Supporting Information

Data curation can improve the prediction accuracy of metabolic intrinsic clearance

Tsuyoshi Esaki,*^[a] Reiko Watanabe, ^[a] Hitoshi Kawashima, ^[a] Rikiya Ohashi, ^{[a], [b]} Yayoi

Natsume-Kitatani, ^{[a], [c]} Chioko Nagao, ^{[a], [c]} Kenji Mizuguchi, *^{[a], [c]}

^[a] Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan

^[b] Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda, Saitama 335-8505, Japan

^[c] Laboratory of In-silico Drug Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0058, Japan

S-1. Title page

S-2. Automated initial processing.

S-3. Confusion matrix and equations for performance metrics.

S-4. Performance of models trained on the sampled non-curated data set.

S-5. Detailed prediction results of models trained on the sampled non-curated data set.

Automated initial processing

Relation	Value	Cotogory	Number of entries in	Number of entries in
	(µL/min/mg)	Category	Non-curated dataset	Curated dataset
$<$ or \leq	0–20	Stable	457	901
=	0–20	Stable	1,318	1,496
>	0–20	Removed	16	9
$<$ or \leq	20-300	Removed	1,074	77
=	20–300	Moderate	2,174	2,621
>	20–300	Removed	24	59
<	300~	Removed	233	9
=	300~ Unstable		3,685	302
>	300~	Unstable	367	107
Removed entries			1,347	154
Retained entries			8,001	5,427
Total			9,348	5,581
			(8,741 compounds)	(5,443 compounds)

Automated initial processing of the entries in the non-curated and curated datasets. The grayed cells indicate the entries that have been removed. The sums of the white cells represent the number of entries in each category in each dataset.

Confusion matrix and equations for performance metrics

		Predicted			
		Stable	Moderate	Unstable	
	Stable	True Stable A	False Moderate B	False Unstable C	
Observed	Moderate	False Stable D	True Moderate E	False Unstable F	
	Unstable	False Stable G	False Moderate H	True Unstable I	

Measure	Calculation
Specificity	Stable $\frac{E + F + H + I}{D + E + F + G + H + I}$, Moderate $\frac{A + C + G + I}{A + B + C + G + H + I}$, Unstable $\frac{A + B + D + E}{A + B + C + D + E + F}$
Positive Predicted Value	Stable $\frac{A}{A+D+G}$, Moderate $\frac{E}{B+E+H}$, Unstable $\frac{I}{C+F+I}$
Negative Predicted Value	Stable $\frac{E + F + H + I}{B + C + E + F + H + I}$, Moderate $\frac{D + G + F + I}{A + D + G + C + F + I}$, Unstable $\frac{A + B + D + E}{A + D + G + B + E + H}$
Sensitivity (Recall)	Stable $\frac{A}{A+B+C}$, Moderate $\frac{E}{D+E+F}$, Unstable $\frac{I}{G+H+I}$
F-measure (for class <i>i</i>)	$\frac{2(\text{Sensitivity}_i \times \text{Precision}_i)}{\text{Sensitivity}_i + \text{Precision}_i}$
Balanced Accuracy	Stable $\frac{1}{2} \left(\frac{A}{A+B+C} + \frac{E+F+H+I}{D+E+F+G+H+I} \right),$ Moderate $\frac{1}{2} \left(\frac{E}{D+E+F} + \frac{A+C+G+I}{A+B+C+G+H+I} \right),$ Unstable $\frac{1}{2} \left(\frac{I}{G+H+I} + \frac{A+B+D+E}{A+B+C+D+E+F} \right)$
Ассшасу	$\frac{A + E + I}{A + B + C + D + E + F + G + H + I}$
Kappa	$\frac{\text{Accuracy} - \text{E}}{1 - \text{E}}$
Е	$\frac{(A + B + C)(A + D + G) + (D + E + F)(B + E + H) + (G + H + I)(C + F + I)}{(A + B + C + D + E + F + G + H + I)^2}$

The upper table explains a confusion matrix, where A to I represent the number of instances. The lower table shows equations for the performance metrics, calculated based on the confusion matrix¹.

¹ Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. *Inf. Process. Manag.* **2009**, *45*, 427-437.

	Training data	Method	Accuracy	Kappa
	Reconstructed non-curated data	RF	0.744	0.526
Cross validation		AB	0.740	0.517
		Radial SVM	0.754	0.556
		Linear SVM	0.687	0.453
	t Reconstructed non-curated data	RF	0.573	0.192
Test set		AB	0.563	0.174
		Radial SVM	0.548	0.216
		Linear SVM	0.528	0.153

Performance of models trained on the sampled non-curated data set.

A sampled non-curated dataset (stable: 1,486 compounds (43.39%), moderate: 1,674 compounds (48.88%), unstable: 265 compounds (7.73%)) was prepared by randomly sampling the non-curated training set to make its class distribution nearly identical to that of the curated training set. The cross-validation results were similar to those for the models trained on the original (unsampled) non-curated training set. While the performance scores on the test set improved, they were still worse than those produced by the models trained on the curated data (Table 1).

Reconstructed non-curated		Predicted			Critical mis-	
		Stable	Moderate	Unstable	prediction (%)	
RF		Stable	103	138	3	
	Observed	Moderate	69	231	2	1.18
		Unstable	4	37	6	
AB	Observed	Stable	106	138	0	
		Moderate	78	221	3	0.51
		Unstable	2	38	7	
Radial SVM		Stable	119	114	11	
	Observed	Moderate	69	188	45	2.87
		Unstable	6	23	18	
Linear SVM	Observed	Stable	107	130	7	
		Moderate	79	194	29	2.19
		Unstable	6	29	12	

Detailed prediction results of models trained on the sampled non-curated data set.

The confusion matrix shows the prediction results of the models trained on the sampled noncurated dataset. The AB model showed an improved mis-prediction ratio but RF, Radial SVM and Linear SVM model produced worse results (compared with Table 3).