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Non-orthogonal inside-manifold perturbations

In the derivation of inside-manifold perturbations, we assume that Q̃ is orthogonal. This corresponds to
a rigid transformation of the manifold that can include rotations and mirrorings. If we allow for a more
general linear transformation that may also include scaling and skewing of the manifold, the orthogonality
argument no longer applies and we can no longer expect an inside-manifold perturbation to leave the weights
approximately unchanged.

The 2-dimensional case

Consider a general inside-manifold perturbation matrix Q ∈ R2×2 with elements given by

Q =

[
q11 q12
q21 q22

]
(S1)

From Eq 17 in the manuscript, we expect that an inside-manifold perturbation would give a new weight
matrix W̃ = KQQT Φ. The crucial step for this operation is the matrix QQT , which in the 2-dimensional
case becomes

QQT =

[
q211 + q212 q11q21 + q12q22

q11q21 + q12q22 q212 + q222

]
(S2)

This gives the perturbed matrix weights

w̃ij = (q211 + q212)ki1φ1j + (q11q21 + q12q22)(φ1jki2 + φ2jki1) + (q221 + q222)ki2φ2j (S3)

to compare with unperturbed matrix weights

wij = ki1φ1j + ki2φ2j (S4)

The similarity between w̃ij and wij is therefore heavily dependent on the choice of Q.

Elements drawn from a normal distribution

If the elements of Q are drawn from N (0, 1), the expected w̃ij from Eq S3 becomes

E [w̃ij ] = E
[
q211 + q212

]
ki1φ1j+

E [q11q21 + q12q22] (φ1jki2 + φ2jki1)+

E
[
q221 + q222

]
ki2φ2j

= E
[
χ2(2)

]
ki1φ1j+

0 · (φ1jki2 + φ2jki1)+

E
[
χ2(2)

]
ki2φ2j

= 2ki1φ1j + 2ki2φ2j

= 2wij

(S5)

1



The expected weight change after an inside-manifold perturbation with a normally random matrix is thus a
factor of 2. This can also be seen directly from the fact that the expected matrix in Eq S2 becomes 2I. Had
the elements of Q instead been drawn from from a normal distribution with σ2 = 1/2 the expected weight
change after the perturbation would have been 0. Note however, that although for the average perturbation
matrix Q chosen this way the perturbed weights will be as similar to the original weights as for an orthogonal
perturbation matrix, for most choices of Q the deviation from the original weight matrix will be greater than
with an orthogonal Q.

For a perturbation matrix of dimension D, the expected matrix E[QQT ] will be D on the diagonals and
0 otherwise, leading to the expected E[w̃ij ] = Dwij .

All elements equal

Assume that instead of having normally distributed elements, all elements of Q were identical, i.e.

Q =

[
q q
q q

]
(S6)

for some real scalar q, Eq S2 gives

QQT =

[
2q2 2q2

2q2 2q2

]
(S7)

from which it follows that
w̃ij = 2q2wij + 2q2(φ1jki2 + φ2jki1) (S8)

If the elements of K are independently and identically distributed with mean zero, the distribution of
φ1jki2 + φ2jki1 will be the same as the distribution of wij . In this case, one can expect that for a manifold

perturbation given by Eq S6, about half of the variance of the perturbed weight matrix W̃ can be explained
by the original weight matrix W .

Scaling

A consequence of choosing a non-orthogonal Q is that the radius of QQT is not necessarily 1. The simplest
case of this is setting

Q =

[
s 0
0 s

]
(S9)

Naively, applying this transformation would just scale the weight matrix by a factor of s2. This would not
change the neural modes per se, as they are usually defined to have unit norm. Instead, it would be the
amplitude of the latent variables that is increased, or, equivalently, the average firing rate of the network.

However, the firing rates of all networks do also depend on other parameters. Arguably, keeping them
constant while scaling the synaptic weights might not be realistic, because we expect firing rates to be within
some biologically plausible range. In fact, in the NEF implementation Nengo citenengo, the optimization
step for finding Φ is set so that the resulting firing rates should be within some target range, rather than
scale with K. Thus, scaling K by a factor s would rather correspond to scaling Φ by a factor of 1/s.

In conclusion, an experiment in which K is scaled would not test the animal’s ability to relearn an
inside-manifold perturbation, but rather its ability to modulate the global firing rate of the circuit.
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