Supplementary Information

Direct Allylic C–H Alkylation of Enol Silyl Ethers Enabled by Photoredox–Brønsted Base Hybrid Catalysis

K. Ohmatsu, et al.

Supplementary Methods:

General Information: ¹H NMR spectra were recorded on a JEOL JNM-ECS400 (400 MHz) and JEOL JNM-ECA600II (600 MHz) spectrometer. Chemical shifts are reported in ppm from the tetramethylsilane (0.0 ppm) resonance as the internal standard (CDCl₃). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sext = sextet, sept = septet, m = multiplet, and br = broad) and coupling constants (Hz). ¹³C NMR spectra were recorded on a JEOL JNM-ECA600II (151 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl₃; 77.16 ppm). The high-resolution mass spectra were conducted on Thermo Fisher Scientific Exactive Plus (ESI). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Flash column chromatography was performed on Silica gel 60 N (spherical, neutral, 40~50µm; Kanto Chemical Co., Inc.).

All air- and moisture-sensitive reactions were performed under an atmosphere of argon (Ar) in dried glassware. Dichloromethane (CH₂Cl₂), 1,2-dichloroethane (DCE), diethyl ether (Et₂O), and tetrahydrofuran (THF) were supplied from Kanto Chemical Co., Inc. as "Dehydrated" and further purified by both A2 alumina and Q5 reactant using a GlassContour solvent dispensing system. The photocatalysts (**4a-4c**) and enol silyl ethers were synthesized according to the previously reported procedures.¹⁻⁴ Other simple chemicals were purchased and used as such.

Synthesis of Ketones

$$CI \xrightarrow{O} CUCI \\ \xrightarrow{t-BuMgCl} O \\ \xrightarrow{THF} t-Bu \\ \xrightarrow{t-Bu} \\$$

To a solution of butyryl chloride (3.1 mL, 30 mmol) and CuCl (0.15 g, 1.5 mmol) in THF (60 mL, 0.5 M), a 1 M THF solution of *t*-BuMgCl (31 mL, 31 mmol) was added dropwise via syringe under Ar atmosphere. The resulting mixture was allowed to warm to room temperature and stirred overnight. The reaction was then quenched by the addition of water at 0 °C and the aqueous phase was extracted with Et₂O twice. The combined organic phases were washed with 1 N aqueous solution of HCl three times, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by distillation to afford **S1** in 57% yield (2.2 g, 17 mmol). ¹H NMR (400 MHz, CDCl₃) δ 2.46 (2H, t, *J* = 6.8 Hz), 1.63-1.54 (2H, m), 1.13 (9H, s), 0.90 (3H, t, *J* = 7.2 Hz).

To a round-bottom flask was charged with mesitylene (8.4 mL, 60 mmol) and the reaction flask was cooled to 0 °C. Anhydrous AlCl₃ (0.67 g, 5 mmol) was added one-portion and the mixture was stirred at the same temperature for several minutes. To this mixture was added butyryl chloride (2.1 mL, 20 mmol) dropwise over 1 h at 0 °C. The whole reaction mixture was then allowed to warm to room temperature and stirred for 6 h. The reaction was quenched by the addition of water and the extractive work-up was conducted with Et₂O. The combined organic layers were washed with saturated aqueous solution of NaHCO₃, dried over Na₂SO₄, filtered, and concentrated. The resulting crude material was purified by column chromatography on silica gel (hexane 100% to hexane/EtOAc = 5:1 as eluent) to afford **S2** in 99% yield (3.7 g, 19.4 mmol). ¹H NMR (400 MHz, CDCl₃) δ 6.83 (2H, s), 2.67 (2H, t, *J* = 7.6 Hz), 2.27 (3H, s), 2.19 (6H, s), 1.73 (2H, sext, *J* = 7.6 Hz), 1.00 (3H, t, *J* = 7.6 Hz).

To a two-necked round-bottom flask was added 3,5-dimethylpyrazole (0.96 g, 10 mmol), butyryl chloride (1.2 mL, 11 mmol), toluene (50 mL, 0.2 M) and the flask was degassed by alternating vacuum evacuation/Ar backfill. The mixture was cooled to 0 °C, and Et₃N (2.8 mL, 20 mmol) was added. The whole mixture was then heated to reflux. After stirring for 1 h, the reaction mixture was cooled to room temperature and filtered through a pad of Celite with the aid of EtOAc. The filtrates were evaporated under reduced pressure and the crude product was purified by column chromatography on silica gel (hexane/EtOAc = 10:1 as eluent) to afford **S3** quantitatively (1.7 g, 10 mmol). ¹H NMR (400 MHz, CDCl₃) δ 5.95 (1H, s), 3.08 (2H, t, *J* = 7.6 Hz), 2.54 (3H, s), 2.24 (3H, s), 1.77 (2H, sext, *J* = 7.6 Hz), 1.02 (3H, t, *J* = 7.6 Hz).

To a solution of 5-chlorovaleryl chloride (7.7 mL, 60 mmol) and CuCl (5.9 g, 60 mmol) in THF (60 mL, 1 M), a 1 M THF solution of *t*-BuMgCl (63 mL, 63 mmol) was added dropwise via syringe under Ar atmosphere at 0 °C. The reaction mixture was then allowed to warm to room temperature and stirred overnight. The reaction was quenched with ice water and filtered through a pad of Celite. The organic layer of resulting filtrates was washed with 1 N HCl aq. three times, dried, and concentrated. The crude product was purified by silica gel column chromatography (hexane/EtOAc = 15:1 as eluent) to give **S4** in 92% yield (9.75 g, 55.2 mmol). ¹H NMR (400 MHz, CDCl₃) δ 3.53 (2H, t, *J* = 6.4 Hz), 2.52 (2H, t, *J* = 6.8 Hz), 1.85-1.65 (4H, m), 1.14 (9H, s).

The mixture of **S4** (0.53 g, 3 mmol) and NaI (0.90 g, 6 mmol) in 1 N NaOH aq. (20 mL) and MeOH (100 mL) was refluxed with stirring for 12 h. The reaction mixture was then cooled to room temperature and evaporated to remove MeOH. The resulting mixture was extracted with EtOAc twice, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 15:1) to afford **S5** in 54% yield (0.28 g, 1.63 mmol). ¹H NMR (400 MHz, CDCl₃) δ 3.37 (2H, t, *J* = 6.4 Hz), 3.32 (3H, s), 2.51 (2H, t, *J* = 7.0 Hz), 1.66-1.50 (4H, m), 1.13 (9H, s).

The solution of **S4** (2.6 g, 15 mmol), KOAc (2.9 g, 30 mmol), and I₂ (31 mg, 0.12 mmol) in AcOH (150 mL, 0.1 M) was refluxed with stirring overnight. The reaction mixture was allowed to cool to room temperature and acetic acid was removed by rotary evaporator. The residue was diluted with water and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 10:1) to afford **S6** in 60% yield (1.8 g, 9.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 4.06 (2H, t, *J* = 6.2 Hz), 2.52 (2H, t, *J* = 7.0 Hz), 2.05 (3H, s), 1.62 (4H, m), 1.14 (9H, s).

The suspension of **S4** (0.88 g, 5 mmol), phthalimide (0.88 g, 6 mmol), K_2CO_3 (1.38 g, 10 mmol), and KI (0.33 g, 2 mmol) in DMF (20 mL) was stirred at 80 °C overnight. After cooling to room temperature, the reaction

mixture was diluted with water and the extractive work-up was performed with EtOAc. The combined organic layers were washed with water three times, dried over Na₂SO₄, and concentrated. The resulting crude residue was purified by column chromatography on silica gel (hexane/EtOAc = 3:1) to afford **S7** in 90% yield (1.3 g, 4.5 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.87-7,81 (2H, m), 7.74-7.68 (2H, m), 3.69 (2H, t, *J* = 7.2 Hz), 2.54 (2H, t, *J* = 7.2 Hz), 1.74-1.55 (4H, m), 1.13 (9H, s).

The mixture of **S4** (0.49 g, 2.8 mmol) and NaCN (0.41 g, 8.3 mmol) in DMF (3 mL) was vigorously stirred at 60 °C for 10 h. After cooling to room temperature, the reaction mixture was diluted with water and the extractive work-up was conducted with EtOAc. The combined organic layers were washed with water three times, dried over Na₂SO₄, filtered, and concentrated. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 10:1 to 4:1) to furnish **S8** quantitatively (0.47 g, 2.8 mmol). ¹H NMR (400 MHz, CDCl₃) δ 2.54 (2H, t, *J* = 6.8 Hz), 2.35 (2H, t, *J* = 7.2 Hz), 1.79-1.59 (4H, m), 1.14 (9H, s).

Characterization of Enol Silyl Ethers

- ^{TBSO} ¹H NMR (400 MHz, CDCl₃) δ 4.89-4.84 (1H, brm), 2.03-1.96 (4H, m), 1.69-1.61 (2H, m), 1.53-1.47 (2H, m), 0.91 (9H, s), 0.12 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 104.5, 30.0, 25.9, 24.0, 23.3, 22.5, 18.2, -4.2.
- ^{TMSO} ¹H NMR (400 MHz, CDCl₃) δ 4.88-4.85 (1H, m), 2.03-1.96 (4H, m), 1.68-1.62 (2H, m), 1.53-1.48 (2H, m), 0.18 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 150.4, 104.4, 30.0, 24.0, 23.3, 22.5, 0.5.
- TESO ¹H NMR (400 MHz, CDCl₃) δ 4.89-4.83 (1H, m), 2.04-1.96 (4H, m), 1.68-1.60 (2H, m), 1.54-1.46 (2H, m), 0.97 (9H, t, *J* = 8.0 Hz), 0.64 (6H, q, *J* = 8.0 Hz); ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 104.1, 30.0, 24.0, 23.4, 22.5, 6.9, 5.2.

¹H NMR (400 MHz, CDCl₃) δ 5.01 (1H, t, J = 6.4 Hz), 2.26-2.19 (2H, brm), 1.98 (2H, dd, J = 11.6, 6.4 Hz), 1.71-1.63 (2H, m), 1.61-1.48 (4H, m), 0.91 (9H, s), 0.11 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 156.3, 108.7, 35.7, 31.6, 27.9, 25.9, 25.5, 25.4, 18.1, -4.3.

TBSO

TBSO

¹H NMR (400 MHz, CDCl₃) δ 4.74-4.66 (1H, m), 2.20-2.14 (2H, brm), 2.04-1.96 (2H, br), 1.61-1.45 (8H, brm), 0.91 (9H, s), 0.14 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 153.4, 105.0, 31.1(9), 31.1(5), 27.9, 26.5(2), 26.5(0), 25.9, 25.7, 18.2, -4.2.

^{TBSO} *t*-Bu - ¹H NMR (400 MHz, CDCl₃) δ 4.44 (1H, t, *J* = 7.2 Hz), 1.99 (2H, quin, *J* = 7.2 Hz), 1.06 (9H, s), 0.98 (9H, s), 0.93 (3H, t, *J* = 7.2 Hz), 0.17 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 157.3, 105.5, 29.1, 26.7, 25.9, 19.5, 19.4, 14.9, -2.9.

