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MicroRNA-15a (miR-15a) and miR-16, which are transcribed
from the miR-15a/miR-16-1 cluster, inhibit post-ischemic
angiogenesis. MicroRNA (miRNA) binding to mRNA coding
sequences (CDSs) is a newly emerging mechanism of gene
expression regulation. We aimed to (1) identify new media-
tors of the anti-angiogenic action of miR-15a and -16, (2)
develop an adenovirus (Ad)-based miR-15a/16 decoy system
carrying a luciferase reporter (Luc) to both sense and inhibit
miR-15a/16 activity, and (3) investigate Ad.Luc-Decoy-15a/16
therapeutic potential in a mouse limb ischemia (LI) model. LI
increased miR-15a and -16 expression in mouse muscular
endothelial cells (ECs). The miRNAs also increased in
cultured human umbilical vein ECs (HUVECs) exposed to
serum starvation, but not hypoxia. Using bioinformatic tools
and luciferase activity assays, we characterized miR-15a and
-16 binding to Tie2 CDS. In HUVECs, miR-15a or -16 over-
expression reduced Tie2 at the protein, but not the mRNA,
level. Conversely, miR-15a or -16 inhibition improved
angiogenesis in a Tie2-dependent manner. Local Ad.Luc-
Decoy-15a/16 delivery increased Tie2 levels in ischemic skel-
etal muscle and improved post-LI angiogenesis and perfusion
recovery, with reduced toe necrosis. Bioluminescent imaging
(in vivo imaging system [IVIS]) provided evidence that the
Ad.Luc-Decoy-15a/16 system responds to miR-15a/16 in-
creases. In conclusion, we have provided novel mechanistic
evidence of the therapeutic potential of local miR-15a/16 inhi-
bition in LI.

INTRODUCTION
Peripheral artery disease affects 20% of individuals over 70 years of
age worldwide1,2 and can result in critical limb ischemia (CLI), a
debilitating condition characterized by pain at rest, tissue loss,
and gangrene. The current management of CLI involves revascu-
larization of the affected limb by percutaneous angioplasty or sur-
gical bypass. However, many CLI patients are not suitable for
revascularization for reasons such as severe comorbidities or late
diagnosis.
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In approximately 30% of severely affected patients, minor or major
amputations are inevitable.3 Novel therapeutics to locally promote
angiogenesis, and hence reperfusion, would help to overcome a signif-
icant unmet clinical need.

Historically, human clinical trials have been informed by pre-clinical
studies based on the delivery of single proangiogenic growth factors of
the vascular endothelial growth factor (VEGF) and fibroblast growth
factor (FGF) families.4,5 Such approaches have not yet yielded the
desired results.6,7 To reach the bedside of CLI patients, angiogenic
therapies require further refinement, including revisiting the realm
of therapeutic targets and their mechanisms of action.8

MicroRNAs (miRNAs) are small non-coding RNAs that, in their
mature form, act at the post-transcriptional level by targeting multi-
ple mRNAs.9 miRNAs are transcribed as a primary transcript (pri-
miRNA) from miRNA genes or intronic regions of protein-coding
genes, and they are subsequently processed to reach their mature
and functional status.10 The initial and canonical model of miRNA-
induced mRNA-silencing activity relies on semi-complementary
binding between themiRNA seed sequence of 7 nt tomiRNA-binding
sequences contained in the 30 UTR) of target mRNAs. However, it is
becoming increasingly evident that miRNA binding to the 50 UTR
and coding sequences (CDSs) of mRNAs have powerful functional
consequences.11 Each miRNA can target up to several hundred genes
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and multiple pathways, and miRNAs are known to be involved in the
regulation of a plethora of cellular processes, including angiogen-
esis.12 Additionally, functionally active miRNAs are released from
parent cells and taken up by bordering and possibly distant cells,13

where they can repress their target genes, thus providing a widespread
method of gene expression regulation. Investigations based on indi-
vidual miRNA experiments have identified miRNAs with either
proangiogenic or anti-angiogenic effects.14,15

miR-15 and miR-16 are organized in two different clusters, miR-15a/
16-1 and miR-15b/16-2, and they are conserved between humans and
mice.16 The sequences of mature miR-15a and miR-15b differ by
4 nt,16 while miR-16-1 and miR-16-2 have the same mature sequence
and, hence, are commonly indicated as miR-16. miR-15a/b and -16
belong to the miR-16 family consisting of miR-15a, miR-15b,
miR-16, miR-195, miR-424, and miR-497. The family is extendable
to miR-103, miR-107, miR-646, and miR-503, due to homologies in
the seed sequences.17 The extended miR-16 family is involved in
angiogenesis regulation: miR-16 targets VEGF receptor 2 and FGF re-
ceptor 1, thus decreasing the proangiogenic activity of their ligands.18

Moreover, following LI, therapeutic angiogenesis is impaired in mice
with miR-15a gene knockin.19 We previously described that miR-15a
and -16 are increased in both the proangiogenic circulating cells
(PACs) and the serum of CLI patients (versus healthy subjects). We
also showed that serum concentrations of miR-15a and miR-16 pre-
dict the need for amputation at 1 year from revascularization in CLI
subjects.20 In further support of the relevance of miR-15a and miR-16
in the CLI setting, we provided evidence that ex vivo transfection with
miR-15a/16 inhibitors increases the potential of human PACs to
induce therapeutic angiogenesis in an immunocompromised mouse
LI model.20

Among the different ways to inhibitmiRNA, the use ofmiRNAdecoys
or sponges that consist of multiple specific miRNA-binding site
sequences inserted downstream of a reporter gene represents a prom-
ising approach.21–24 Using a decoy for the diabetes-associated miR-
503, we have already provided proof of concept that adenovirus
(Ad)-mediated local delivery of a miRNA decoy can improve post-
ischemic angiogenesis and blood flow recovery in mice with LI.23,24

When delivered into cells, the binding of the targeted miRNA to the
decoy sequences not only inhibits the miRNA by sequestration but
also reduces the expression of the reporter gene used, often EGFP22

or luciferase.25 This construct could, therefore, be used as a sensor
of the targeted miRNA quantity, as the protein activity of the reporter
used is inversely correlated to the presence of the miRNA.26,27 Addi-
tionally, more recent technological advancements allow non-invasive
and precise measurement of luciferase activity in vivo in mice.28,29 On
these bases, we reasoned that Ad-mediated local delivery of a double
miR-15a/16 decoy could provide therapeutic advantages by ensuring
release frommiRNA inhibition in a spatiotemporally defined window
that is supportive of post-ischemic vascular repair.

This study was designed to mechanistically investigate the anti-an-
giogenic effect of miR-15a/16 and to develop an Ad.miR-15a/16
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decoy to be tested for its therapeutic potential, in a mouse LI
model.

RESULTS
miR-15 and -16 Expressions in Human and Mouse Tissues

Expressions of miR-15a/b and miR-16 were assessed by qRT-PCR in
19 different human tissues. As shown in Figures 1A–1D, skeletal mus-
cle showed the highest expression of miR-15a and was the tissue with
the third highest expression of miR-16, after adipose and prostate tis-
sues. Skeletal muscle was the fifth highest localization of miR-15b and
the fourth for miR-503, which we previously found to be increased
in diabetic CLI.23 The relative expressions of the four individual
miRNAs in human limb muscles are reported in Figure 1E. Consid-
ering these data, we focused the study on miR-15a and miR-16.

To investigate whether miR-15a and -16 expressions are regulated by
LI, we harvested mouse adductor and gastrocnemius muscles at
1 and 3 days post-femoral artery ligation or sham operation, and
we measured miRNA expression in the whole tissues and in muscle
CD146+ microvascular cells. Ischemia-associated expressional
changes in the whole muscles were limited to miR-15a (Figure 2A).
However, bothmiRNAs were increased in the ischemicmicrovascular
cells (Figure 2B).

