Online-only supplements

Supplementary Table 1 Subjects' data used to build the machine learning models

Supplementary Table 2 Comparison between candidates and contraindication cases

Supplementary Table 3 Classification performance of machine learning models to predict candidates for corneal refractive surgery in the internal validation set

Supplementary Fig. 1 Twenty features were selected by information gain ranking to predict candidates for corneal refractive surgery. This graph shows the results from the 10-fold cross-validation procedure. CCT, central corneal thickness; CDVA, corrected distance visual acuity; K1, keratometry in the flattest meridian; K2, keratometry in the steepest meridian.

Supplementary Video This video demonstrates the final ensemble machine learning model as it appears during analysis.

Supplemental materials

Adopting Machine Learning to Automatically Identify Candidate Patients for Corneal Refractive Surgery

Tae Keun Yoo, MD, Ik Hee Ryu, MD, Geunyoung Lee, BS, Youngnam Kim, MS, Jin Kuk Kim, MD, PhD, In Sik Lee, MD, PhD, Jung Sub Kim, MD, Tyler Hyungtaek Rim, MD, MBA

Supplementary Table 1. Subjects' data used to build the machine learning models

Category	Total number	Features			
Demographics &	40	Age (continuous)			
Survey		Sex (binary)			
		Before_Surgery_Glasses (binary)			
		Before_Surgery_Hard_Lens (binary)			
		Before_Surgery_Soft_Lens (binary)			
		Before_Surgery_None (binary)			
		Occupation_Sports (binary)			
		Occupation_Driver (binary)			
		Occupation_Computer_or_Smartphone (binary)			
		Anticipated_Surgery_LASIK (binary)			
		Anticipated_Surgery_LASEK (binary)			
		Anticipated_Surgery_SMILE (binary)			
		Anticipated_Surgery_ICL (binary)			
		Anticipated_Surgery_None (binary)			
		Anticipated_Recovery_One_Day (binary)			
		Anticipated_Recovery_Three_Days (binary)			
		Anticipated_Recovery_One_Week (binary)			
		Anticipated_Recovery_One_Month (binary)			
		Anticipated_Recovery_None (binary)			
		Plan_After_Surgery_Study_Abroad (binary)			
		Plan_After_Surgery_Employment (binary)			
		Plan_After_Surgery_Military (binary)			
		Plan_After_Surgery_Surgery (binary)			
		Plan_After_Surgery_None (binary)			
		Concern_Complication (binary)			
		Concern_Visual_Acuity (binary)			
		Concern_Management (binary)			
		Concern_Recovery (binary)			
		Concern_Money (binary)			
		Concern_None (binary)			
		Dry_Eye_Symptom_Severe (binary)			
		Dry_Eye_Symptom_Moderate (binary)			
		Dry_Eye_Symptom_Mild (binary)			
		Dry_Eye_Symptom_None (binary)			
		History_Metabolic_Disease (binary)			
		History_Glaucoma_Or_Retinal_Disorder (binary)			
		History_Keloid_Or_Atopic_Dermatitis (binary)			
		History_Recent_Delivery (binary)			
		History_Other (binary)			
		History_None (binary)			

eTable 1. Subjects' data used to build the machine learning models (continued)