TBSO ¹H NMR (400 MHz, CDCl₃) δ 4.40 (1H, t, J = 7.4 Hz), 2.06-1.90 (4H, m), 1.52-1.46 (2H, m), 0.95 (9H, s), 0.93-0.88 (6H, m), 0.12 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 110.0, 38.8, 26.0, 20.5, 18.7, 18.4, 14.7, 13.8, -3.9.

TBSO This compound was synthesized by the literature method.⁵

^{Me} ¹H NMR (400 MHz, CDCl₃) δ 4.93 (1H, t, *J* = 7.2 Hz), 1.97-2.04 (2H, m), 1.76 (3H, s), 0.94 (9H, s), 0.91 (3H, t, *J* = 7.8 Hz), 0.13 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 146.2, 110.7, 25.9, 22.9, 18.8, 18.4, 14.6, -3.8.

^{TBSO} Mes ¹H NMR (400 MHz, CDCl₃) δ 6.81 (2H, s), 4.52 (1H, t, *J* = 7.2 Hz), 2.28 (6H, s), 2.25 (3H, s), 2.21 (2H, quin, *J* = 7.2 Hz), 1.01 (3H, t, *J* = 7.2 Hz), 0.91 (9H, s), -0.21 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 145.8, 136.9, 136.5, 136.4, 128.2, 115.0, 25.8, 21.2, 20.4, 18.8, 18.4, 14.5, -4.4.

^{TBSO} Ph ¹H NMR (400 MHz, CDCl₃) δ 7.43 (2H, d, J = 6.8 Hz), 7.31-7.25 (3H, m), 5.09 (1H, t, J = 7.6 Hz), 2.22 (2H, quin, J = 7.6 Hz), 1.03 (3H, t, J = 7.6 Hz), 0.98 (9H, s), -0.05 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 148.9, 140.0, 128.0, 127.4, 126.0, 114.0, 26.0, 19.6, 18.5, 14.4, -3.9.

^{TBSO} ¹H NMR (400 MHz, CDCl₃) δ 7.46 (1H, d, *J* = 7.2 Hz), 7.22-7.08 (3H, m), 5.17 (1H, t, *J* = 4.6 Hz), 2.76 (2H, t, *J* = 8.0 Hz), 2.35-2.27 (2H, m), 1.01 (9H, s), 0.20 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 137.3, 133.8, 127.4, 127.1, 126.3, 122.0, 105.1, 28.4, 26.1, 22.4, 18.5, -2.8.

¹H NMR (400 MHz, CDCl₃) δ 5.79 (1H, s), 4.76 (1H, t, *J* = 7.6 Hz), 2.23 (3H, s), 2.21 (3H, s), 2.18 (2H, quin, *J* = 7.6 Hz), 1.03 (3H, t, *J* = 7.6 Hz), 0.92 (9H, s), -0.08 (6H, s); ¹³C NMR (151 MHz, CDCl₃) 148.1, 141.3, 139.8, 109.3, 105.7, 25.7, 18.9, 18.2, 14.1, 13.6, 11.6, -5.2.

TBSO t-Bu (151 MHz, CDCl₃) δ 4.43 (1H, t, J = 7.2 Hz), 3.53 (2H, t, J = 7.2 Hz), 2.13 (2H, t, J = 7.2 Hz), 1.79 (2H, quin, J = 7.2 Hz), 1.06 (9H, s), 0.98 (9H, s), 0.18 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 159.1, 101.7, 45.0, 36.7, 33.3, 29.1, 26.7, 23.8, 19.4, -2.7.

TBSO 1H NMR (400 MHz, CDCl₃) δ 4.45 (1H, t, *J* = 7.0 Hz), 3.36 (2H, t, *J* = 7.0 Hz), 3.32 (3H, t-Bu OMe s), 2.03 (2H, q, *J* = 7.0 Hz), 1.59 (2H, quin, *J* = 7.0 Hz), 1.05 (9H, s), 0.98 (9H, s), 0.17 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 158.3, 102.9, 72.7, 66.0, 58.7, 30.3, 29.1, 26.7, 22.7, 19.4, -2.8.

TBSO ¹H NMR (400 MHz, CDCl₃) δ 4.44 (1H, t, J = 7.0 Hz), 4.06 (2H, t, J = 6.6 Hz), 2.07 (2H, t-Bi OAc q, J = 7.0 Hz), 2.04 (3H, s), 1.70-1.60 (2H, m), 1.05 (9H, s), 0.98 (9H, s), 0.18 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 171.4, 158.7, 102.3, 64.5, 36.7, 29.3, 29.0, 26.7, 22.8, 21.2, 19.4, -2.8.

TBSO ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.80 (2H, m), 7.73-7.67 (2H, m), 4.47 (1H, brt, J =t-Bu NPhth 6.6 Hz), 3.69 (2H, t, J = 7.6 Hz), 2.04 (2H, q, J = 7.6 Hz), 1.71 (2H, quin, J = 7.6 Hz), 1.04 (9H, s), 0.94 (9H, s), 0.15 (6H, s); 13 C NMR (151 MHz, CDCl₃) δ 168.5, 158.7, 134.0, 132.4, 123.3, 102.2, 37.9, 36.7, 29.2, 29.0, 26.6, 23.7, 19.3, -2.8.

TBSO ¹H NMR (400 MHz, CDCl₃) δ 4.41 (1H, t, J = 7.2 Hz), 2.32 (2H, t, J = 7.2 Hz), 2.13 (2H, t-Bu `CN q, J = 7.2 Hz), 1.69 (1H, quin, J = 7.2 Hz), 1.06 (9H, s), 0.98 (9H, s), 0.18 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 159.9, 120.0, 101.0, 36.8, 29.0, 26.6, 26.1, 25.2, 19.3, 16.7, -2.7.

TBSO ¹H NMR (400 MHz, CDCl₃) δ 4.57 (1H, q, J = 7.2 Hz), 1.53 (3H, d, J = 7.2 Hz), 1.06 (9H, s), 0.99 (9H, s), 0.18 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 159.1, 97.0, 31.7, 29.0, 26.7, 25.9, 12.0, -2.7.

TBSO

t-Bi

¹H NMR (600 MHz, CDCl₃) δ 2.04-1.99 (2H, m), 1.97-1.92 (2H, m), 1.67-1.61 (2H, m), 1.57 (3H, s), 1.56-1.51 (2H, m), 0.95 (9H, s), 0.11 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 143.1, 111.7, 30.5(4), 30.4(5), 26.3, 24.0, 23.2, 18.3, 16.6, -3.7.

¹H NMR (400 MHz, CDCl₃) δ 7.08 (1H, d, J = 8.4 Hz), 6.64 (1H, d, J = 8.4 Hz), 6.59 (1H, s), 4.42 (1H, s), 2.90-2.74 (2H, m), 2.34-2.18 (2H, m), 2.21-2.03 (1H, m), 1.94-1.78 (3H, m), 1.64-1.31 (5H, m), 1.31-1.14 (6H, m), 1.10 (36H, br), 0.90 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 165.4, 153.8, 138.0, 133.4, 125.8, 119.9,

116.9, 97.4, 54.3, 45.3, 44.8, 37.3, 33.8, 29.7, 28.3, 27.3, 26.4, 18.2(3), 18.1(6), 15.7, 12.9, 12.7.

General Experimental Procedure for Allylic Alkylation of Enol Silyl Ethers

To a flame-dried test tube were added electron-deficient olefin (0.12 mmol, 1.2 equiv), $[Ir(dFCF_3ppy)_2(4,4'$ dCF₃bpy)]PF₆ (2.29 mg, 0.002 mmol, 2 mol%) and DCE (0.5 mL, 0.2 M). The reaction tube was sealed with a rubber septum and then evacuated in vacuo and backfilled with Ar five times. Enol silvl ether (0.1 mmol, 1 equiv) and 2,4,6-collidine (1.3 µL, 0.01 mmol, 10 mol%) were successively introduced. The whole reaction mixture was stirred at 25 °C under the irradiation of blue LED (448 nm, 750 W/m²) with a fan to keep the temperature. After 12 h, the reaction mixture was evaporated. Purification of the resulting crude residue by column chromatography on silica gel (hexane 100% to hexane/EtOAc = 5:1) afforded the corresponding alkylated enol silyl ether.

Proposed Catalytic Cycle of Allylic C-H Alkylation

While it is difficult to precisely establish the entire reaction mechanism, particularly the closing step of the catalytic cycle, we illustrate the plausible mechanism of the present allylic alkylation of enol silyl ethers in Supplementary Figure 1.

Supplementary Figure 1. Proposed catalytic cycle. The light-excited Ir^{III} complex would engage in the oxidation of enol silyl ether to generate radical cation intermediate **A** and the reduced Ir^{II} complex. This oxidation process would then be relayed to the deprotonation of the radical cation by 2,4,6-collidine to furnish nucleophilic allylic radical **B**. The subsequent radical addition to electron-deficient olefin could form a new carbon–carbon bond with the generation of electrophilic radical **C**. The single-electron reduction of **C** by Ir^{II} complex would give the carbanion intermediate **D**, which could be protonated by collidinium salt to afford the alkylated product and return both catalyst species back to the initial forms.

Characterization of Alkylated Enol Silyl Ethers

TBSO CN CN Ph

3a: ¹H NMR (600 MHz, CDCl₃) (for major diastereomer) δ 7.45-7.32 (5H, m), 4.35 (1H, br),
4.16 (1H, d, J = 4.8 Hz), 2.99 (1H, dd, J = 10.2, 4.8 Hz), 2.91-2.85 (1H, m), 2.02-1.94 (3H, m), 1.88-1.82 (1H, m), 1.70-1.61 (1H, m), 1.28-1.22 (1H, m), 0.82 (9H, s), -0.06 (3H, s), -

0.07 (3H, s), (for minor diastereomer) δ 7.45-7.32 (5H, m), 4.94 (1H, d, J = 4.2 Hz), 4.24 (1H, d, J = 4.8 Hz), 3.00-2.94 (1H, m), 2.91-2.85 (1H, m), 2.05-2.01 (2H, m), 1.71-1.61 (1H, m), 1.61-1.55 (1H, m), 1.49-1.42 (1H, m), 1.22-1.17 (1H, m), 0.94 (9H, s), 0.17 (6H, s); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 153.4, 136.6, 129.3, 128.7, 112.1, 111.9, 103.8, 52.1, 37.1, 29.6, 27.7, 27.6, 21.6, 18.1, -4.3, -4.5, (for minor diastereomer) δ 155.3, 136.7, 129.0, 128.4, 112.4, 112.0, 103.0, 52.0, 36.1, 30.0, 27.9, 25.8, 19.6, 18.2, -4.0, -4.2; HRMS (ESI) Calcd for C₂₂H₂₉ON₂Si⁻ ([M–H]⁻) 365.2044. Found 365.2052.