We next moved to model the ischemic environment in vitro, by
exposing cultured human umbilical vein endothelial cells (HUVECs)
to either oxygen or nutrient deprivation. When combined, hypoxia
(1% pO2) and serum starvation increased the expression of the pro-
totypical hypoxamiRNA proangiogenic miR-21030 (Figure S1), used
here as a positive control to validate the culture conditions. The
expression of miR-16 was also increased, while miR-15a was un-
changed. Taking each condition separately, hypoxia alone increased
miR-210 expression, but it did not affect miR-15a/16 levels (Figures
S2A–S2C). By contrast, serum deprivation for 24 h increased the
expressions of both miR-15a and -16 (Figures S2D and S2E). As ex-
pected, miR-210 expression was unaffected by serum starvation (Fig-
ure S2F). As shown in Figure S3, the serum starvation-induced
expressional changes were limited to the mature forms of miR-15a
and -16, and neither the primary transcript (pri-miR-15a/16-1) nor
the individual miRNA precursors (pre-miR-15a, pre-miR-16-1, and
pre-miR-16-2) were affected.

miR-15a and -16 Target Tie2 in CDS, and Tie2 Repression

Mediates the Anti-angiogenic Responses to miR-15a and -16

miR-16 has already been shown to inhibit the angiogenic potential of
HUVECs.18 Using a 2DMatrigel assay, we have confirmed these data
and additionally characterized that miR-15a inhibits angiogenesis
in vitro (Figure S4). Next, we set out to investigate the miRNA puta-
tive target genes that could elucidate the anti-angiogenesis response.
In previous studies, bioinformatic predictions assuming miRNAs tar-
geting the 30 UTR of mRNAs have identified VEGF-R2, FGF-R1,
VEGF-A, FGF-1, FGF-2, and AKT-3 to be repressed by miR-
15/16.18,20,31,32 More recently, members of the miR-16 family
have been shown to bind in the CDS region of their targeted



Figure 1. miR-15a, -15b, -16, and -503 Expressions in Human Tissues

Expressions of miR-15a (A), miR-16 (B), miR-15b (C), and miR-503 (D) in human tissues assessed by RT-PCR and relative expression of each miRNA in skeletal muscle (E).

Results were normalized to small nuclear RNA U6 (U6) expression (n = 1/tissue, resulting from the pooling of three different donor samples).
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mRNAs.11,33,34 Therefore, we expanded our search to putative
miRNA-binding sites in the CDS of proangiogenic genes. A
genome-wide prediction using miRcode revealed 12,269 common
targets of miR-15a and -16. To identify gene ontology (GO) terms
and processes to which these common targets correspond, a GO
enrichment analysis was performed using the program CLUEGO.
Overall 48 GO terms were significantly enriched among the common
targets of miR-15a and -16. The top 15 of the GO terms for these pre-
dicted targets included blood vessel development (Figure S5A).

From this search, TEK (aka, Tie2 angiopoietin receptor) was declared
an interesting candidate, because it is one of the most studied regula-
tors of angiogenesis.35 Four angiopoietin (Ang) ligands can bind to
Tie2.36 Among them, the most studied are Ang1 and Ang2. Ang1
has a clear agonistic impact on Tie2 and promotes angiogenesis
and vessel stability. The type of interaction of Ang2 and Tie2
and vascular consequences are more debated and context depen-
dent.36–38 Ang2 has been reported to increase by inflammatory and
hypoxic stimuli and to promote neoangiogenesis.39 However, Ang2
can also disrupt the connections between the endothelium and peri-
vascular cells and promote cell death and vascular regression.38,40 We
decided to focus on TEK because a closer inspection of the miRcode
results revealed that there is only one binding site for miR-15a and -16
in the CDS region of TEK and no binding sites in the 30 or 50 UTR.
This implied that the possible direct regulatory actions of miR-15a
and miR-16 on TEK are exclusively mediated via miRNA binding
in the CDS. In more detail, this single binding site is a 6-bp region,
and the exact location is at chromosome (chr)9: 27204938–
27204943 (Figure S5B). This site is highly conserved in mammals
(83%) followed by primates (67%) and vertebrates (46%)
(Figure S5C).

Next, to validate the direct binding of miR-15a or miR-16 to this CDS
of Tie2 mRNA, we developed a luciferase reporter assay in which a
sequence of 50 nt either side of the predicted binding site of miR-
15a/16 on TEK (LUC-TEK), or to the same sequence but where the
binding site was mutated (LUC-TEKmut), was cloned downstream
of luciferase gene (Figure 3A). In HeLa cells carrying LUC-TEK, over-
expression of miR-15a and/or miR-16 by pre-miRNA transfection
decreased luciferase activity. This response was not observed if cells
were carrying LUC-TEKmut (Figure 3A). To obtain evidence of the
consequence of Tie2 targeting by miR-15/16 for angiogenesis, we
next moved to HUVECs. In HUVECs transfected to overexpress
either miR-15a or miR-16 (Figure 3B), Tie2 mRNA expression was
increased (Figure 3C), while Tie2 protein level was decreased (Fig-
ure 3D), consistent with the notion that miRNA binding to the
mRNA CDS leads to RNA translation inhibition.41 Conversely, inhi-
bition of miR-15a and -16 using anti-miRNAs increased Tie2 protein
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 51
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Figure 2. Expressions of miR-15a and -16 Are

Differentially Modulated in Mouse Adductor

Muscles and Muscle-Derived Endothelial Cells after

Limb Ischemia

At 1 and 3 days after surgical induction of limb ischemia,

ischemic and contralateral (control) adductor muscles

were collected, and the expressions of miR-15a and -16

were assessed by RT-PCR in the total muscle tissue (A)

and in muscle-derived CD146+ endothelial cells (ECs) (B).

Results were normalized to the expression of small nu-

clear RNA U6, relative to control muscle or EC normo-

perfused and expressed as mean ± SEM. n = 3 per

condition. **p < 0.01 and ***p < 0.001 versus control,

matched for time after ischemia.
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expression (Figure 3E). This was associated with a proportional in-
crease in Tie2 phosphorylation, indicating that Tie2 receptors
released from the miRNA inhibitory block were functionally active42

(Figure S6). The importance of Tie2 in mediating the anti-angiogenic
effect of either miR-15a or miR-16 was finally confirmed by using a
pharmacological inhibitor of Tie2 activity.43 Tie2 inhibition pre-
vented the proangiogenic response to inhibition of either anti-miR-
15a or anti-miR-16 (Figure 3F).

To understand whether the expression of miR-15a and -16 and Tie2
are correlated in ischemic limb muscles and their microvascular cells,
wemeasured Tie2 expression in similar conditions by RT-PCR and by
immunohistochemistry. While miR-15a and -16 were increased by
ischemia (Figures 2A and 2B), Tie2 protein level was unchanged in
ischemic capillaries (Figures S7A–S7H), suggesting that additional
molecular mechanisms are responsible for Tie2 expressional regula-
tion. Ang1 expression was not changed in muscles at 1 and 3 days,
post-ischemia. By contrast, Ang2 increased at 3 days post-ischemia
(Figures S7A and S7B).

Ad.Luc-miR-15a/16 Decoy Can Be Used to Sense Expressional

Changes in miR-15a and -16

We next prepared Luc-Decoy in the form of a miRNA decoy system
linked to a luciferase reporter gene (Figure S8A), with the intention to
both sense changes in endogenous miR-15a and -16 levels and inhibit
the functionality of miR-15a/16 in cultured cells and in murine
ischemic limb muscles. The capacity of this tool to sequester the
endogenous miRNA, thus inhibiting miRNA activity, was already
52 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
proven in our previous publications on miR-
503.23,24 Here, we additionally evaluated
whether Ad.Luc-miR-15a/16 Decoy was useful
in tracking expressional changes in miR-15a
and -16 expression in vitro and in vivo. We
used HeLa cells transfected with either pre-
miR-15a or pre-miR-16, and infected with
either Ad.Luc-Decoy or Ad.Luc to validate that
increases in intracellular miR-15a and -16
reduce luciferase activity detected in an in vivo
imaging system (IVIS) apparatus (Figure S8B).
Importantly, we could confirm that Ad.Luc-Decoy was selectively
sensing changes in miR-15a and -16 in comparison with other
miR-16 family members, such as miR-15b andmiR-503 (Figure S8C).

We next investigated whether the Ad.Luc-Decoy system could be used
to sense increases in endogenous miR-15a and -16 expressions. To
this aim, HUVECs were infected with Ad.Luc-Decoy or Ad.Luc and
submitted to serum withdrawal. After 24 h, we found a decrease in
luciferase activity in cells infected with Ad.Luc-Decoy in comparison
to cells infected with Ad.Luc control (Figure 4A). We then evaluated
the effect of Ad.Luc-Decoy injection into murine muscles after the in-
duction of LI in vivo. At 1 day post-LI, in keeping with the increased
miR-15a and -16 expressions in total ischemicmuscle (see Figure 2A),
the luciferase activity was reduced inmice injected withAd.Luc-Decoy
compared with mice injected with the control virus (Figures 4B
and 4C). A reduction in luciferase activity was also observed at day
21, when miR-16 was found upregulated in ischemic muscle (Fig-
ure S9). Figure 4D summarizes the modality of action and potential
of Ad.Luc-Decoy.