Category	Total number	Features				
Corneal	80	Pentacam_Pupil_Diameter (continuous)				
tomography	00	Pentacam_Pupil_Diameter (continuous) Pentacam_Anterior_Chamber_Depth (continuous)				
- Pentacam		Pentacam_Anterior_Chamber_Depth (continuous) Pentacam_Angle (continuous)				
(both eyes)		Pentacam_Chamber_Volume (continuous)				
(bour cycc)		Pentacam_Cnamber_volume (continuous) Pentacam_Keratometric_Power_Deviation (continuous)				
		Pentacam_Keratometric_Power_Deviation (continuous) Pentacam_Corea_Volume (continuous)				
		Pentacam_Corea_volume (continuous) Pentacam_K_Max_y (continuous)				
		Pentacam_K_max_y (continuous)				
		Pentacam_K_max_x (continuous) Pentacam_K_max_pachy (continuous)				
		Pentacam_Thinnest_Y (continuous)				
		Pentacam_Thinnest_X (continuous)				
		Pentacam_Thinnest_CCT (continuous)				
		Pentacam_Pachy_Apex_Y_Position (continuous)				
		Pentacam_Pachy_Apex_X_Position (continuous)				
		Pentacam_Pachy_Apex_CCT (continuous)				
		Pentacam_Pupil_Center_Y (continuous)				
		Pentacam_Pupil_Center_X (continuous)				
		Pentacam_Pupil_Center_CCT (continuous)				
		Pentacam_Corneal_Back_Rmin (continuous)				
		Pentacam_Corneal_Back_Rper (continuous)				
		Pentacam_Corneal_Back_ecc (continuous)				
		Pentacam_Corneal_Back_Astig (continuous)				
		Pentacam_Corneal_Back_Axis (continuous)				
		Pentacam_Corneal_Back_K_mean (continuous)				
		Pentacam_Corneal_Back_R_mean (continuous)				
		Pentacam_Corneal_Back_K2 (continuous)				
		Pentacam_Corneal_Back_R_Vertical (continuous)				
		Pentacam_Corneal_Back_K1 (continuous)				
		Pentacam_Corneal_Back_R_Horizontal (continuous)				
		Pentacam_Corneal_Front_Rmin (continuous)				
		Pentacam_Corneal_Front_Rper (continuous)				
		Pentacam_Corneal_Front_ecc (continuous)				
		Pentacam_Corneal_Front_Astig (continuous)				
		Pentacam_Corneal_Front_Axis (continuous)				
		Pentacam_Corneal_Front_K_mean (continuous)				
		Pentacam_Corneal_Front_R_mean (continuous)				
		Pentacam_Corneal_Front_K2 (continuous)				
		Pentacam_Corneal_Front_R_Vertical (continuous)				
		Pentacam_Corneal_Front_K1 (continuous)				
		Pentacam_Corneal_Front_R_Horizontal (continuous)				
Ophthalmic	22	Spherical_Equivalent (continuous)				
examination		Spherical_Diopter (continuous)				
(both eyes)		Cylinder_Diopter (continuous)				
		Cylinder_Axis (continuous)				
		CDVA (logMAR) (continuous)				
		Pupil_Diameter (continuous)				
		IOP (continuous)				
		CCT (continuous)				
		Anterior_Chamber_Depth (continuous)				
		WTW (continuous)				
		NIBUT (continuous)				
Total	142 features					

	Candidates for	Contraindication	P Value ^a	
	surgery	cases		
Training set				
Number	9557	1004		
Age (years)	27.8 ± 5.9	33.8 ± 7.7	<.001	
Sex, female (%)	5077 (53.1)	532 (53.0)	.935	
Spherical equivalent (Diopter)	-4.53 ± 2.00	-7.82 ± 4.99	<.001	
CDVA (logMAR)	-0.016 ± 0.036	0.017 ± 0.114	<.001	
IOP (mmHg)	15.2 ± 2.59	15.2 ± 23.2	.897	
Central corneal thickness (µm)	542.9 ± 30.58	501.3 ± 41.2	<.001	
NIBUT (seconds)	6.93 ± 6.71	5.12 ± 3.60	<.001	
Internal validation set				
Number	2389	251		
Age (years)	27.7 ± 6.1	33.6 ± 7.9	<.001	
Sex, female (%)	1242 (52.0)	132 (52.6)	.856	
Spherical equivalent (Diopter)	-4.53 ± 2.00	-7.82 ± 4.99	<.001	
CDVA (logMAR)	-0.017 ± 0.037	0.015 ± 0.119	<.001	
IOP (mmHg)	15.3 ± 3.6	15.2 ± 23.2	.923	
Central corneal thickness (µm)	542.8 ± 30.97	501.7 ± 42.2	<.001	
NIBUT (seconds)	6.91 ± 6.63	5.10 ± 3.44	<.001	
External validation set				
Number	4904	375		
Age (years)	25.7 ± 6.4	33.8 ± 8.4	<.001	
Sex, female (%)	2675 (54.6)	204 (54.4)	.956	
Spherical equivalent (Diopter)	-4.57 ± 2.12	-7.81 ± 5.10	<.001	
CDVA (logMAR)	-0.001 ± 0.036	0.019 ± 0.127	<.001	
IOP (mmHg)	15.2 ± 3.1	15.1 ± 26.2	.917	
Central corneal thickness (µm)	545.1 ± 32.8	509.8 ± 45.9	<.001	
NIBUT (seconds)	6.94 ± 6.71	5.40 ± 3.60	<.001	

Supplementary Table 2. Comparison between candidates and contraindication cases


Abbreviations: CDVA, corrected distance visual acuity; IOP, intraocular pressure; NIBUT, non-invasive break up time.^a Comparison using the one-way ANOVA test and Chi-square test.