TBSO CN CN CR CF₃ **3b** (dr = 1.8:1): ¹H NMR (600 MHz, CDCl₃) (for major diastereomer) δ 7.69 (2H, d, J = 8.4 Hz), 7.49 (2H, d, J = 8.4 Hz), 4.27 (1H, br), 4.18 (1H, d, J = 3.6 Hz), 3.02-2.95 (2H, m), 2.02-1.94 (3H, m), 1.89-1.82 (1H, m), 1.72-1.63 (1H, m), 1.29-1.21 (1H, m), 0.82 (9H, s), -0.07 (6H, s), (for minor diastereomer) δ 7.69 (2H, d, J = 7.5 Hz), 7.51 (2H, d, J = 7.5 Hz), 4.92 (1H, d, J = 4.2 Hz), 4.27 (1H, d, J = 4.8 Hz), 3.06 (1H, dd, J = 10.5, 4.8 Hz), 2.93-2.86 (1H, m), 2.04 (2H, t, J = 6.0 Hz), 1.70-1.56 (2H, m), 1.51-1.42 (1H, m), 1.18-1.12 (1H, m), 0.94

(9H, s), 0.17 (6H, s); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 154.0, 140.5, 131.4 (q, *J*_{C-F} = 32.8 Hz), 129.3, 126.3 (q, *J*_{C-F} = 4.4 Hz), 123.9 (q, *J*_{C-F} = 273.0 Hz), 111.7, 111.4, 103.1, 51.8, 37.0, 29.5, 27.5, 27.2, 25.7, 21.5, 18.1, -4.3, -4.5, (for minor diastereomer) δ 155.8, 140.6, 131.3 (q, *J*_{C-F} = 33.2 Hz), 128.9, 126.3, 123.9 (q, *J*_{C-F} = 272.0 Hz), 112.0, 111.5, 102.3, 51.7, 36.0, 29.9, 25.7, 25.5, 19.4, 18.2, -4.0, -4.2; HRMS (ESI) Calcd for C₂₃H₂₈ON₂F₃Si⁻ ([M–H]⁻) 433.1918. Found 433.1917.

3c (dr = 1.9:1): The reaction of **1a** (0.1 mmol) with electron-deficient olefin (0.2 mmol, 2 equiv) was carried out for 24 h.

¹H NMR (600 MHz, CDCl₃) (for major diastereomer) δ 7.26 (2H, d, *J* = 9.0 Hz), 6.93 (2H, d, *J* = 9.0 Hz), 4.39 (1H, brs), 4.12 (1H, d, *J* = 4.8 Hz), 3.83 (3H, s), 2.96-2.89 (1H, m), 2.84 (1H, dd, *J* = 10.2, 4.8 Hz), 2.04-1.91 (3H, m), 1.88-1.81 (1H, m), 1.70-1.61 (1H, m), 1.27-1.18 (1H, m), 0.83 (9H, s), -0.04 (6H, s), (for minor diastereomer) δ 7.28 (2H, d, *J* = 7.8 Hz),

6.93 (2H, d, J = 7.8 Hz), 4.91 (1H, d, J = 4.2 Hz), 4.21 (1H, d, J = 4.8 Hz), 3.82 (3H, s), 2.94 (1H, dd, J = 10.8, 4.8 Hz), 2.86-2.80 (1H, m), 2.02 (2H, t, J = 6.3 Hz), 1.68-1.55 (2H, m), 1.48-1.42 (1H, m), 1.24-1.18 (1H, m), 0.94 (9H, s), 0.16 (6H, s); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 160.0, 153.3, 129.8, 128.5, 114.6, 112.3, 111.9, 104.0, 55.5, 51.5, 37.1, 29.6, 27.8(3), 27.7(6), 25.8, 21.7, 18.2, -4.3, -4.5, (for minor diastereomer) δ 160.0, 155.2, 129.5, 128.6, 114.7, 112.6, 112.0, 103.1, 55.4, 51.4, 36.2, 30.0, 28.1, 25.8, 25.5, 19.5, 18.2, -4.0, -4.2; HRMS (ESI) Calcd for C₂₃H₃₂O₂N₂NaSi⁺ ([M+Na]⁺) 419.2125. Found 419.2139.

3d (dr = 1.8:1): ¹H NMR (600 MHz, CDCl₃) (for major diastereomer) δ 7.90 (1H, d, J = 8.4 Hz), 7.88-7.82 (2H, m), 7.80 (1H, s), 7.52 (1H, d, J = 7.2 Hz), 7.52 (1H, t, J = 5.4 Hz), 7.46 (1H, d, J = 7.8 Hz), 4.41 (1H, brs), 4.23 (1H, brd), 3.13-3.06 (2H, m), 2.05-1.95 (3H, m), 1.90-1.83 (1H, m), 1.74-1.65 (1H, m), 1.34-1.24 (1H, m), 0.79 (9H, s), -0.10 (3H, s), -0.11 (3H, s), (for minor diastereomer) δ 7.90 (1H, d, J = 8.4 Hz), 7.88-7.84 (2H, m), 7.82 (1H, s), 7.55-7.51 (2H, m), 7.49 (1H, d, J = 9.0 Hz), 5.00 (1H, d, J = 4.2 Hz), 4.32 (1H, d, J = 4.8 Hz),

3.17 (1H, dd, J = 10.2, 4.8 Hz), 3.04-2.98 (1H, m), 2.04 (2H, t, J = 6.3 Hz), 1.72-1.64 (1H, m), 1.63-1.56 (1H, m), 1.50-1.44 (1H, m), 1.27-1.19 (1H, m), 0.95 (9H, s), 0.18 (6H, s); ¹³C NMR (151 MHz, CDCl₃) (for major isomer) δ 153.5, 134.0, 133.4(9), 133.4(5), 129.2, 128.4, 128.2, 127.9, 126.8, 126.7, 125.6, 112.1, 112.0, 103.9, 52.2, 37.3, 29.6, 27.8, 27.6, 25.7, 21.6, 18.1, -4.3, -4.5, (for minor diastereomer) δ 155.4, 134.1, 133.5(4), 133.4(6), 129.3, 128.3, 128.2, 127.9, 126.8, 126.7, 125.3, 112.4, 112.0, 103.0, 52.2, 36.2, 30.0, 27.9, 25.8, 25.7, 19.6, 18.2, -4.0, -4.2; HRMS (ESI) Calcd for C₂₆H₃₁ON₂Si⁻ ([M–H]⁻) 415.2200. Found 415.2210.

TBSO CN CN CN **3e** (dr = 1.6:1): ¹H NMR (400 MHz, CDCl₃) (for major diastereomer) δ 7.97-7.93 (1H, m), 7.49 (1H, d, *J* = 2.1 Hz), 7.46-7.42 (1H, m), 7.07 (1H, t, *J* = 2.0 Hz), 4.26 (1H, brs), 4.05 (1H, d, *J* = 1.2 Hz), 3.64 (1H, dd, *J* = 2.6, 1.2 Hz), 3.02-2.97 (1H, m), 2.09-1.96 (3H, m), 1.94-1.88 (1H, m), 1.72-1.60 (1H, m), 1.42-1.35 (1H, m), 0.83 (9H, m), -0.01 (3H, s), -0.05 (3H, s), (for minor diasteromer) δ 7.97-7.93 (1H, m), 7.54 (1H, d, *J* = 2.0 Hz), 7.46-7.42 (1H, m), 7.07

(1H, t, J = 1.9 Hz), 4.98 (1H, d, J = 1.2 Hz), 4.18 (1H, d, J = 1.4 Hz), 3.74 (1H, dd, J = 2.6, 1.3 Hz), 2.90-2.84 (1H, m), 2.09-1.96 (2H, m), 1.88-1.79 (1H, m), 1.72-1.60 (1H, m), 1.45-1.40 (1H, m), 1.21-1.15 (1H, m), 0.95 (9H, s), 0.19 (3H, s), 0.18 (3H, s); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 171.5, 152.2, 141.1, 139.5, 129.7, 129.0, 104.4, 103.0, 67.0, 56.1, 47.0, 43.0, 39.9, 29.9, 25.8, 21.4, 18.1, -4.1(8), -4.2(3), (for minor diastereomer) δ 171.5, 152.6, 141.6, 139.7, 129.6, 129.1, 107.4, 102.3, 67.0, 56.0, 47.1, 42.9, 40.7, 30.2, 28.1, 21.8, 18.2, -4.0, -4.1; HRMS (ESI) Calcd for C₂₂H₂₉ON₂INaSi⁺ ([M+Na]⁺) 515.0986. Found 515.0983.

3f (dr = 1.6:1): ¹H NMR (400 MHz, CDCl₃) (for major diastereomer) δ 7.35-7.30 (2H, m), 7.26-7.20 (3H, m), 4.62 (1H, brs), 3.89 (1H, d, J = 2.4 Hz), 2.88-2.68 (2H, m), 2.68-2.60 (1H, m), 2.14-1.68 (5H, m), 1.64-1.49 (2H, m), 1.33-1.18 (2H, m), 0.92 (9H, s), 0.15 (6H, s), (for minor diastereomer) δ 7.35-7.28 (2H, m), 7.26-7.20 (3H, m), 4.62 (1H, brs), 3.79 (1H, d, J = 4.4 Hz), 2.88-2.68 (2H, m), 2.68-2.60 (1H, m), 2.14-1.68 (7H, m), 1.64-1.49 (2H, m), 0.92

(9H, s), 0.15 (6H, s); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 155.1, 140.5, 128.9, 128.4, 126.6, 113.5, 112.6, 104.6, 45.2, 37.9, 33.7, 31.5, 30.0, 25.8, 25.2, 24.2, 22.2, 18.2, -4.1(1), -4.1(4), (for minor diastereomer) δ 154.5, 140.4, 128.9, 128.4, 126.7, 113.2, 112.4, 103.9, 44.1, 37.8, 33.9, 31.2, 29.9, 25.8, 25.1, 24.7, 21.7, 18.1, -4.1; HRMS (ESI) Calcd for C₂₄H₃₄ON₂NaSi⁺ ([M+Na]⁺) 417.2333. Found 417.2346.

3g: ¹H NMR (600 MHz, CDCl₃) δ 7.97 (4H, d, J = 7.2 Hz), 7.56 (2H, t, J = 7.2 Hz), 7.48-7.43 (4H, m), 5.34 (1H, t, J = 6.6 Hz), 4.83 (1H, brs), 2.31 (1H, brs), 2.17-2.06 (2H, m), 2.04-1.92 (2H, m), 1.80-1.72 (2H, m), 1.58-1.49 (1H, m), 1.22-1.17 (1H, m), 0.91 (9H, s), 0.12 (6H, s); ¹³C NMR (600 MHz, CDCl₃) δ 196.1, 196.0, 152.0, 136.2(2), 136.1(7), 133.6,

129.0, 128.8, 128.7, 108.0, 55.0, 36.3, 33.5, 30.1, 29.0, 25.8, 21.5, 18.2, -4.2, -4.3; HRMS_(ESI) Calcd for C₂₈H₃₆O₃NaSi⁺ ([M+Na]⁺) 471.2326. Found 471.2324.