Ad.Luc-Decoy Improves Post-ischemic Blood Flow Recovery

and Therapeutic Angiogenesis

We finally provided evidence of the therapeutic potential of Ad.Luc-
Decoy in the mouse LI model. When compared with Ad.Luc, Ad.Luc-
Decoy improved post-ischemic blood flow recovery (Figures 5A
and 5B) and increased the reparative angiogenesis response in the
ischemic muscles (Figures 5C and 5D). The latter was demonstrated
by a 35% increase in capillary density (CD31+ capillaries) and 47%



Figure 3. Tie2 Is Targeted by miR-15a and -16 through an Unusual Binding Site on Tie2 mRNA, and It Is Involved in the Proangiogenic Effect of miR-15a

and -16 Inhibition in HUVECs In Vitro

(A) Luciferase activity at 48 h post-co-transfection of HEK293T cells with pre-miR-15a (miR-15a), pre-miR-16 (miR-16), a combination of the two (miR-15a/16), or miR-

scrambled oligonucleotides (Scr) and plasmid containing luciferase open reading frame (pLUC), followed by a portion of 50 nt of the TEK-coding sequence surrounding the

putative miRNA-binding site (pLUC-TEK). A mutated version of the miRNA-binding site was used as a control (pLUC-TEKmut). A schematic of the plasmid construct is also

provided. *p < 0.05, ***p < 0.001 versus pLUC-TEK control Scr; yp < 0.05, yyp < 0.01 versus pLUC-TEK to the pre-miRNA matching condition (n = 5). (B) Human umbilical

vein endothelial cells (HUVECs) were transfected with a Scramble oligo (Scr), pre-miR-15a (miR-15a), or pre-miR-16 (miR-16) (5 nM) to increase their respective mature

miRNA expression. miR-15a and -16 expressions were assessed by RT-PCR and normalized to small nuclear U6 expression. Tie2 mRNA (C) or protein (D) expressions were

assessed by RT-PCR and western blot and normalized to 18S and b-actin, respectively. n = 3 for each condition. (E) HUVECs were transfected with a Scramble oligo (Scr) or

an anti-miRNA against miR-15a, miR-16, or the two anti-miRNAs simultaneously (total concentration of 50 nM) to inhibit their activity. Tie2 protein expression was assessed

by western blot and normalized to b-actin. n = 9 for each condition. *p < 0.05 versus Scr condition. (F) Effect of inhibition of Tie2 on miR-15a/16 inhibition-induced

angiogenesis was assessed in HUVECs transfected with a Scramble oligo (Scr) or an anti-miRNA against miR-15a or miR-16 (50 nM) and treated with Tie2 inhibitor (Tie2-I,

5 mM) or DMSO control. The angiogenic capacity was measured by network formation on Matrigel, calculated as total length in millimeters and expressed as a percentage of

the Scr and DMSO conditions. Representative pictures are provided (scale bar, 200 mm). n = 3. *p < 0.05, **p < 0.01, ***p < 0.001. All results are expressed as mean ± SEM.
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increase in the density of small (lumen diameter <20 mm) arterioles
(Figures 5C and 5D) in the ischemic muscles. A similar post-ischemic
increase in capillary density was found using Isolectin B4 as a marker
for ECs (Ad.Luc versus Ad.Luc-Decoy at 21 days post-ischemia: 557 ±
69 versus 812 ± 97 capillaries/mm2 (mean ± SEM).

Using toe necrosis as a marker of ischemia severity,44 we showed that
Ad.Luc-Decoy improved toe survival (Figure 5E). Finally, in line with
in vitro data reported in Figures 3C and 3D, Ad.Luc-Decoy increased
Tie2 protein expression (Figure 5F), and it did not change the expres-
sions of Tie2 ligands Ang1 and Ang2 (Figure S10). The mRNA ex-
pressions of VEGF-A, VEGF- R2, FGF-2, and FGF-1, which were
all described to be bound in their 30 UTRs by miR-15a or -16, were
also unchanged (Figure S11).

DISCUSSION
This study has characterized the expressional regulation of miR-15a
and -16 in ischemic ECs, and it identified that the anti-angiogenic ac-
tions of these miRNAs is in part mediated by the repression of Tie2.
Additionally, we have utilized a miRNA decoy approach to sense and
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 53
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Figure 4. Adenovirus Carrying a Decoy Sequence for miR-15a and -16 (Ad.Luc-Decoy) Sensor Activity and Inhibition Efficiency In Vivo

(A) Luciferase activity measured on an IVIS of HUVECs infected with Ad.Luc control or Ad.Luc-Decoy virus cultured under complete (2% FBS) or serum-deprived (0% FBS)

media for 24 h. Results are expressed per cell and relative to Ad.-matching, 2% FBS condition. Results are presented as the mean of n = 4–5 per condition ± SEM. *p < 0.05,

**p < 0.01, ***p < 0.001 versus Ad.-matching, 2% FBS condition; #p < 0.05 versus Ad.-Luc, 0% FBS condition, Student’s t test. (B and C) After limb ischemia, biolumi-

nescence activity (expressed as photons per second per centimeter squared per steradian (P,s�1,cm�2,sr�1) was measured and analyzed in the ischemic legs using the

Xenogen IVIS. D-Luciferin was subcutaneously injected into the ischemic limb, and the consequent bioluminescence from the reaction with the luciferase in either Ad.Luc- or

Ad.Luc-Decoy-injected legs was measured from day 1 to day 21 after injection of the viruses. Representative images are presented. Data are shown as mean ± SEM (nR 10

per condition). *p < 0.05 versus time-matched Ad.Luc condition using Student’s t test. (D) Schematic explanation of the mechanisms of miR-15a and -16 inhibition, trapping,

and sensing in cells expressing the Luc control construct, lacking complementary-decoy sequence for miR-15a/16 or the Luc-Decoy construct.
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inhibit the activity of endogenous miR-15a and -16 in cultured cells
and mouse ischemic muscles. In vivo work has provided evidence
of the therapeutic potential of Ad.Luc-Decoy in CLI.

miR-15a and -16 were previously described to be expressed in various
solid and blood cancers.45,46 Additionally, the group of van Rooij47,48

has studied miR-15 in the ischemic heart, showing that it induces cell-
cycle arrest in neonatal cardiomyocytes and contributes to ischemic
damage of the heart in adult rodent and swine models. Early in this
study, we found that, under basal conditions and comparing several
human organs and tissues, miR-16 and especially miR-15a are
more highly expressed in the skeletal muscle compared to the heart.
54 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
To the best of our knowledge, the consequences of endogenous
changes in miR-15a and -16 in LI, and their possible impact on
post-ischemic vascular responses, have never been directly investi-
gated. However, we previously reported increased serum levels of
miR-15a and -16 in diabetic CLI patients, where circulating
miR-15a and -16 levels were able to predict clinical outcome
(amputation) at 12 months post-revascularization.20 In this new
study, we have been able to show that LI increases miR-15a and
-16 in the muscular microvascular cells and that the ischemia-
induced increases in these endogenous miRNAs impair post-
ischemic vascular repair, worsening blood flow recovery and toe
survival.



Figure 5. Inhibition of miR-15a/16 Improves Blood Flow (BF) Recovery, Post-ischemic Neovascularization, and Toe Survival following Limb Ischemia

Limb ischemia was induced in mice by femoral artery ligation, and Ad.Luc or Ad.Luc-Decoy was injected into the ischemic adductor muscle immediately after surgery.

