in sera were measured. Control mice injected with PBS instead of IFN- β were also DC depleted.

Supplemental Fig. 10: IFN-I signaling leads to IL15 production enabling CTL expansion. a-b, Percentage of tetramer+ CD8+ T cells (OT-I cells) among the total CD8 population in blood 7 days after prime and boost of the mice described in Fig. 6c-d (shown following the same order). c, WT mice received 10^5 naïve OT-I cells followed by 2 doses of pam-Ova + poly-ICLC vaccine administered 14 days apart. Some mice received 300 µg α IL2 mAb (JES6-5H4) on days 14, 16 and 18 and the numbers of OT-I cells in spleens were evaluated. d, Percentages of tetramer+ CD8+ T cells (OT-I cells) among the total CD8 population in blood after prime and boost of mice described in Fig. 6f. Results are presented as individual mice (each symbol) with the mean \pm SD for each group.

Supplemental Fig. 11: Upregulation of CD86 expression in npAPCs may support T cell expansion in the absence of IFN-I signaling. a, WT or IFN $\alpha\beta$ R-KO mice were injected (i.v.) with 50 µg poly-ICLC and 18 h later the levels of CD86 were evaluated in CD11c+/MHC-II+ and CD11c-/MHC-II+ spleen cells. b, IFN $\alpha\beta$ R-KO mice were injected (i.v.) with 50 µg poly-ICPEI or poly-ICLC and 18 h later the levels of CD86 expression in CD11c+/MHC-II+ and CD11c-/MHC-II+ and CD11c-/MHC-II+ and CD11c-/MHC-II+ and CD11c-/MHC-II+ spleen cells were measured. c, IFN $\alpha\beta$ R-KO hosts received 10⁵ naïve IFN $\alpha\beta$ R-KO OT-I cells and a pam-Ova + poly-ICLC vaccine prime followed 14 days later with boosts with either mini-Ova + poly-ICLC or mini-Ova + poly-ICPEI. The number of OT-I cells in spleens was evaluated 7 days after the boost. Results for a-b are presented as the increase of mean fluorescence intensity (MFI Δ) of CD86 surface expression in individual mice (each symbol) with the mean \pm SD for each group, and for c, numbers of tetramer+ OT-I T cells per spleen in individual mice (with the mean \pm SD).

Supplemental Fig. 12: Anti-CD40 mAb treatment upregulates CD86 expression. a-f, WT, MDA5 or IFN $\alpha\beta$ R-KO mice were injected with 100 µg α CD40 mAb and 18 h later, CD86 expression was assessed in different spleen cell subsets based on the gating strategy described in **a**. Results are presented for individual mice (each symbol) with the mean \pm SD for each group.