TBSO

3h: The reaction was conducted with vinyl phenyl ketone (0.3 mmol, 3 equiv). ¹H NMR (600 MHz, CDCl₃) *δ* 7.96 (2H, d, *J* = 7.8 Hz), 7.56 (1H, t, *J* = 7.8 Hz), 7.46 (2H, t, *J* = 7.8 Hz), 4.82 (1H, brs), 2.99 (1H, t, *J* = 7.8 Hz), 2.28-2.22 (1H, m), 2.06-1.94 (2H, m), 1.82-1.67 (4H, m), 1.61-1.52 (1H, m), 1.20-1.13 (1H, m), 0.92 (9H, s), 0.13 (6H, s); ¹³C NMR (151 MHz,

CDCl₃) δ 200.8, 151.5, 137.2, 133.1, 128.7, 128.2, 108.8, 36.2, 34.5, 31.4, 30.1, 28.8, 25.9, 21.8, 18.2, -4.1, -4.3; HRMS (ESI) Calcd for C₂₁H₃₂O₂NaSi⁺ ([M+Na]⁺) 367.2064. Found 367.2063.

3i: ¹H NMR (600 MHz, CDCl₃) δ 7.97 (2H, d, J = 8.4 Hz), 7.95 (2H, d, J = 8.4 Hz), 7.72-<sup>SO₂Ph <sup>SO₂Ph <sup>SO₂Ph</sub>
7.70 (2H, m), 7.61-7.57 (4H, m), 4.64 (1H, brd), 4.46 (1H, t, J = 5.4 Hz), 2.46 (1H, br),</sup></sup></sup> 2.12-2.02 (2H, m), 1.96-1.91 (2H, m), 1.66-1.58 (2H, m), 1.52-1.46 (1H, m), 1.06-0.99 (1H, m), 0.91 (9H, s), 0.11 (6H, s); 13 C NMR (151 MHz, CDCl₃) δ 152.6, 138.1, 137.9, 134.7, 129.9, 129.8, 129.3, 106.6, 81.9, 32.8, 32.2, 29.9, 27.6, 25.8, 20.7, 18.2, -4.2; HRMS (ESI) Calcd for C₂₆H₃₆O₅NaS₂Si⁺ ([M+Na]⁺) 543.1666. Found 543.1667.

3j: The reaction was performed for 24 h. ¹H NMR (600 MHz, CDCl₃) δ 7.70 (2H, d, J = 7.8 Hz), 7.65-7.58 (3H, m), 4.72 (1H, brs), 3.80-3.69 (2H, m), 2.42-2.36 (1H, m), 2.09-1.86 (4H, m), 1.82-1.72 (2H, m), 1.63-1.56 (1H, m), 1.22-1.14 (1H, m), 0.92 (9H, s), 0.14 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 153.6, 152.9, 133.2, 131.6, 129.9, 125.2,

106.6, 54.2, 33.7, 29.9, 28.5, 28.1, 25.8, 21.5, 18.2, -4.1(6), -4.2(3); HRMS (ESI) Calcd for C₂₁H₃₂O₃N₄NaSSi⁺ ([M+Na]⁺) 471.1857. Found 471.1855.

TESO

3k (dr = 2.0:1): ¹H NMR (600 MHz, CDCl₃) (for major diastereomer) δ 7.43-7.33 (5H, m), 4.36 (1H, brs), 4.15 (1H, d, *J* = 4.8 Hz), 3.01-2.95 (1H, m), 2.91-2.87 (1H, m), 2.02 (1H, t, *J* = 6.3 Hz), 2.01-1.94 (2H, m), 1.88-1.82 (1H, m), 1.71-1.62 (1H, m), 1.29-1.23 (1H, m), 0.02 (9H, s), (for minor diastereomer) δ 7.43-7.33 (5H, m), 4.95 (1H, d, *J* = 4.2 Hz), 4.24 (1H, d,

J = 4.8 Hz), 3.01-2.95 (1H, m), 2.91-2.87 (1H, m), 2.01-1.94 (2H, m), 1.71-1.62 (1H, m), 1.62-1.56 (1H, m), 1.49-1.43 (1H, m), 1.22-1.17 (1H, m), 0.22 (9H, s); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 153.2, 136.6, 129.3, 128.7, 112.1, 111.9, 103.9, 52.1, 37.1, 29.6, 27.6(4), 27.5(5), 21.6, 0.3, (for minor diastereomer) δ 155.0, 136.7, 129.0, 128.4, 112.4, 111.9, 103.1, 52.0, 36.1, 30.0, 27.8, 25.5, 19.6, 0.6; HRMS (ESI) Calcd for C₁₉H₂₃ON₂Si⁻ ([M–H]⁻) 323.1574. Found 323.1580.

3l (dr = 2.0:1): ¹H NMR (600 MHz, CDCl₃) (for major diastereomer) δ 7.43-7.33 (5H, m), 4.34 (1H, brs), 4.15 (1H, d, J = 5.4 Hz), 3.01-2.95 (1H, m), 2.91-2.85 (1H, m), 2.05 (1H, t, J = 6.3 Hz), 2.02-1.95 (2H, m), 1.89-1.83 (1H, m), 1.71-1.63 (1H, m), 1.29-1.22 (1H, m), 0.83 (9H, t, J = 7.8 Hz), 0.47 (6H, q, J = 7.8 Hz), (for minor diastereomer) δ 7.43-7.33 (5H, m),

4.94 (1H, d, J = 4.2 Hz), 4.23 (1H, d, J = 4.8 Hz), 3.01-2.95 (1H, m), 2.91-2.85 (1H, m), 2.02-1.95 (2H, m), 1.71-1.63 (1H, m), 1.63-1.56 (1H, m), 1.49-1.43 (1H, m), 1.22-1.17 (1H, m), 1.00 (9H, t, J = 8.0 Hz), 0.69 (6H, q, J = 8.0 Hz): ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 153.3, 136.6, 129.3, 128.7, 112.1, 111.8, 103.4, 52.1, 37.1, 29.5, 27.7, 27.6, 21.6, 6.7, 5.0, (for minor diastereomer) δ 155.3, 136.7, 129.0, 128.4, 112.4, 111.9, 102.6, 52.0, 36.1, 29.9, 27.8, 25.5, 19.6, 6.9, 5.3; HRMS (ESI) Calcd for C₂₂H₂₉ON₂Si⁻ ([M–H]⁻) 365.2044. Found 365.2048.

3m: ¹H NMR (600 MHz, CDCl₃) *δ* 7.96 (2H, d, *J* = 8.4 Hz), 7.93 (2H, d, *J* = 7.8 Hz), 7.72-7.68 (2H, m), 7.58 (4H, t, *J* = 7.8 Hz), 4.61 (1H, d, *J* = 4.2 Hz), 4.43 (1H, d, *J* = 5.4 Hz), 2.28-2.16 (3H, m), 2.09-2.03 (1H, m), 2.00 (1H, dd, *J* = 15.9, 7.5 Hz), 1.84-1.77 (1H,

m), 1.61-1.52 (1H, m), 1.52-1.46 (1H, m), 1.45-1.34 (1H, m), 1.28-1.21 (1H, m), 0.92 (9H, s), 0.12 (6H, s); 13 C NMR (151 MHz, CDCl₃) δ 157.7, 138.4, 137.9, 134.7(1), 134.6(7), 129.9, 129.6, 129.3, 129.2, 109.8, 82.0, 35.3,

34.7, 33.8, 32.2. 29.7, 25.9, 24.8, 18.2, -4.2, -4.3; HRMS (ESI) Calcd for $C_{27}H_{38}O_5NaS_2Si^+$ ([M+Na]⁺) 557.1822. Found 557.1823.

3n: ¹H NMR (600 MHz, CDCl₃) δ 7.96 (2H, d, J = 7.8 Hz), 7.91 (2H, d, J = 7.8 Hz), 7.70 (1H, t, J = 7.8 Hz), 7.69 (1H, t, J = 7.8 Hz), 7.58 (2H, t, J = 7.8 Hz), 7.57 (2H, t, J = 7.8 Hz), 4.55 (1H, dd, J = 8.7, 1.5 Hz), 4.13 (1H, d, J = 9.0 Hz), 2.42-2.34 (1H, m), 2.22-2.14 (2H, m), 2.06 (1H, ddd, J = 15.0, 8.7, 3.9 Hz), 1.87 (1H, dt, J = 13.8, 3.9 Hz), 1.72-1.59

(2H, m), 1.52-1.38 (4H, m), 1.24-1.10 (2H, m), 0.93 (9H, s), 0.17 (3H, s), 0.15 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 156.3, 138.5, 138.2, 134.6, 129.9, 129.6, 129.3, 129.2, 105.7, 82.3, 38.1, 35.3, 32.8, 32.0, 28.5, 27.0, 26.0, 25.8, 18.2, -4.0, -4.4; HRMS (ESI) Calcd for C₂₈H₄₀O₅NaS₂Si⁺ ([M+Na]⁺) 571.1979. Found 571.1976.

TBSO Me SO₂Ph **30** (*Z*/*E* = >20:1): ¹H NMR (600 MHz, CDCl₃) δ 7.87(9) (2H, d, *J* = 7.8 Hz), 7.87(6) (2H, d, *J* = 8.4 Hz), 7.64 (1H, t, *J* = 7.8 Hz), 7.61 (1H, t, *J* = 8.4 Hz), 7.50 (2H, t, *J* = 8.4 Hz), 7.48 (2H, t, *J* = 7.8 Hz), 4.59 (1H, d, *J* = 8.4 Hz), 4.22 (1H, d, *J* = 10.8 Hz), 3.23-3.14 (1H, m), 2.26 (1H, ddd, *J* = 15.0, 9.0, 4.2 Hz), 1.94-1.87 (1H, m), 1.06 (9H, s), 1.04 (9H, s), 0.33 (3H, s), 0.17 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 161.1, 139.6, 137.3, 134.5, 134.0, 130.3, 129.1, 129.0, 108.3, 81.6, 37.1, 33.0, 29.1, 26.9, 21.9, 19.5, -1.8, -4.1; HRMS (ESI) Calcd for C₂₈H₄₂O₅NaS₂Si⁺ ([M+Na]⁺) 573.2135. Found 573.2155.