(A and B) Line graph shows the time course of post-ischemic BF recovery (calculated as the ratio between the BF of the ischemic foot and the contralateral foot) in mice

injected with Ad.Luc or Ad.Luc-Decoy. Representative color laser Doppler images taken at days 0, 7, 14, and 21 post-ischemia are provided. Yellow frames show the

ischemic foot analyzed. Data are presented asmean ± SEM (nR 10 per group). *p < 0.05, **p < 0.01 versus time-matched Ad.Luc condition. (C) Immunohistological analysis

and representative microphotographs showing the capillary density inmice injected withAd.Luc orAd.Luc-Decoy 21 days after LI and in contralateral (control) muscle of mice

injected with Ad.Luc (n = 5 per group), assessed by immunolabelling of CD31 as a marker of endothelial cells. Scale bar, 50 mm. (D) Immunohistological analysis and

representative microphotographs showing arteriolar density in mice injected with Ad.Luc or Ad.Luc-Decoy (n = 11 or 8 mice per group, respectively) after limb ischemia,

assessed by immunolabelling of a-smoothmuscle actin (aSMA) as amarker of vascular smoothmuscle cells. Arterioles were quantified according to vessel diameter (<20 mm

or R20 mm). Data are presented as mean + SEM. Scale bar, 20 mm. (E) Cumulative proportion of toe survival over 21 days of follow-up after ischemia in mice injected with

Ad.Luc or Ad.Luc-Decoy (n R 10 mice per group). p = 0.0013, log rank test. (F) Tie2 expression in ischemic adductor muscles, 3 days after limb ischemia surgery and

injection with either Ad.Luc or Ad.Luc-Decoy virus, was assessed at mRNA and protein levels by RT-PCR and western blot, respectively. Results were normalized to GAPDH

for mRNA analysis (n = 6) or to a/b-tubulin for protein analysis (n = 9) and presented as mean ± SEM. *p < 0.05 versus Ad.Luc group.
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It should be noted that, under our ethics license, we are not allowed to
study more severe forms of LI outcome, and we must humanely
euthanize our research animals if these occur. The angiogenic
response observed in mice after local delivery of Ad.Luc-Decoy is in
line with our previous work on human PACs, which were shown to
carry higher miR-15a and -16 levels when obtained fromCLI patients.
Moreover, PACs improved their proangiogenic profile when ex vivo
simultaneously transfected with inhibitors for the twomiRNAs before
their efficacy testing in immunosuppressed mice with LI.20 Similar to
the LI setting, miR-15a is elevated in the ischemic heart.48 In contrast,
hypoxic cancer tissues expressed less miR-15a/miR-16 than non-hyp-
oxic ones.49 miR-15/16 function as a tumor suppressor by targeting
BCL2.45 They also inhibit cancer angiogenesis by targeting FGF-2.49

Therefore, in cancer, miR-15/16 expression deregulation might
contribute to explaining why hypoxia, a common micro-environ-
mental feature of rapidly growing tumors, is associated with worse
clinical outcomes.50 According to our data, in ischemic non-
cancerous ECs, the regulation of miR-15a and -16 expression is
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 55
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hypoxia independent and triggered by nutrient deprivation. We have
also clarified that increases in mature miR-15a and -16 are not asso-
ciated with equivalent changes in primary or precursor miRNA
expression and, hence, are possibly due to either slower miRNA decay
or accelerated maturation of the pre-miRNAs to mature miRNAs.

This study has newly identified Tie2 as a target of miR-15a and -16.
The angiopoietin Tie2 receptor is mainly expressed in the vascular
endothelium and involved in embryonic and post-natal blood vessel
development.51,52 Interestingly, we found that Ang2 was upregulated
in ischemic muscles, while Ang1 was unchanged. Tie2 levels were also
unchanged by ischemia.

Themodality of action of Ang2 on Tie2 is still debated, and it has been
suggested to function as a context-dependent agonist or antagonist42

and to be associated with inflammatory responses.53 Direct intramus-
cular injection of plasmid DNA encoding Ang1, but not Ang2, was
shown to augment revascularization in a rabbit ischemic hindlimb
model.54 Increasing the Ang1/Tie2 signaling in ischemic limb mus-
cles could be beneficial for reparative angiogenesis.

In fact, Tie2 disruption was shown to impair post-ischemic regener-
ation in mice with LI.55 This is in line with our data showing that an
Ad.Luc-Decoy-induced increase in limb Tie2 is associated with
improved post-ischemic reparative angiogenesis and blood flow re-
covery. We have clarified that miR-15a/16 bind to the CDS of Tie2.
A few studies have started to report efficient targeting of miRNAs
on CDS. The canonical mechanism of action of a miRNA involves
the stabilization of mature miRNA by Argonaute-2 (Ago2) proteins,
functioning to direct the RISC (RNA-induced silencing complex) to
target mRNAs. According to this model, binding between the miRNA
seed sequence to one or more semi-complementary regions within
the mRNA 30 UTR induces post-transcriptional inhibition, manifest-
ing as reduced mRNA and protein levels.11 It is progressively
emerging that this model is probably insufficient to explain miRNA
actions and that, in some cases, the most predominant Ago2:miR-
binding sites may be found within the CDS.11

It has already been shown that miR-103 and -107, which belong to
the wider miR-16 family, do make ample use of CDS targeting.34

The miRNA target sites in the CDS are under evolutionary selec-
tion.41 Sequence conservation has usually been taken as evidence
of functional importance.56,57 In this context, it is of interest that
the miR-15a/16-binding sites to CDS targets are conserved between
species (human and macaque58). miR-15a/b and -16 contain the
AGCAGC motif at the 50 end. Using computational analyses,
Hausser et al.41 found that miRNAs with this motif location have
more complementary sites in the CDS compared with 30 UTR.
Such miRNAs also have in common the capacity to regulate the
cell cycle.41 Hausser et al.41 additionally suggested that CDS binding
is more potent in inhibiting mRNA translation, as compared to
mRNA degradation. This is consistent with our finding that pre-
miR-15a or -16 transfection of HUVECs reduced protein and
increased mRNA expression for Tie2.
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In our study we used a homology-of-sequence strategy to identify
miR-15a and -16 mRNA targets. miRNA-mRNA interactions are
largely based on sequence homology, but they are also dependent
on additional factors. As an example, mRNA 3D configuration can
affect the accessibility of the RISC-binding site.59 Increasing evidence
shows that binding of a miRNA to its mRNA targets can be cell type
and environment dependent60 and that this can be relevant for anti-
miRNA cardiovascular therapies.61 This was already exemplified by
Eding et al.,61 who found that, upon in vivo inhibition of the cardio-
myocyte-specific miR-208a, the quality and quantity of direct targets
of miR-208a that are expressionally modulated depend on the pres-
ence and type of cardiac stresses, such as hypertension or myocardial
infarction. The anti-miR-208 treatment in healthy and diseased
hearts revealed 3 subsets of targets: (1) health-specific targets, (2) dis-
ease-specific targets, and (3) targets common to health and disease. In
line with that, we have also noted a context-dependent target regula-
tion after the inhibition of miRNA-15a and -16. In fact, Chamorro-
Jorganes et al.18 showed that miR-16 regulates VEGFR2 in human
ECs cultured under normal conditions. In our model of LI, miR-
15a/16 inhibition using the Ad.Luc-Decoy virus did not change the
expression of VEGF-R2 or other previously described targets of
miR-15a or -16, such as VEGF-A, FGF-1, and FGF-2.18,20,32

We have shown that viral vector-mediated local delivery of a miRNA
decoy increases the density of small arterioles, which contain vascular
smooth muscle cells (VSMCs) and play an important role in the resis-
tance of blood flow in skeletal muscles.62,63 The data presented here
are consistent with our previous report that miR-15a decreased hu-
man VSMC migration and proliferation in vitro,20 biological process
involved in arteriole growth.64

Our study also showed the potential of using a bioluminescence IVIS
apparatus to non-invasively detect changes in endogenous miRNA
expression in wild-type animals. Conventional techniques to measure
miRNA expression usually consist of RT-PCR, microarray analyses,
and northern blots. Even though these techniques are accurate, they
require lysed cells or tissues that represent a further constraint for
time course studies, especially in vivo.65 A major strength versus
genome editing of small animal models, which is otherwise possible,
is that, once optimized, it can be translated for use in large animal
models and human patients. In future studies, the prototypical
Ad.Luc-Decoy can be refined to increase precision of measurements
of different miRNA types, and it can be adapted for use with different
viral vectors, with different tropism and length of transgene
expression.