Supplementary Table 3. Classification performance of machine learning models to predict candidates for corneal refractive surgery in the internal validation set

	AUC (95% CI)	Accuracy (%) (95% CI)	Sensitivity (%) (95% CI)	Specificity (%) (95% CI)	P Value ^a
Internal validation					
SVM	0.963	90.6	90.7	90.0	.085
	(0.955-0.970)	(89.5-91.7)	(89.5-91.8)	(85.7-93.5)	
ANN	0.970	92.7	93.1	89.2	.357
	(0.962-0.976)	(91.7-93.7)	(92.0-94.1)	(84.7-92.8)	
RF	0.976	91.4	91.3	92.4	Reference
	(0.969-0.981)	(90.3-92.4)	(90.3-92.4)	(88.4-95.4)	
AdaBoost	0.972	92.1	92.1	91.6	.591
	(0.965-0.978)	(90.9-93.1)	(90.9-93.2)	(87.5-94.8)	
LASSO	0.930	84.7	84.5	86.5	<.001
	(0.920-0.940)	(83.2-86.0)	(82.9-85.9)	(81.6-90.4)	
Ensemble	0.983	94.1	94.3	92.8	.223
	(0.977-0.987)	(93.2-95.0)	(93.3-95.2)	(88.9-95.7)	
PTA	0.808	85.3	87.1	68.5	<.001
	(0.792-0.822)	(83.9-86.6)	(85.7-88.4)	(62.4-74.2)	
Randleman score	0.885	86.6	87.6	76.5	<.001
	(0.872-0.897)	(85.2-87.8)	(86.2-88.9)	(70.7-81.6)	
External validation					
SVM	0.958	91.5	91.7	88.0	.459
	(0.952-0.963)	(90.7-92.2)	(90.9-92.5)	(84.3-91.1)	
ANN	0.959	90.6	90.7	88.0	.503
	(0.953-0.964)	(89.7-91.3)	(89.9-91.5)	(89.9-91.5)	
RF	0.967	92.9	93.3	88.0	Reference
	(0.962-0.972)	(92.2-93.6)	(92.5-93.9)	(84.3-91.1)	
AdaBoost	0.964	90.6	90.6	90.4	.612
	(0.958-0.969)	(89.8-91.4)	(89.8-91.4)	(86.9-93.2)	
LASSO	0.913	85.5	85.7	82.7	<.001
	(0.905-0.920)	(84.5-86.4)	(84.7-86.7)	(78.5-86.4)	
Ensemble	0.972	93.4	93.7	89.3	.226
	(0.967-0.976)	(92.7-94.1)	(93.0-94.4)	(85.8-92.3)	
PTA	0.804	80.9	81.7	70.9	<.001
	(0.958-0.969)	(79.9-82.0)	(80.6-82.8)	(66.1-75.5)	
Randleman score	0.893	86.9	87.5	77.6	<.001
	(0.884-0.901)	(85.9-87.8)	(86.6-88.5)	(73.0-81.7)	

Abbreviations: ANN, artificial neural networks; AUC, area under curve; CI, confidence interval; LASSO, least absolute shrinkage and selection operator; PTA, percentage of tissue ablated; RF, random forest; SVM, support vector machine.

^a Comparison of receiver operating characteristics curves with the best single technique (random forest with feature selection) according to the Delong test.

Supplementary Fig. 1. Twenty features were selected by information gain ranking to predict candidates for corneal refractive surgery.

This graph shows the results from the 10-fold cross-validation procedure. CCT, central corneal thickness; CDVA, corrected distance visual acuity; K1, keratometry in the flattest meridian; K2, keratometry in the steepest meridian