TBSO Me CN Ph CN Ph CN Jp (dr = 1.6:1): ¹H NMR (600 MHz, CDCl₃) (for major isomer) δ 7.45-7.38 (5H, m), 4.37 (1H, d, J = 10.2 Hz), 4.34 (1H, d, J = 4.2 Hz), 2.99-2.91 (1H, m), 2.78 (1H, dd, J = 10.2, 4.2 Hz), 2.27 (1H, dt, J = 13.8, 8.4 Hz), 2.20 (1H, dt, J = 13.8, 7.2 Hz), 1.61-1.54

(2H, m), 0.97 (3H, t, J = 6.6 Hz), 0.95 (9H, s), 0.86 (3H, d, J = 6.6 Hz), 0.19 (3H, s), 0.17 (3H, s), (for minor isomer) δ 7.44-7.33 (5H, m), 4.30 (1H, d, J = 4.2 Hz), 4.27 (1H, d, J = 9.6 Hz), 3.33-3.25 (1H, m), 2.78 (1H, dd, J = 11.1, 4.2 Hz), 2.11 (1H, ddd, J = 15.0, 9.0, 5.7 Hz), 2.04 (1H, ddd, J = 15.0, 9.0, 6.8 Hz), 1.63-1.48 (2H, m), 1.01 (9H, s), 0.96 (3H, t, J = 7.2 Hz), 0.81 (3H, d, J = 6.8 Hz), 0.21 (6H, s); ¹³C NMR (151 MHz, CDCl₃) (for major isomer) δ 155.7, 135.8, 129.3, 129.1, 128.8, 112.7, 112.1, 109.5, 53.6, 34.7, 34.1, 28.8, 25.8, 20.8, 20.5, 18.3, 14.0, -3.8, -4.4, (for minor isomer) δ 154.6, 136.1, 129.2, 128.9, 113.2, 112.0, 109.7, 53.7, 38.7, 32.2, 28.5, 26.0, 20.6, 19.5, 18.5, 13.9, -3.5, -3.6; HRMS (ESI) Calcd for C₂₃H₃₄ON₂NaSi⁺ ([M+Na]⁺) 405.2333. Found 405.2348.

 $\begin{array}{c} \text{TBSO} \quad \text{Me} \quad \text{CN} \\ \text{Me} \quad \text{CN} \\ \text{Ph} \end{array} \qquad \begin{array}{c} 3\mathbf{q} \ (\text{dr}=1.5:1): \ ^{1}\text{H} \ \text{NMR} \ (400 \ \text{MHz}, \ \text{CDCl}_{3}) \ (\text{for major diastereomer}) \ \delta \ 7.45-7.33 \ (5\text{H}, \ \text{m}), \\ 4.32 \ (1\text{H}, \ \text{d}, \ J=4.0 \ \text{Hz}), \ 4.24 \ (1\text{H}, \ \text{d}, \ J=9.6 \ \text{Hz}), \ 3.34-3.22 \ (1\text{H}, \ \text{m}), \ 2.79 \ (1\text{H}, \ \text{dd}, \ J=11.4, \\ 4.0 \ \text{Hz}), \ 1.88 \ (3\text{H}, \ \text{s}), \ 1.01 \ (9\text{H}, \ \text{s}), \ 0.81 \ (3\text{H}, \ \text{d}, \ J=7.2 \ \text{Hz}), \ 0.22 \ (6\text{H}, \ \text{s}), \ (\text{for minor} \ \text{diastereomer}) \ \delta \ 7.40-7.31 \ (3\text{H}, \ \text{m}), \ 7.20-7.14 \ (2\text{H}, \ \text{m}), \ 4.14 \ (1\text{H}, \ \text{d}, \ J=9.2 \ \text{Hz}), \ 4.00 \ (1\text{H}, \ \text{d}, \ J=10.0 \ \text{Hz}), \ 3.39- \\ 3.29 \ (1\text{H}, \ \text{m}), \ 3.19 \ (1\text{H}, \ \text{dd}, \ J=9.2, \ 5.6 \ \text{Hz}), \ 1.77 \ (3\text{H}, \ \text{s}), \ 0.98 \ (9\text{H}, \ \text{s}), \ 0.98 \ (3\text{H}, \ \text{d}, \ J=7.2 \ \text{Hz}), \ 0.20 \ (3\text{H}, \ \text{s}), \\ 0.18 \ (3\text{H}, \ \text{s}); \ ^{13}\text{C} \ \text{NMR} \ (151 \ \text{MHz}, \ \text{CDCl}_3) \ (\text{for major diastereomer}) \ \delta \ 150.8, \ 136.2, \ 129.2, \ 128.9, \ 113.2, \ 112.1, \\ 110.3, \ 53.6, \ 32.4, \ 28.6, \ 25.9, \ 23.1, \ 19.4, \ 18.5, \ -3.4, \ -3.5, \ (\text{for minor diastereomer}) \ \delta \ 149.8, \ 135.2, \ 129.0, \ 128.6, \ 129.0, \ 129.0, \ 128.6, \ 129.0, \ 129.0, \ 128$

113.3, 112.5, 107.6, 52.8, 32.0, 27.3, 26.0, 23.1, 19.9, 18.5, -3.2, -3.6; HRMS (ESI) Calcd for C₂₁H₃₀ON₂NaSi⁺ ([M+Na]⁺) 377.2020. Found 377.2021.

 $\begin{array}{l} \begin{array}{l} \mbox{TBSO} & \mbox{Me} & \mbox{SO}_2 \mbox{Ph} & \mbox{SO}_2 \mbox{Ph} & \mbox{SO}_2 \mbox{Ph} & \mbox{SO}_2 \mbox{Ph} & \mbox{Hz}, \mbox{CDC}_3 \mbox{(for Z isomer)} \delta \mbox{ 8.04 (2H, d, $J=7.8$ Hz}), \\ \mbox{Hz}, \mbox{7.70 (1H, t, $J=7.8$ Hz}), \mbox{7.70 (1H, t, $J=7.8$ Hz}), \mbox{7.57 (2H, t, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.30 (2H, t, $J=7.8$ Hz}), \mbox{6.82 (2H, s), \mbox{4.57 (1H, dd, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.30 (2H, t, $J=7.8$ Hz}), \mbox{6.82 (2H, s), \mbox{4.57 (1H, dd, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.30 (2H, t, $J=7.8$ Hz}), \mbox{6.82 (2H, s), \mbox{4.57 (1H, dd, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.30 (2H, t, $J=7.8$ Hz}), \mbox{6.82 (2H, s), \mbox{4.57 (1H, dd, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.30 (2H, t, $J=7.8$ Hz}), \mbox{6.82 (2H, s), \mbox{4.57 (1H, dd, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.30 (2H, t, $J=7.8$ Hz}), \mbox{6.82 (2H, s), \mbox{4.57 (1H, dd, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.30 (2H, t, $J=7.8$ Hz}), \mbox{6.82 (2H, s), \mbox{4.57 (1H, dd, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.30 (2H, t, $J=7.8$ Hz}), \mbox{6.82 (2H, s), \mbox{4.57 (1H, dd, $J=7.8$ Hz}), \\ \mbox{7.49 (1H, t, $J=7.8$ Hz}), \mbox{7.49 (1H, m), \mbox{2.29 (3H, s), \mbox{2.24 (3H, s), \mbox{2.20 (3H, s), \mbox{4.41 (3H, s), \mbox{4.41 (151 MHz, CDCl_3) (for Z isomer}) δ 149.2, \mbox{139.2, \mbox{137.4(2), \mbox{137.4(0), \mbox{136.1, \mbox{135.7, \mbox{135.6, \mbox{134.4, \mbox{134.4, \mbox{134.3, \mbox{129.8, \mbox{129.6, \mbox{129.0(2), \mbox{128.9(8), \mbox{128.9, \mbox{128.4, \mbox{115.7, \mbox{82.0, \mbox{32.5, \mbox{2305.}}, \mbox{2305.}, \mbox{144O}_5 \mbox{NaS}_2 \mbox{S1^{+} (\mbox{[M+Na]^{+})} \mbox{635.2292.} \mbox{Found 6 35.2305.}, \mbox{635.2305.}, \mbox{635.2305.}, \mbox{635.2305.}, \mbox{635.2305.}, \mbox{635.2305.}, \mbox{635.2305.}, \mbox{635.2305.}, \mbox{635.2305.}, \m$

TBSO Me SO₂Ph **3s** (*Z*/*E* = 6.7:1): ¹H NMR (600 MHz, CDCl₃) (for *Z* isomer) δ 8.12 (2H, d, *J* = 7.2 Hz), Ph SO₂Ph 7.71 (1H, d, *J* = 7.2 Hz), 7.60 (2H, t, *J* = 7.2 Hz), 7.57 (2H, d, *J* = 8.4 Hz), 7.40-7.26 (5H, m), 7.34 (1H, t, *J* = 7.2 Hz), 7.05 (2H, dd, *J* = 8.4, 7.2 Hz), 4.50 (1H, d, *J* = 8.4 Hz), 3.92 (1H, d, *J* = 10.2 Hz), 3.32-3.24 (1H, m), 2.46-2.42 (1H, m), 1.81-1.75 (1H, m), 1.06 (3H, d, *J* = 6.6 Hz), 0.98 (9H, s), 0.06 (3H, s), -0.11 (3H, s): ¹³C NMR (151 MHz, CDCl₃) (for *Z* isomer) δ 152.1, 139.7, 139.6, 137.5, 134.5, 134.2, 129.8, 129.3, 129.1, 129.0, 128.3, 126.5, 114.7, 81.3, 33.0, 30.5, 26.1, 21.4, 18.6, -3.7, -3.9; HRMS (ESI) Calcd for C₃₀H₃₈O₅NaS₂Si⁺ ([M+Na]⁺) 593.1822. Found 593.1819.

3t: ¹H NMR (600 MHz, CDCl₃) δ 7.92 (2H, d, *J* = 8.4 Hz), 7.80 (2H, d, *J* = 8.4 Hz), 7.69 (1H, t, *J* = 7.2 Hz), 7.64 (1H, t, *J* = 7.2 Hz), 7.55 (2H, dd, *J* = 8.4, 7.2 Hz), 7.48 (2H, dd, *J* = 8.4, 7.2 Hz), 7.33 (1H, d, *J* = 7.2 Hz), 7.17 (1H, t, *J* = 7.2 Hz), 7.14 (1H, t, *J* = 7.2 Hz), 7.00 (1H, d, *J* = 7.2 Hz), 4.97 (1H, d, *J* = 5.4 Hz), 4.40 (1H, t, *J* = 5.4 Hz), 2.92 (1H, dd, *J* = 15.0, 6.2 Hz), 2.90-2.83 (1H, m), 2.50 (1H, dd, 15.0, 5.4 Hz), 2.14-2.04 (2H, m), 1.00 (9H, s), 0.19 (3H, s), 0.16 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 149.5, 137.9, 137.8, 134.8, 134.6, 132.6, 129.8, 129.5, 129.3, 128.1, 126.6, 122.4, 105.6, 81.7, 33.6, 31.1, 29.7, 26.0, 18.4, -4.2, -4.4; HRMS (ESI) Calcd for C₃₀H₃₆O₅NaS₂Si⁺ ([M+Na]⁺) 591.1666. Found 591.1664.