Finally, this study has provided the first evidence that local inhibition
of miR-15a/16 is effective at improving post-ischemic vascular repair
in limbs. This finding has translational implications, and it signifi-
cantly expands on what has already been reported by Hullinger
et al.48 in heart ischemia models, where locked nucleic acid (LNA)-
modified anti-miRNA was employed to target miR-15, reducing
infarct size. Hullinger et al.48 focused exclusively on the heart and
did not investigate the vascular response to miRNA inhibition.
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Clinical trials based on LNA have already started in patients with
different forms of lymphoma and leukemia (https://www.cancer.
gov/about-cancer/treatment/clinical-trials/intervention/lna-based-
antimir-155-mrg-106). Additionally, gene therapy clinical trials to
test proangiogenic therapies have been already authorized by regula-
tory authorities.66 Therefore, our proof of concept that miR-15a/16
inhibition holds therapeutic potential in the setting of LI has the po-
tential to be progressed through the translational pipeline via at least
two alternatives (LNA or viral vector-mediated Decoy transfer) to
reach the bedside of CLI patients.

MATERIALS AND METHODS
Human RNA Tissue Bank Real-Time qPCR Analysis

RNA from a human tissue bank (resulting from the pooling of three
samples from different patients) was obtained from Ambion, Applied
Biosystems. Reverse transcription was performed using the TaqMan
MicroRNA Reverse Transcription kit (Applied Biosystems, 4366596),
and real-time PCRwas performed in triplicate using the TaqMan uni-
versal master mix with the LightCycler480 qPCR detection system
(Roche, 04707516001).

Expression was normalized to the small nucleolar RNA U6 (snRU6).
Primer identification numbers are indicated in Table S1. Relative
miRNA expression was defined from threshold cycle (Ct) values,
calculated using the 2(�DDCt) method.

Mouse LI Model

The experiments involving mice were performed in accordance with
the Guide for the Care and Use of Laboratory Animals prepared by
the Institute of Laboratory Animal Resources and with the prior
approval of the UK Home Office and the University of Bristol ethics
committee.

Sample size was determined using a power calculation with blood
flow at 21 days post-ischemia, measured using laser Doppler, as the
primary outcome. Specifically, for an 80% power at a 5% significance
level, to detect a 50% increase in ischemic:contralateral limb blood
flow ratio (see below) in the test group (from a mean of 0.4 to 0.6,
based on previous experience), at least 12 mice were required in
each group. Based on our own pilot data on the use of in vivo biolu-
minescence analyses, this number of mice would give us a 90% power
to detect a 3-fold difference in bioluminescence activity.

Left LI was induced in 10- to 12-week-old CD1 male mice (Charles
River Laboratories, Margate, UK). Mice were anesthetized (tribro-
moethanol, 880 mmol/kg intraperitoneally [i.p.], Sigma-Aldrich,
T48402), and the left femoral artery was ligated with a 6-0 silk suture
at two points, followed by electrocoagulation of the ligated segment,
leaving the femoral vein and nerve untouched.67 Analgesia (Veterge-
sic, 0.02 mL/30 g animals) was administrated after surgery. Mice were
excluded and humanely euthanized where they developed signs or
symptoms of severe LI, as per the conditions of our ethics license.
Any data accrued for excluded mice were still analyzed up to the point
of exclusion.
In vivo experiments were performed by three investigators (S.S., L.H.,
and A.C.T.). Where experiments involved the randomization of mice
into one of two groups, the operator and outcome assessor were
blinded as to the group allocation. For evaluation of miR-15a/16
expression in ischemic muscles, mice were sacrificed at 1 and
3 days after surgery. Ischemic and contralateral adductor muscles
were harvested, and RNA extraction was performed on either the total
muscle or muscle CD146+ microvascular cells extracted following a
previously described protocol.68

RNA Extraction from Mouse Tissue and Cells and Real-Time

qPCR Analysis

Total RNA was extracted from adductor muscle tissues and mouse
cells using miRNeasy Mini 343 Kit (QIAGEN, 217004), according
to the manufacturer’s instructions. RT-PCR was performed in tripli-
cate as described above.

Cell Culture

HUVECs (Lonza, Slough, UK, CC-2519) were cultured between pas-
sages 2 and 6 at 37�C with 5% CO2 in EBM-2 EC basal medium
(Lonza, CC-3156), with the addition of the SingleQuot Kit (EGM-2
medium, Lonza, CC-4176) containing 2% fetal bovine serum (FBS,
included in the kit). For hypoxia experiments, cells were exposed to
1% pO2 for 24 and 48 h, whereas for the normoxia control condition
cells were exposed to 21% pO2. For the serum deprivation condition
experiments, cells were cultured in EGM-2 medium without FBS for
24 and 48 h, whereas in the control condition cells were exposed to
complete medium. HeLa cells were maintained in DMEM (Invitro-
gen) supplemented with 10% FBS and 1% penicillin/streptomycin
(Gibco, 15140122). Cells were incubated in a humidified atmosphere
at 37�C with 5% CO2.

Bioinformatic Prediction of New miR-15a and -16 Targets

The program miRcode (http://www.mircode.org/index.php) was
used to predict common genome-wide targets of miR-15a and miR-
16 by looking for their binding sites in the 30 UTR, 50 UTR, and
CDS regions of human genes. The predicted common targets of the
two were then subjected to a GO analysis to identify enriched
terms and processes. GO analysis was performed using CLUEGO,69

with significant terms considered at a Bonferroni-corrected p value
of %0.05.

LuciferaseAssay for theValidation ofmiR-15a and -16Binding to

Tie2 mRNA

The binding sequence for the miR-16 family on Tie2 CDS was iden-
tified using miRcode software. The binding site is in position chr9:
27204938–27204943. At 450 bp to either side of the binding site
was cloned in pMIR-Reporter (Life Technologies). Primers used
for the cloning were as follows: Tie2 CDS, forward 50-ATAGTGGT
TAGGTGGCAGGG-30 and reverse 50-CTGCCTGTACTTGGACT
TGC-30. Primers for 30 UTR mutation were as follows: Tie2
CDS, forward 50-AGGGGGGAAGAATAATAAATTAGCCATCC
TTGG-30 and reverse 50-CCAAGGATGGCTAATTTATTATTCTTC
CCCCCT-30.
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Luciferase assays were performed as previously described.24 Briefly,
luciferase constructs were transfected into HEK293T cells together
with miR-15 and/or miR-16 mimics or p-SV-b-gal control vector.
Cells were cultured for 48 h and assayed with the Luciferase and
b-Galactosidase Reporter Assay Systems (Promega, E1500 and
E2000, respectively). Luciferase values were normalized to protein
concentration and b-galactosidase activity.

Tie2 Expression Regulation by miR-15a and -16 in HUVECs

HUVECs were plated on a 6-multiwell plate at a density of 2.0 � 105

cells per well in 2 mL EGM-2 and grown for 24 h until 70%–80%
confluent. Cells were then washed once with PBS and maintained
in OPTIMEM (Invitrogen, 31985062) for 0.5 h prior to transfection
with pre-miRNAs (hsa-miR-15a-5p, PM10235; hsa-miR-16-5p,
PM10339, Ambion, 5 nM), anti-miRNAs (MH10339 and
MH10235, Ambion, total 50 nM), or a scramble (Scr) control (Cy3
dye-labeled Pre-miR Negative Control, AM17120 or Anti-miR Nega-
tive Control AM17011, Ambion) using Lipofectamine RNAiMAX
(Invitrogen, 13778150), according to the manufacturer’s protocol.
At 2 days after transfection, cells were lysed either in ice-cold Pierce
radioimmunoprecipitation assay (RIPA) buffer (Thermoscientific,
89900) completed with cOmplete Protease Inhibitor Cocktail (Roche,
11697498001) and phosphatase inhibitor PhosSTOP (Roche,
4906845001) for protein extraction or with QIAzol for RNA extrac-
tion (miRNeasy Mini Kit, 217004).

For reverse transcription, cDNA was synthesized from 500 ng total
RNA using the QuantiTect RT kit (QIAGEN, Manchester, UK,
205314), as per themanufacturer’s instructions, including a step to re-
move genomic DNA. All cDNA was stored at�20�C. qPCR was per-
formed using Power SYBR (Life Technologies, Paisley, UK, 4368708)
with aQuantStudio 6 FlexReal-TimePCRSystem (ThermoFisher Sci-
entific), according to the manufacturer’s instructions. Primers used to
measure the expression of human Tie2 are indicated in Table S2. Data
were normalized to 18S as an endogenous housekeeping gene, and
relative expression n was calculated using the 2�(DDCT) method. To
extract protein, lysates were incubated at 4�C on a rotator. Samples
were centrifuged at 14,000� g for 15 min at 4�C, and the supernatant
fractions were used for western blot. Protein concentration was deter-
mined using the Pierce BCA Protein Assay Kit (Thermo Fisher Scien-
tific, 23225). Detection of proteins by western blot analyses was done
using 10 mg protein extract on SDS-polyacrylamide gels.