TBSO Me SO_2Ph **3u** (Z/E = 1.7:1): ¹H NMR (600 MHz, CDCl₃) (for Z isomer) δ 8.03 (2H, d, J =MeSO_2Ph7.8 Hz), 7.83 (2H, d, J = 7.8 Hz), 7.69 (1H, t, J = 7.8 Hz), 7.56 (2H, t, J = 7.8 Hz), 7.53 (1H, t, J = 7.8 Hz), 7.36 (2H, t, J = 7.8 Hz), 5.83 (1H, s), 4.54 (1H, dd, J =

7.5, 2.4 Hz), 3.83 (1H, d, J = 11.0 Hz), 3.21-3.12 (1H, m), 2.35 (1H, ddd, J = 11.0, 7.5, 4.2 Hz), 2.24 (3H, s), 2.17 (3H, s), 1.93 (1H, ddd, J = 15.3, 11.0, 2.4 Hz), 1.09 (3H, d, J = 7.5 Hz), 0.94 (9H, s), -0.06 (6H, s), (for *E* isomer) δ 8.04 (2H, d, J = 7.8 Hz), 7.93 (2H, d, J = 7.8 Hz), 7.65 (1H, t, J = 7.8 Hz), 7.61 (1H, t, J = 7.8 Hz), 7.54 (2H, t, J = 7.8 Hz), 7.46 (2H, t, J = 7.8 Hz), 5.86 (1H, s), 5.58 (1H, dd, J = 6.6, 1.8 Hz), 4.61 (1H, d, J = 10.8 Hz), 2.21-2.16 (1H, m), 2.19 (3H, s), 2.18 (3H, s), 2.10-2.01 (2H, m), 0.95 (3H, d, J = 6.6 Hz), 0.89 (9H, s), 0.17 (3H, s), 0.00(4) (3H, s); ¹³C NMR (151 MHz, CDCl₃) (for *Z* isomer) δ 148.4, 143.4, 139.4, 138.9, 137.4,

134.5, 134.3, 129.7(4), 129.6(5), 129.1(0), 129.0(8), 109.0, 106.3, 81.5, 32.4, 30.2, 25.7, 21.2, 18.3, 13.6, 11.9, -5.0, -5.3, (for *E* isomer) δ 148.9, 143.2, 140.0, 138.5, 137.9, 134.2(0), 134.1(8), 129.9, 129.7, 128.8(9), 128.8(6), 111.0, 106.0, 80.0, 31.7, 31.6, 25.6, 22.4, 18.1, 13.7, 11.1, -5.0, -5.1; HRMS (ESI): Calcd for C₂₉H₄₀O₅N₂NaS₂Si⁺ ([M+Na]⁺) 611.2040. Found 611.2035.

So₂Ph **So**

 $3w (Z/E = >20:1): {}^{1}H NMR (600 MHz, CDCl_3) \delta 7.90 (2H, d, J = 8.4 Hz), 7.87 (2H, d, J = 7.8 Hz), 7.65 (1H, t, J = 7.2 Hz), 7.62 (1H, t, J = 7.2 Hz), 7.51 (2H, dd, J = 7.8, 7.2 Hz), 7.49 (2H, dd, J = 8.4, 7.2 Hz), 4.61 (1H, d, J = 6.6 Hz), 4.24 (1H, d, J = 11.4 Hz), 3.49-3.40 (2H, m), 3.32 (3H, s), 3.22-3.15 (1H, m), 2.36 (1H, ddd, J = 15.9, 8.7, 4.2 Hz), 1.97 (1H, dd, J = 13.8, 11.4 Hz), 1.71-1.61 (2H, m), 1.07 (9H, s), 1.04 (9H, s), 0.35 (3H, s), 0.20 (3H, s); {}^{13}C NMR (151 MHz, CDCl_3) \delta 161.4, 139.2, 137.4, 134.5, 134.1, 130.2, 129.3, 129.1, 129.0, 106.6, 81.3, 70.5, 58.8, 37.3, 35.9, 32.1, 30.7, 29.2, 26.9, 19.6, -1.9, -3.8; HRMS (ESI) Calcd for C₃₀H₄₆O₆NaS₂Si⁺ ([M+Na]⁺) 617.2397. Found 617.2408.$

3x (Z/E = >20:1): ¹H NMR (600 MHz, CDCl₃) δ 7.89 (2H, d, J = 8.4 Hz), 7.87 (2H, d, J = 8.4 Hz), 7.65 (1H, t, J = 7.8 Hz), 7.63 (1H, t, J = 7.8 Hz), 7.50 (2H, dd, J = 8.4, 7.8 Hz), 7.49 (2H, dd, J = 8.4, 7.8 Hz), 4.61 (1H, d, J = 8.4 Hz), 4.24 (1H, d, J = 10.2 Hz), 4.18-4.08 (2H, m), 3.30-3.21 (1H, m), 2.40-2.33 (1H, m), 2.04 (3H, s), 1.92 (1H, t, J = 13.2 Hz), 1.81-1.66 (2H, m), 1.08 (9H, s), 1.04 (9H, s), 0.37 (3H, s), 0.21 (3H, s); ¹³C

NMR (151 MHz, CDCl₃) δ 171.2, 162.0, 139.1, 137.3, 134.6, 134.2, 130.2, 129.2, 129.1, 129.0, 106.2, 81.1, 62.1, 37.3, 34.8, 31.8, 30.4, 29.1, 26.9, 21.2, 19.6, -1.8, -3.8; HRMS (ESI) Calcd for C₃₁H₄₆O₇NaS₂Si⁺ ([M+Na⁺]) 645.2346. Found 645.2352.

3y (*Z*/*E* = >20:1): ¹H NMR (600 MHz, CDCl₃) δ 7.94 (2H, d, *J* = 7.8 Hz), 7.91 (2H, d, *J* = 7.8 Hz), 7.87-7.82 (2H, m), 7.74-7.69 (2H, m), 7.67 (1H, t, *J* = 7.8 Hz), 7.64 (1H, t, *J* = 7.8 Hz), 7.54 (2H, t, *J* = 7.8 Hz), 7.51 (2H, t, *J* = 7.8 Hz), 4.62 (1H, d, *J* = 8.4 Hz), 4.24 (1H, d, *J* = 10.8 Hz), 3.80-3.67 (2H, m), 3.30-3.22 (1H, m), 2.42 (1H, ddd, *J* = 14.7, 8.4, 3.6 Hz), 2.06-1.98 (1H, m), 1.82-1.78 (1H, m), 1.77-1.69 (1H, m), 1.06 (9H, s), 1.05 (9H, s), 0.41 (3H, s), 0.25 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 162.2,

139.0, 137.3, 134.6, 134.2, 134.1, 132.4, 130.2, 129.4, 129.2, 129.1, 123.3, 105.7, 81.2, 37.3, 35.6, 34.6, 32.5,

30.4, 29.1, 26.9, 19.6, -1.8, -3.6; HRMS (ESI) Calcd for $C_{37}H_{47}O_7NNaS_2Si^+$ ([M+Na]⁺) 732.2455. Found 732.2424.

CN 3z (Z/E = >20:1): ¹H NMR (600 MHz, CDCl₃) δ 7.88 (2H, d, J = 8.4 Hz), 7.85 (2H, d, J = 7.8 Hz), 7.67 (1H, t, J = 8.4 Hz), 7.65 (1H, t, J = 7.8 Hz), 7.55-7.48 (4H, m), 4.51 t-Bu SO_2Ph J = 7.8 Hz), 7.67 (1H, t, J = 8.4 Hz), 7.65 (1H, t, J = 7.8 Hz), 7.55-7.48 (4H, m), 4.51 (1H, d, J = 8.4 Hz), 4.18 (1H, d, J = 10.2 Hz), 3.21-3.12 (1H, m), 2.41-2.31 (2H, m), 2.30-2.24 (1H, m), 1.96 (1H, t, J = 12.6 Hz), 1.88-1.80 (1H, m), 1.74-1.65 (1H, m), 1.08 (9H, s), 1.03 (9H, s), 0.31 (3H, s), 0.24 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 163.3, 138.6, 137.2, 134.8, 134.4, 130.0, 129.3, 129.2, 129.1, 119.9, 104.6, 81.0, 37.4, 33.8, 31.9, 30.3, 29.1, 26.8, 19.5, 14.4, -1.8, -3.3; HRMS (ESI) Calcd for C₃₀H₄₃O₅NNaS₂Si⁺ ([M+Na]⁺) 612.2244. Found 612.2258.

TBSO CN t-Bu Ph A = 20:1): ¹H NMR (600 MHz, CDCl₃) δ 7.42-7.34 (3H, m), 7.33-7.30 (2H, m), 4.33 (1H, t, J = 6.6 Hz), 3.98 (1H, d, J = 5.4 Hz), 3.21 (1H, td, J = 7.8, 5.4 Hz), 2.78 (1H, ddd, J = 14.8, 7.8, 6.6 Hz), 2.60 (1H, ddd, J = 14.8, 7.8, 6.6 Hz), 1.01 (9H, s), 1.00 (9H,

s), 0.24 (3H, s), 0.21 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 162.0, 137.1, 129.2, 128.9, 128.1, 112.3, 111.9, 98.5, 47.2, 37.0, 29.2, 29.0, 28.9, 26.6, 19.3, -2.3, -2.6; HRMS (ESI): Calcd for C₂₃H₃₃ON₂Si⁻ ([M–H]⁻) 381.2357. Found 381. 2356.

3Ab (dr = 2.0:1): ¹H NMR (600 MHz, CDCl₃) (for major diastereomer) δ 7.49 (1H, d, J = 8.4 Hz), 7.44 (1H, d, J = 3.0 Hz), 6.97 (1H, dd, J = 8.4, 3.0 Hz), 4.03 (1H, d, J = 6.0 Hz), 3.98 (1H, dd, J = 8.1, 6.0 Hz), 3.81 (3H, s), 2.78-2.72 (1H, m), 2.18-2.04 (2H, m), 1.79-1.64 (4H, m), 1.31 (3H, s), 0.92 (9H, s), 0.13 (3H, s), 0.11 (3H, s); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 159.7, 147.9, 132.0, 128.2, 125.6, 114.9, 112.6, 111.9, 111.1, 103.3,

55.7, 50.5, 42.6, 30.0, 26.2, 25.9, 25.4, 19.9, 18.3, 16.6, -3.2, -3.3; HRMS (ESI) Calcd for C₂₄H₃₃O₂N₂INaSi⁺ ([M+Na]⁺) 559.1248. Found 559.1255.