Proteins were transferred to nitrocellulose membranes and probed
with the following antibodies: Goat anti-human Tie2 (R&D Systems,
AF313, 1:1,000), Rabbit anti-human/mouse phospho-Tie2 (Y992)
(R&D Systems, AF2720, 1:3,000), and mouse and human b-actin
(Sigma, A5441; 1:50,000). Secondary antibodies used were enhanced
chemiluminescence (ECL) mouse immunoglobulin G (IgG) (GE
Healthcare, NA931; 1:5,000), mouse anti-goat- horseradish peroxi-
dase (HRP) (Santa Cruz Biotechnology, sc-2354, 1:2,000), and donkey
anti-rabbit-HRP (Santa Cruz Biotechnology, sc-2313, 1:2,000).
Membranes were stripped between imaging of phospho-Tie2 and
total Tie2.
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Matrigel Assay of HUVECs Transfected with miR-15a and

miR-16 Inhibitors and Tie2 Inhibition

HUVECs were transfected using Lipofectamine RNAiMAX (Invitro-
gen, 13778150) and anti-miRNA negative control or anti-miR-15a or
miR-16 inhibitors, following the protocol described above. The cells
were used for Matrigel assay at 48 h after transfection. On the day
of the Matrigel assay, HUVECs were plated onto duplicate wells con-
taining 70 mL Reduced Growth Factors Matrigel (BD Biosciences,
356231), on a 96-well plate (104 cells/well) in complete medium
with or without 5 mMTie2 inhibitor (ab141270, Abcam) or the equiv-
alent volume of the inhibitor diluent (DMSO, final concentration
0.05%). The experiment continued for 24 h before imaging each
well at 5�. Network formation was quantified in randomly captured
microscopic fields by calculating the length of cellular network using
Image-Pro plus software.

Ad.Luc-Decoy

The fragment of firefly luciferase-decoy 15-16 (Luc-Decoy) under the
control of the cytomegalovirus (CMV) promoter (2,662 bp) was
excised from TW-30 UTR LUC DEC15-CYAN70 with ClaI and
EcoRV, blunt ended using mung bean nuclease and ligated into
pDC511 shuttle vector (Microbix Biosystems, Canada). Replication-
deficient E1-E3-deleted adenovirus was generated by recombination
in 293 cells.71 The DNA construct consists of the CMV promotor fol-
lowed by a luciferase gene and tandem sequences complementary to
miR-15a and also 80% complementary to miR-16 (decoy sequences),
separated by an 18-bp unrelated spacer.70

Preparation of HeLa Cells and HUVECs for In Vitro

Bioluminescence Analyses Using the IVIS System

HeLa cells were seeded on a T75 flask at a density of 8� 105 cells/flask
in 10 mL complete DMEM and grown 24 h until 70%–80% confluent.
Cells were then infected overnight withAd.Luc-Decoy virus at 10MOI
in DMEM without FBS. To transfect the cells with miRNA precur-
sors, HeLa cells were plated in duplicate on a 6-well plate at a density
of 2.5 � 105 cells/well in 2 mL DMEM 10% FBS and grown for 24 h
until 70%–80% confluent. Cells were then maintained in OPTIMEM
medium (Invitrogen, 31985062) for 30 min prior to transfection with
25 nM pre-miR-15a, pre-miR-16, or Scr. For luciferase activity mea-
surement, after transfection, HeLa cells were plated in a 96-well plate
at a density of 1� 103, 2� 103, 4� 103, 6� 103, 8� 103, 1� 104, 2�
104, and 3 � 104 cells/well in duplicates. After 12 h, the medium
was removed and replaced by 100 mL pre-warmed PBS containing
150 mL/mL D-Luciferin (Caliper LifeSciences, 122796). Luciferase ac-
tivity was measured 1 min after the addition of the D-Luciferin using
an IVIS. The average of n = 2 per condition plated in duplicate was
then expressed in units of maximum photons per second per centi-
meter squared per steradian (P$s�1$cm�2$sr�1).

HUVECs were seeded on a 12-well plate at a density of 1 � 105 cells/
well in 1 mL complete EGM-2 medium and grown until 70%–80%
confluent. Cells were then infected overnight with adenoviruses
Ad.Luc-Decoy or Ad.Luc at 100 MOI in EGM-2 complete medium.
The following day, the cells were washed with PBS and the medium
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was replaced with normal complete or serum-free EGM-2 medium
for 24 h. After luciferase activity measurement (performed as in
HeLa cells), HUVECs were then trypsinized and counted. The
average of n = 5 per condition was then expressed in units of
maximum photons per second per centimeter squared per steradian
(P$s�1$cm�2$sr�1) per cell.

Preparation of Mice for In Vivo Bioluminescence Analyses Using

the IVIS System

The sample size for in vivo work was based on power calculations.
Mice were randomized in two treatment groups (n = 14 mice/group)
and underwent LI induction.

Immediately after the procedure, Ad.Luc-Decoy or Ad.Luc (109 pla-
que-forming units per mouse in a total volume of 30 mL injected
into 3 equidistant sites) was delivered into the ischemic adductor
muscle. The luciferase activity in the ischemic muscles was evaluated
at 1, 3, 7, and 21 days post-surgery using the Xenogen In Vivo Imaging
System. Following the exclusion criterion stated above, the day 21
analysis included 12 mice in the Ad.Luc-Decoy group and 10 in the
Ad.Luc group. Briefly, after anesthesia induction (tribromoethanol,
880 mmol/kg i.p., Sigma-Aldrich, T48402), the mouse ischemic leg
was injected subcutaneously with the reporter probe D-luciferin
(Caliper LifeScience, 122796) at 150 mg/kg body weight.

After 10 min, animals were imaged. Bioluminescence was quantified
and expressed in units of maximum photons per second per centi-
meter squared per steradian (P$s�1$cm�2$sr�1), as described
previously.72

Efficacy Testing the Therapeutic Potential of Ad.Luc-Decoy

The mice used for the IVIS analyses were tested for post-ischemic
blood flow recovery, therapeutic angiogenesis, and clinical outcome
in terms of toe necrosis. The superficial blood flow (BF) of the
ischemic and contralateral foot was sequentially analyzed, starting
immediately after surgery and at 7, 14, and 21 days, using a high-res-
olution laser color Doppler imaging system (Moor LDI2, Moor In-
struments, Devon, UK). The ratio between BF in the ischemic and
contralateral foot was calculated and used as an index of percentage
BF recovery. At 21 days post-ischemia, mice were perfusion fixed un-
der terminal anesthesia, and adductors were harvested and paraffin
embedded for histological and immunohistochemical analyses, as
previously described.67 Toe necrosis occurrence, defined as darkening
of the toe followed by loss of the tissue, was evaluated along the LI
protocol. The cumulative proportion of toe survival at 7, 14, and
21 days after the induction of LI was calculated, excluding mice
that showed symptoms of femoral nerve damage.

Histology and Immunohistochemistry on Muscles

The 4-mm-thick adductor muscle slices were stained using Rabbit anti-
mouse/human CD31 (Abcam, ab28364, 1:50) and Donkey anti-rabbit
Alexa-647 (Jackson ImmunoResearch Laboratories, 711-605-152,
1:200) to detect ECs and with a Cy3-conjugated rabbit polyclonal
anti-a-smooth muscle actin antibody (Sigma, C6198, 1:400) to stain
VSMCs, present in arterioles. The slides were then mounted using a
mounting medium (Fluoromount G, South Biotech, 0100-01) contain-
ing DAPI to stain nuclei. The number of capillary and arterioles per
millimeter squared was counted in 10 randomly selected high-power
fields (magnification 40�) using a Zeiss inverted fluorescent micro-
scope. The lumendiameter ofa-smoothmuscle actin-positive arterioles
wasmeasured using ImageJ software. Tie2 staining innon-ischemic and
ischemic muscles was performed using a mouse anti-mouse/human
Tie2 antibody (Abcam, ab24859 [Cl. 16], 1:50) and a goat anti-mouse
Alexa-568 (Abcam, ab175473, 1:200) on cryosections. At least 5 fields
of 40� magnification using Zeiss AxioObserver inverted fluorescent
microscope were used to analyze the percentage of Tie2+/CD31+ cap-
illaries. Intensity of staining of Tie2 within the Tie2+/CD31+ capillaries
was analyzed using Fiji software.