3Ac (dr = 9.2:1): ¹H NMR (600 MHz, CDCl₃) (for major isomer) δ 8.06 (2H, d, J = 7.8 Hz), 7.88 (2H, d, J = 7.8 Hz), 7.73 (1H, t, J = 7.8 Hz), 7.66 (1H, t, J = 7.2 Hz), 7.61 (2H, t, J = 7.8 Hz), 7.54 (2H, t, J = 7.8 Hz), 7.05 (1H, d, J = 9.0 Hz), 6.65 (1H, dd, J = 8.1, 2.4 Hz), 6.61 (1H, s), 4.50 (1H, d, J = 3.0 Hz), 4.47 (1H, dd, J = 10.2, 2.4 Hz), 3.00-2.94 (1H, m), 2.80-2.78 (2H, m), 2.32-

2.21 (3H, m), 2.15 (1H, ddd, J = 14.7, 10.2, 4.8 Hz), 1.85 (1H, dd, J = 11.7, 7.2 Hz), 1.82-1.74 (2H, m), 1.60-1.37 (4H, m), 1.30-1.18 (6H, m), 1.12 (18H, br), 1.10 (18H, br), 0.91 (3H, s); ¹³C NMR (151 MHz, CDCl₃) (for major isomer) δ 167.7, 154.0, 138.2, 138.1, 137.8, 134.7, 134.6, 133.2, 129.9, 129.7, 129.2(2), 129.1(8), 125.4, 119.8, 116.9, 98.6, 83.5, 55.1, 45.4, 45.3, 38.6, 35.9, 35.1, 29.2, 27.5, 26.2, 25.6, 21.5, 18.1, 12.9, 12.7; HRMS (ESI) Calcd for C₅₀H₇₃O₆S₂Si₂⁻ ([M–H]⁻) 889.4382. Found 889.4387.

Derivatization of Alkylated Enol Silyl Ethers

To a solution of **3i** (30.7 mg, 0.059 mmol) in MeCN (0.6 mL, 0.1 M) was added Selectfluor (23.0 mg, 0.065 mmol) at 0 °C, and the resulting reaction mixture was allowed to warm to room temperature. After stirring for 3 h, the solvent was removed under reduced pressure. The crude residue was purified by column chromatography on silica gel (hexane/EtOAc = 1:1 as eluent) to afford **5a** in 84% yield (21.1 mg, 0.050 mmol, dr = 1.4:1). ¹H NMR (400 MHz, CDCl₃) (for major diastereomer) δ 7.93 (2H, dd, *J* = 8.4, 1.2 Hz), 7.89 (2H, dd, *J* = 8.8, 1.2 Hz), 7.70 (1H, t, *J* = 7.6 Hz), 7.68 (1H, t, *J* = 8.0 Hz), 7.62-7.52 (4H, m), 4.82-4.77 (1H, m), 4.57 (1H, dd, *J*_{H-F} = 49.8 Hz, *J*_{H-H} = 11.0 Hz), 2.57-2.48 (2H, m), 2.46-2.24 (3H, m), 2.10-1.98 (2H, m), 1.69-1.44 (2H, m), (for minor diastereomer) δ 7.97 (2H, dd, *J* = 8.4, 1.0 Hz), 7.92 (2H, dd, *J* = 8.8, 1.6 Hz), 7.76-7.70 (2H, m), 7.64-7.57 (4H, m), 4.70 (1H, dd, *J*_{H-F} = 50.6 Hz, *J*_{H-H} = 3.8 Hz), 4.45 (1H, t, *J* = 5.8 Hz), 2.76-2.63 (1H, m), 2.63-2.53 (1H, m), 2.36-2.16 (3H, m), 1.94-1.68 (4H, m); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 203.2 (d, *J*_{C-F} = 14.3 Hz), 138.1, 137.1, 134.9, 134.8, 129.8, 129.6, 129.4, 129.3, 97.6 (d, *J*_{C-F} = 192.4 Hz), 80.9 (d, *J*_{C-F} = 4.2 Hz), 43.4 (d, *J*_{C-F} = 16.0 Hz), 39.8, 29.9, 29.8 (d, *J*_{C-F} = 8.8 Hz), 24.7, (for minor isomer) δ 205.0 (d, *J*_{C-F} = 18.7 Hz), 137.8, 137.1, 135.0(4), 134.9(8), 129.8, 129.4(4), 129.4(0), 94.1 (d, *J*_{C-F} = 188.0 Hz), 81.3, 41.6 (d, *J*_{C-F} = 18.7 Hz), 38.8, 25.9 (d, *J*_{C-F} = 5.9 Hz), 25.3, 23.5; HRMS (ESI) Calcd for C₂₀H₂₀O₅FNaS₂⁺ ([M+Na]⁺) 447.0707. Found 447.0703.

To a flame-dried Schlenk tube were added **3i** (72.9 mg, 0.14 mmol, 1 equiv), Pd₂dba₃·CHCl₃ (4.35 mg, 0.0042 mmol, [Pd] 6 mol%) and PPh₃ (5.51 mg, 0.021 mmol, 15 mol%) and the tube was degassed by alternating vacuum evacuation/Ar backfill. Then, CH₂Cl₂ (0.7 mL, 0.2 M) was introduced via syringe and the mixture was stirred for 10 min. After the addition of a solution of allyl methyl carbonate (19.1 µL, 0.17 mmol, 1.2 equiv) and Et₃N (21.5 µL, 0.15 mmol, 1.1 equiv) in CH₂Cl₂ (0.7 mL, 0.2 M), the whole reaction mixture was stirred at room temperature for 24 h and then diluted with CH₂Cl₂ and brine. The extractive work-up was carried out with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 5:1 as eluent) to afford **5b** in 86% yield (67.3 mg, 0.12 mmol, 86%): ¹H NMR (600 MHz, CDCl₃) δ 8.06-8.02 (4H, m), 7.70 (2H, t, *J* = 7.8 Hz), 7.57 (4H, t, *J* = 7.8 Hz), 6.05-5.97 (1H, m), 5.22 (1H, br), 5.20-5.18 (1H, brm), 4.78 (1H, br), 3.21-3.12 (2H, m), 2.91-2.85 (1H, m), 2.26 (1H, dd, *J* = 15.6, 5.1 Hz), 2.18 (1H, dd, *J* = 15.6, 5.1 Hz), 2.00-1.88 (2H, m), 1.82-1.75 (1H, m), 1.69-1.62 (1H, m), 1.60-1.51 (1H, m), 1.27-1.19 (1H, m), 0.90 (9H, s), 0.09 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 151.6, 137.6, 137.5, 134.6, 131.6, 131.1, 128.6(8), 128.6(5), 120.0, 109.7, 92.5, 37.3, 34.4,

31.0, 29.9, 29.6, 25.8, 21.2, 18.2, -4.2, -4.3; HRMS (ESI) Calcd for C₂₉H₄₀O₅NaS₂Si⁺ ([M+Na]⁺) 583.1979. Found 583.1974.

To a flame-dried test tube were added **5b** (26.4 mg, 0.047 mmol, 1 equiv) and anhydrous MeOH (1.2 mL, 0.04 M), and the reaction mixture was heated to 50 °C. To this solution was added Mg (22.9 mg, 0.94 mmol, 20 equiv) in three portions over 3 h at the same temperature. After stirring for additional 4 h, the reaction mixture was cooled to room temperature, filtered through a pad of Celite, and evaporated to remove the solvent. The crude residue was diluted with CH₂Cl₂ and brine, and then extractive work-up was carried out with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography (hexane/EtOAc = 5:1 as eluent) to afford **5c** in 60% yield (7.9 mg, 0.028 mmol). ¹H NMR (400 MHz, CDCl₃) δ 5.88-5.76 (1H, m), 5.04-4.91 (2H, m), 4.79 (1H, brs), 2.16-1.89 (5H, m), 1.80-1.64 (2H, m), 1.61-1.48 (1H, m), 1.41 (2H, quin, *J* = 7.6 Hz), 1.34-1.20 (2H, m) 1.14-1.03 (1H, m), 0.92 (9H, s), 0.12 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 150.7, 139.3, 114.4, 109.8, 36.7, 34.7, 34.2, 30.2, 29.0, 26.5, 25.9, 21.9, 18.2, -4.2, -4.3.

To a round-bottom flask were added **3Ab** (107.3 mg, 0.20 mmol, 1 equiv), K₂CO₃ (110.6 mg, 0.80 mmol, 4 equiv), and MeCN (2.0 mL, 0.1 M). The flask was then degassed and backfilled with O₂. To this mixture was added 2-oxazolidone (69.7 mg, 0.80 mmol, 4 equiv). The reaction mixture was heated to 50 °C and stirred three for 24 h under O₂ atmosphere (balloon), and then diluted with CH₂Cl₂ and filtered through a pad of Celite. The filtrates were concentrated and the crude material was purified by column chromatography on silica gel (hexane/EtOAc = 5:1) to afford **5d** in 70% yield (82.5 mg, 0.14 mmol). ¹H NMR (600 MHz, CDCl₃) δ 7.41 (1H, d, *J* = 3.0 Hz), 7.21 (1H, d, *J* = 8.7 Hz), 6.81 (1H, dd, *J* = 8.7, 3.0 Hz), 5.53 (1H, d, *J* = 6.6 Hz), 4.38-4.33 (1H, m), 4.31-4.26 (1H, m), 4.05-3.99 (1H, m), 3.97-3.92 (1H, m), 3.76 (3H, s), 2.92-2.85 (1H, m), 2.16-2.09 (1H, m), 2.03-1.96 (1H, m), 1.92-1.85 (1H, m), 1.81-1.75 (1H, m), 1.54-1.47 (1H, m), 1.39-1.32 (1H, m), 1.30 (3H, s), 0.92 (9H, s), 0.12 (3H, s), 0.10 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 173.0, 158.8, 152.7, 146.8, 131.9, 129.5, 125.5, 114.1, 111.9, 102.5, 61.7, 55.6, 53.7, 43.3, 43.2, 30.6, 26.6, 26.0, 21.2, 18.3, 15.6, -3.3, -3.4; HRMS (ESI) Calcd for C₂₅H₃₆O₅NINaSi⁺ ([M+Na]⁺) 608.1300. Found 608.1294.