Tie2 Expression in Ischemic Skeletal Muscle Injected with

Ad.Luc and Ad.Luc-Decoy Virus

Animals received surgery of LI and were injected into the adductor
muscle with 109 plaque-forming unit (PFU)/animal with either
Ad.Luc or Ad.Luc-Decoy. At 3 days after surgery, animals were eutha-
nized and ischemic muscles were collected and snap frozen. Tissues
were mechanically disrupted either in Qiazol (QIAGEN) for RNA
extraction or in RIPA buffer (Thermo Scientific, 89900) completed
with cOmplete protease inhibitor cocktail and phosphatase inhibitor
PhosSTOP for protein extraction, as described above. Total RNA
from adductor muscle tissues was extracted using miRNeasy Mini
extraction Kit (QIAGEN, 217004), according to the manufacturer’s
instructions. For tissues collected at 21 days post-LI, total RNA
from formalin-fixed and paraffin-embedded tissue sections was
isolated using deparaffinization solution and miRNeasy FFPE Kit
(QIAGEN 217504), according to the manufacturer’s protocol (depar-
affinization solution 19093).

For mRNA analysis, reverse transcription was performed using the
QuantiTect Reverse Transcription kit (QIAGEN, 205314), according
to the manufacturer’s protocols. cDNA was amplified by real-time
qPCR. cDNA (equivalent to 1 mg total RNA) was incubated in trip-
licate with gene-specific primers for mouse Angiopoietin-1, Angio-
poetin-2, FGF-2, FGF-1, VEGF-A, VEGF-R2, Tie2, GAPDH, and
18S (sequences presented in Table S2). To extract protein, lysates
were incubated at 4�C on a rotator. Samples were centrifuged at
14,000 � g for 15 min at 4�C, and the supernatant fractions were
used for western blot. Protein concentration was determined using
the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific,
23225). Detection of proteins by western blot analyses was done us-
ing 30 mg protein extract on SDS-polyacrylamide gels for Tie2 and
120 mg for VEGF-R2. Proteins were transferred to nitrocellulose
membranes and probed with the following antibodies: goat
anti-mouse/rat Tie2 (R&D Systems, AF762, 1:1,000), rabbit anti-hu-
man/mouse VEGF-R2 (Abcam, ab39256), and rabbit anti-
mouse a/b-Tubulin (R&D Systems, 2148S, 1:2,000). Secondary
antibodies used were mouse anti-goat-HRP (Santa Cruz Biotech-
nology, sc-2354, 1:2,000) and donkey anti-rabbit-HRP (Santa Cruz
Biotechnology, sc-2313, 1:2,000).
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Statistical Analysis

Results are presented as mean ± SEM. Tests for statistical significance
were conducted using GraphPad Prism (version 6; GraphPad, San
Diego, CA).

Comparisons between two groups were performed using Student’s
t test, with the exception of the analysis of the capillary and arteriole
densities for which a Welch’s unequal variances t test was used. For
comparison amongmore than two groups, ANOVA followed by a Tu-
key post hoc test was used. Differences in necrosis outcomes were as-
sessed using the log rank test. Exceptions are indicated in the captions.
A p value of <0.05 was interpreted to be statistically significant.
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Supplemental data 

 

Supplementary figure S1 : Expression of miR-16 and -210 in HUVECs is affected by hypoxia 

associated to serum deprivation, in opposition to miR-15a expression. 

MiR-15a (A), -16 (B) and -210 (C) expressions were evaluated using RT-PCR in Human Umbilical Vein 

Endothelial Cells (HUVECs) cultured under normoxic and Foetal Bovine Serum (FBS)-complete (2% 

FBS) medium or hypoxic and FBS-free (0% FBS) medium for 24 or 48 h. Results were normalized to 

the small nuclear RNA U6 expression. Results are presented as mean ± SEM. n=3 per condition, *p < 

0.05, **p < 0.01 and *** p < 0.001 versus time-matched normoxic and 2% FBS medium conditions. 

Supplementary figure S2 : Expression of miR-15a and -16 in HUVECs is affected by serum 

deprivation but not by hypoxia, in contrast to hypoxamiR-210 expression. 

MiR-15a, -16 and -210 expressions were evaluated using RT-PCR in Human Umbilical Vein 

Endothelial Cells (HUVECs) cultured under normoxic/hypoxic conditions (A-C), or Foetal Bovine 

Serum (FBS)-complete (2% FBS) or FBS-free (0% FBS) media (D-E) for 24 or 48 h. Results were 

normalized to the small nuclear RNA U6 expression. Results are presented as mean ± SEM. n=3-5 per 

condition, *p < 0.05 and **p < 0.01 versus time-matched normoxic or 2% FBS medium conditions. 

Supplementary figure S3 : Increase of miR-15a and -16 in serum deprivation in HUVECs is due to an 

increase in precursor (pre-miR) maturation, and not an increase of primary transcript (pri-miR) 

transcription. 

The mechanism behind the increased expression of miR-15a and -16 under serum deprivation was 

assessed in Human Umbilical Vein Endothelial Cells (HUVECs) cultured under Foetal Bovine Serum 

(FBS)-complete (2% FBS) or FBS-free (0% FBS) media for 24 or 48 h. (A) Expression of the primary 

transcript pri-miR-15a/-16-1 was measured by RT-PCR and normalized to Lamin B. (B, C, D) The 

relative expression of the precursors of miR-15a and -16 (pre-miR-15a/-16-1/-16-2) and the mature 

form of miR-15a (E) and -16 (F) was also measured by RT-PCR and normalized to small nuclear 

RNU6B. The relative expression of each mature miR compared to their precursors is also shown (G, 

H, I). Results are presented as mean ± SEM. n=3 per condition. *p < 0.05 , **p < 0.01 versus time-

matched 2% FBS medium condition. 

Supplementary figure S4 : MiR-15a and/or -16 inhibition decreases HUVEC tube formation on 

Matrigel assay. 

Human Umbilical Vein Endothelial Cells HUVECs were transfected with a Scramble oligo (Scr) or an 

anti-miR against miR-15a or miR-16, or the two anti-miRs together (total concentration of 20 nM) to 

inhibit their activity. MiR-15a and miR-16 expression after anti-miR transfection in HUVECs was 

assessed using RT-PCR and normalized to small nuclear U6 (A). The angiogenic capacity of HUVECs 

(measured by network formation on Matrigel) after inhibition of miR-15a (B), miR-16 (C) and both 

miR-15a and -16 (D) was assessed and is presented as tube length (mm) per mm2. Representative 

images of each condition are provided showing, in green, HUVECs stained with Calcein, 6 h after 

plating the cells on Matrigel. Scale bar: 100 µm. All experiments were performed in triplicate with 

n=3 per condition. All data are expressed as mean ± SEM. *p < 0.05 , **p < 0.01 vs. Scr-control.  

 



Supplementary figure S5 : Bioinformatic analysis of potential targets of miR-15a and -16 involved 

in angiogenesis, positions of miR-15a and -16 seed sequence binding on the human sequence of 

TEK on chromosome 9, and validation of the target. 

Predicted common targets of miR15/16 obtained from miRcode were subjected to gene ontology 

(GO) analysis using the program CLUEGO. (A) The top 15 significantly enriched GO terms are shown 

as a bar graph, with the x-axis indicating –log2 (p values) and significant GO terms on the y-axis. 

Higher values indicate greater statistical significance. An interesting term is “blood vessel 

development” that corresponds to 415 target genes. (B) miRcode results reveal that one of these 

415 target genes is “TEK” which has a 6 bp binding site for miR15/16 in its coding sequence (shown 

in the UCSC browser highlighted in red) at position chr9: 27204938-27204943. At the bottom of the 

browser are Multiz alignments of 100 vertebrates, which indicate conservation as a grey-scale 

density plot, where darker regions indicate more conservation. (C) This predicted binding site of 

miR15/16 in the CDS region of TEK is most highly conserved in mammals (83%), followed by primates 

(67%) and vertebrates (46%).  

Supplementary figure S6 : MiR-15a and -16 inhibition in HUVECs increases Tie2 expression level 

leading to an overall increase of Tie2 phosphorylation. 

HUVECs were transfected with a Scramble oligo (Scr) or an anti-miR against miR-15a or miR-16, or 

the two anti-miRs simultaneously (total concentration of 50 nM) to inhibit their activity. Phospho-

Tie2 (Y922) and total Tie2 protein expression were assessed by western blot and normalized to -

actin and expressed relatively to Scr condition. Results are presented as mean ± SEM. n=6 for each 

condition. Representative pictures of cropped WB images are also shown. * p < 0.05, **p < 0.01 

versus Scr condition. 

Supplementary figure S7 : Tie2 and Angiopoietin(Ang)-1 and -2 expression in whole limb muscles 

and muscle-ECs in our model of limb ischemia. 

Tie-2, Ang-1 and Ang-2 expression was evaluated by RT-PCR in control/non-ischemic limb muscles 

collected at 1 day (A) and 3 days (B) after limb ischemia (LI) induction. (C-H) Tie-2 expression in limb 

muscle ECs, identified by CD31 marker, was measured using immunohistofluorescence in limb 

muscle tissues, 1 day and 3 days after LI. (C&F) Representative microphotographs showing co-

staining of Tie-2 (green) and CD31 (red) in contralateral (control) muscle and ischemic muscle (n=5 

per group). Yellow arrows show Tie-2 positive capillaries (Tie-2+/CD31+) while white arrows show 

Tie-2 negative capillaries (Tie2-/CD31+). Scale bar: 50 µm. (E&F) The percentage of Tie-2+/CD31+ 

capillaries was analysed and the intensity of Tie-2 within the Tie-2+/CD31+ capillaries was also 

reported (G&H). n=4 per condition. Results were presented as mean ± SEM. ** p < 0.01, versus 

control condition. 

Supplementary figure S8 : Adenovirus carrying a decoy sequence for miR-15a and -16 (Ad.Luc-

Decoy), gene construction and inhibition efficiency in vitro.  

(A) Schematic description of the functional decoy-miR15a/16 vector. The decoy sequence is perfectly 

complementary to the miR-15a sequence. CMV: cytomegalovirus immediate early promoter. Mature 

sequences of miR-15a, -15b, -16 and -503 are also provided. Efficiency of the virus has been 

evaluated in Hela cells infected with Ad.Luc-Decoy and transfected either with pre-miR scramble 

(Scr), pre-miR-15a (miR-15a) and pre-miR-16 (miR-16) at 25 nM (B) or with pre-miR-15b (miR-15b) 

and pre-miR-503 (miR-503) to investigate the specificity of the construct (C). (B and C) Results show 

the luciferase activity, measured on a Xenogen In Vivo Imaging System (IVIS), of increasing numbers 

of cells (1000-30000) plated in 96-well plates. Values obtained with 30000 cells and representative 



images acquired with the IVIS system are also presented. Each well picture was cropped as cells 

were plated non-adjacently to avoid light-crossing between wells. Results are presented as mean ± 

SEM. Experiments were performed in duplicate, n=2 per condition, and expressed in as photons per 

second per centimetre-squared per steradian (p. s-1. cm-2.sr-1). *p < 0.05 and **p < 0.01 versus the 

pre-miR Scr condition, Student’s t-test. 

Supplementary figure S9 : Mir-16 expression is increased 21 days after limb ischemia. 

At 21 days after limb ischemia surgery, ischemic and non-ischemic/contralateral (control) adductor 

muscles were collected and the expression of miR-15a and -16 assessed by RT-PCR in the total 

muscle tissue. Results were normalized to snU6 (n=4-6). Results were expressed relatively to Ad.Luc 

control condition and presented as mean ± SEM. 

Supplementary figure S10 : Inhibition of miR-15a/-16 in vivo does not modify the expression of 

Tie2 agonist Angiopoietin-1 and Angiopoietin-2 after limb ischemia. 

Angiopoietin-1 and Angiopoietin-2 expression in ischemic adductor muscles, 3 days after limb 

ischemia surgery and injection with either Ad.Luc or Ad.Luc-Decoy virus, was assessed at mRNA level 

by RT-PCR. Results were normalized to 18S (n=6). Results were expressed relatively to Ad.Luc control 

condition and presented as mean ± SEM. 

Supplementary figure S11 : Inhibition of miR-15a/-16 in vivo does not modify the expression of 

previously described targets of miR-15a and -16 in our model of limb ischemia. 

(A) VEGF-A, VEGF-R2, FGFb, FGF-1 expression in ischemic adductor muscles, 3 days after limb 

ischemia surgery and injection with either Ad.Luc or Ad.Luc-Decoy virus, was assessed at mRNA level 

by RT-PCR. Results were normalized to GAPDH (n=3). (B) VEGF-R2 expression in ischemic adductor 

muscles, 3 days after limb ischemia surgery and injection with either Ad.Luc or Ad.Luc-Decoy virus, 

was assessed at protein level by western blot. Results were normalized to HSP-90 (n=6) and 

presented as mean ± SEM.  



Supplementary Table 1: Information for probes used in TaqMan-based 

quantitative real-time PCR assays (Applied Biosystems, UK) 

Gene ID Reference 

hsa/mmu-miR-15a 000389 

hsa/mmu-miR-15b 000390 

hsa/mmu-miR-16 000391 

hsa/mmu-miR-503 001048 

hsa/mmu-miR-210 000512 

snRU6 001973  
 



Supplementary Table 2: Information for primer-pairs used in SYBR 

Green-based quantitative real-time PCR assays (Sigma and Qiagen) 

Gene ID SEQUENCE       

human pri-miR-15a-16-1  forward: 5’-AAGGTGCAGGCCATATTGTG-3’ 

 reverse: 5’-AAGGCACTGCTGACATTGC-3’ 

human β-actin  forward: 5’-TGGACATCCGCAAAGACCTGT-3’ 

  reverse: 5’-GGGCAGTGATCTCCTTCTGCA-3’ 

human GAPDH forward: 5’-TGCACCACCAACTGCTTAGC-3’ 

 reverse: 5’-GGCATGGACTGTGGTCATGAG-3' 

human LaminB forward: 5’-CTGGAAATGTTTGCATCGAAGA-3’ 

  reverse: 5’-GCCTCCCATTGGTTGATCC-3' 

human Tie2 forward: 5’-GGGACCCCACACTTCCAACAA-3’ 

 reverse: 5’-TTTGGTATCAGCAGGGCTGG-3' 

human/mouse 18S forward: 5’-CCCAGTAAGTGCGGGTCATAA-3' 

  reverse: 5’-CCGAGGGCCTCACTAAACC-3' 

mouse angiopoietin1 forward: 5’-GGGGGAGGTTGGACAGTAA-3’ 

 reverse: 5'-CATCAGCTCAATCCTCAGC-3' 

mouse angiopoietin2 forward: 5’-GATCTTCCTCCAGCCCCTAC-3’ 

  reverse: 5'-TTTGTGCTGCTGTCTGGTTC-3' 

mouse FGF-1 forward: 5’-AAAGTGCGGGCGAAGTGTA-3’ 

 reverse: 5'-CTCATTTGGTGTCTGCGAGC-3' 

mouse FGFb forward: 5’-GGCTGCTGGCTTCTAAGTGT-3’ 

  reverse: 5'-GTCCCGTTTTGGATCCGAGT-3' 

mouse VEGF-A forward: 5’-GGAGATCCTTCGAGGAGCACTT-3’ 

 reverse: 5'-GGCGATTTAGCAGCAGATATAAGAA-3' 

mouse VEGF-R2 forward: 5’-TACAGACCCGGCCAAACAA-3’ 

  reverse: 5'-TTTCCCCCCTGGAAATCCT-3' 

mouse Tie2 forward: 5’-TACAACGGCCATTTCTCCTC-3’ 

 reverse: 5’-GTGGCTTGCTTGGTACAGGT-3' 

      

      

miR-15a forward: 5'-TAGCAGCACATAATGGTTTGTGAAA-3' 

miR-16 forward: 5'-TAGCAGCACGTAAATATTGGCGAA-3' 

pre-miR-15a forward : 5'-GCACATAATGGTTTGTGGATTT-3' 

pre-miR-16-1 forward : 5'-GTAAATATTGGCGTTAAGATTC-3' 

pre-miR-16-2 forward : 5'-GCGTAGTGAAATATATATTAAACACC-3' 
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