To a flame-dried Schlenk were added 5d (82.0 mg, 0.14 mmol, 1 equiv), Pd2dba3·CHCl3 (7.25 mg, 0.007 mmol, [Pd] 10 mol%), MePhos (6.12 mg, 0.017 mmol, 12 mol%), and CsF (33.0 mg, 0.21 mmol, 1.5 equiv). The Schlenk was then elaborately degassed and backfilled with Ar. Toluene (2.8 mL, 0.05 M) was added via syringe, and the reaction mixture was heated to 100 °C. After stirring overnight, the reaction mixture was cooled to room temperature and diluted with CH₂Cl₂. The mixture was filtered through a short pad of silica gel with the aid of EtOAc, and the filtrates were concentrated. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 3:1 to 1:3 as eluent) to afford **5e** in 56% yield (27.0 mg, 0.078 mmol, dr = 4.2:1). ¹H NMR (400 MHz, CDCl₃) (for major diastereomer) δ 7.02 (1H, d, J = 8.7 Hz), 6.79 (1H, dd, J = 8.7, 2.4 Hz), 6.75 (1H, d, J = 2.4 Hz), 5.14 (1H, d, J = 6.0 Hz), 4.48 (2H, t, J = 8.0 Hz), 4.10 (2H, t, J = 8.0 Hz), 3.79 (3H, s), 2.97 (1H, q, J = 6.0 Hz), 2.46 (1H, ddd, J = 16.0, 9.0, 6.0 Hz), 2.31 (1H, dt, J = 16.0, 6.0 Hz), 2.18-2.11 (1H, m), 1.99-1.91 (1H, m), 1.89-1.81 (1H, m), 1.75-1.68 (1H, m), 1.50 (3H, s), (for minor diastereomer) δ 7.21 (1H, d, J = 8.4 Hz), 6.82 (1H, dd, J = 8.4, 1.8 Hz), 6.53 (1H, d, J = 1.8 Hz), 5.36 (1H, = 6.0 Hz), 4.54-4.45 (2H, m), 4.23-4.17 (1H, m), 4.10-4.05 (1H, m), 3.76 (3H, s), 3.15 (1H, dt, J = 11.4, 6.0 Hz), 2.45-2.40 (1H, m), 2.23 (1H, ddd, J = 15.6, 13.8, 5.4 Hz), 1.92-1.86 (1H, m), 1.68-1.59 (1H, m), 1.53-1.42 (2H, m), 1.39 (3H, s); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 212.7, 174.4, 160.0, 153.7, 147.6, 131.7, 125.6, 114.5, 110.1, 62.2, 59.9, 55.6, 54.0, 52.2, 43.3, 38.7, 27.1, 25.2, 22.0, (for minor diastereomer) δ 211.2, 172.1, 160.0, 153.4, 147.8, 130.1, 127.9, 114.0, 108.0, 62.3, 59.6, 55.6, 52.6, 52.1, 42.9, 39.5, 25.4, 23.5, 23.2; HRMS (ESI) Calcd for Calcd for C₁₉H₂₁O₅NNa⁺ ([M+Na]⁺) 366.1312. Found 366.1317.

To a solution of **3u** (58.9 mg, 0.10 mmol, 1 equiv) in MeCN (1.0 mL, 0.1 M) was added Selectfluor (35.4 mg, 0.10 mmol, 1 equiv) at 0 °C, and the reaction mixture was allowed to warm to room temperature. After stirring for 24 h, the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 3:1 as eluent) to afford **S9** in 68% yield (33.3 mg, 0.068 mmol, dr = 2.5:1). ¹H NMR (400 MHz, CDCl₃) (for major diastereomer) δ 7.93 (2H, d, *J* = 7.6 Hz), 7.88 (2H, d, *J* = 7.2 Hz), 7.76-7.64 (2H, m), 7.64-7.51 (4H, m), 6.01 (1H, s), 5.92 (1H, dd, *J* = 16.0, 7.2, 5.3 Hz), 2.23 (3H, s), 2.10 (1H, ddd, *J* = 16.0, 8.9, 4.5 Hz), 1.03 (3H, d, *J* = 7.2 Hz), (for minor diastereomer) δ 8.05 (2H, d, *J* = 7.6 Hz), 8.01 (2H, d, *J* = 7.2 Hz), 7.76-7.64 (2H, m), 7.64-7.51 (4H, m), 6.01 (1H, s), 5.75 (1H, brd, *J*_{H-F} = 50.4

Hz), 4.97 (1H, dd, J = 6.0, 4.4 Hz), 2.67-2.58 (1H, m), 2.55 (3H, s), 2.42 (1H, ddd, J = 15.2, 8.4, 4.0 Hz), 2.28-2.16 (1H, m), 2.24 (3H, s), 0.94 (3H, d, J = 7.6 Hz); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 168.7 (d, $J_{C-F} = 24.5$ Hz), 153.5, 144.9, 137.8, 137.6, 134.8, 134.7, 129.8, 129.7, 129.3, 129.2, 111.9, 91.9 (d, $J_{C-F} = 182.3$ Hz), 81.5, 34.7 (d, $J_{C-F} = 18.7$ Hz), 27.2 (d, $J_{C-F} = 5.9$ Hz), 16.7, 14.3, 14.0, (for minor diastereomer) δ 167.9 (d, $J_{C-F} = 23.1$ Hz), 153.6, 145.0, 137.9, 137.3, 135.0, 134.9, 130.0, 129.9, 129.4, 129.3, 111.7, 89.1 (d, $J_{C-F} = 185.0$ Hz), 81.4, 35.3 (d, $J_{C-F} = 20.2$ Hz), 29.6, 14.2, 14.1, 12.9 (d, $J_{C-F} = 8.8$ Hz); HRMS (ESI) Calcd for C₂₃H₂₅O₅N₂FNaS₂⁺ ([M+Na]⁺) 515.1081. Found 515.1087.

To a flame-dried test tube were added S9 (49.3 mg, 0.10 mmol, 1 equiv) and anhydrous EtOH (1.0 mL, 0.1 M), and the test tube was degassed and backfilled with Ar. NaOEt (15.2 mg, 0.22 mmol, 2.2 equiv) was added at 0 °C, and the reaction mixture was refluxed with stirring overnight. After cooling to room temperature, the reaction was quenched with aqueous solution of 1 N HCl. The extractive work-up was carried out with EtOAc and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography on silica gel (hexane/EtOAc = 3:1) to afford **5g** in 90% yield (39.8 mg, 0.090 mmol). ¹H NMR (400 MHz, CDCl₃) (for major diastereomer) δ 7.99-7.91 (4H, m), 7.75-7.67 (2H, m), 7.63-7.56 (4H, m), 4.72 (1H, dd, $J_{H-F} = 48.8$ Hz, $J_{H-H} = 4.4$ Hz), 4.55 (1H, dd, J = 7.4, 4.6 Hz), 4.27 (2H, q, J = 7.4, 4.2 Hz), 4.27 (2H, q, J = 7.4, 4.2 Hz), 4.27 (2H, q, J = 7.4, 4.2 Hz), 4.2 Hz), 4.2 Hz, 4.2 Hz), 4.2 H 7.2 Hz), 2.69-2.50 (1H, m), 2.38-2.27 (1H, m), 2.11 (1H, ddd, J = 15.8, 8.8, 4.8 Hz), 1.30 (3H, t, J = 7.2 Hz), 0.98 (3H, d, J = 6.8 Hz), (for minor diastereomer) δ 7.99-7.91 (4H, m), 7.75-7.67 (2H, m), 7.63-7.56 (4H, m), 4.80 (1H, dd, $J_{H-F} = 49.2$ Hz, $J_{H-H} = 2.8$ Hz), 4.49 (1H, t, J = 6.0 Hz), 4.26 (2H, q, J = 7.2 Hz), 2.69-2.50 (1H, m), 2.38-2.27 (1H, m), 2.24-2.16 (1H, m), 1.30 (3H, t, J = 7.2 Hz), 0.89 (3H, d, J = 6.8 Hz); ¹³C NMR (151 MHz, CDCl₃) (for major diastereomer) δ 168.7 (d, J_{C-F} = 24.6 Hz), 137.7, 137.6, 134.9, 129.9, 129.8, 129.3(7), 129.3(5), 92.2 (d, $J_{C-F} = 187.2 \text{ Hz}$), 81.4, 62.0, 34.5, 27.6 (d, $J_{C-F} = 5.7 \text{ Hz}$), 15.58 (d, $J_{C-F} = 2.9 \text{ Hz}$), 14.2, (for minor diastereomer) δ 168.5 (d, J_{C-F} = 24.6 Hz), 137.7, 137.5, 135.0, 134.9, 129.9, 129.8, 129.3, 90.7 (d, J_{C-F} = 188.0 Hz), 81.5, 61.9, 34.6, 28.8, 14.3, 13.2 (d, $J_{C-F} = 4.4$ Hz); HRMS (ESI) Calcd for $C_{20}H_{23}O_6FNaS_2^+$ ([M+Na]⁺) 465.0812. Found 465.0820.

To a solution of **3u** (41.2 mg, 0.07 mmol, 1 equiv) in THF (0.7 mL, 0.1 M) was added a 1 M THF solution of TBAF (70 μ L, 0.07 mmol, 1 equiv) dropwise at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and

then quenched with saturated aqueous solution of NaHCO₃. The extractive work-up was performed with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The crude material was purified by column chromatography on silica gel (hexane/EtOAc = 3:1 as eluent) to afford **S10** in 96% yield (31.9 mg, 0.067 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (2H, d, *J* = 7.2 Hz), 7.97 (2H, d, *J* = 7.2 Hz), 7.69 (1H, t, *J* = 7.6 Hz), 7.67 (1H, t, *J* = 7.2 Hz), 7.60-7.52 (4H, m), 5.96 (1H, s), 4.95 (1H, t, *J* = 5.4 Hz), 3.10 (1H, dd, *J* = 16.2, 4.8 Hz), 2.78 (1H, dd, *J* = 16.2, 7.4 Hz), 2.52 (3H, s), 2.40-2.31 (1H, m), 2.27-2.10 (2H, m), 2.21 (3H, s), 0.99 (3H, d, *J* = 6.8 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 172.4, 152.2, 144.3, 138.1, 137.7, 134.7, 130.0, 129.8, 129.2(0), 129.1(5), 111.4, 81.5, 41.8, 32.5, 29.2, 20.2, 14.7, 14.0; HRMS (ESI) Calcd for C₂₃H₂₆O₅N₂NaS₂⁺ ([M+Na]⁺) 497.1175. Found 497.1170.

The solution of **S10** (47.5 mg, 0.10 mmol, 1 equiv) and benzylamine (22 µL, 0.20 mmol, 2 equiv) in toluene (0.4 mL, 0.25 M) was stirred at 50 °C for 3 h. After cooling to room temperature, the reaction was quenched with 1 N aqueous solution of HCl and extractive work-up was carried out with CH₂Cl₂. The combined organic layers were washed with saturated aqueous solution of NaHCO₃ and dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 1:1) to afford **5g** in 88% yield (42.8 mg, 0.088 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.92 (4H, m), 7.69-7.65 (2H, m), 7.57-7.52 (4H, m), 7.34-7.30 (2H, m), 7.29-7.25 (3H, m), 5.93 (1H, brs), 4.86 (1H, t, *J* = 3.4 Hz), 4.45 (1H, dd, *J* = 15.2, 6.3 Hz), 4.41 (1H, dd, *J* = 15.2, 6.3 Hz), 2.30-2.17 (3H, m), 2.15-2.07 (2H, m), 0.92 (3H, d, *J* = 7.2 Hz); ¹³C NMR (151 MHz, CDCl₃) δ 171.3, 138.2, 138.0, 137.7, 134.7(0), 134.6(7), 129.9, 129.6, 129.3, 129.2, 128.9, 128.0, 127.7, 81.4, 43.8, 43.5, 32.3, 29.5, 20.4; HRMS (ESI) Calcd for C₂₅H₂₆O₅NS₂⁻ ([M–H]⁻) 484.1247. Found 484.1251.

Square Wave Voltammetry

Square wave voltammetry (SWV) measurements of representative enol silyl ether **1a**, electron deficient olefin **2a**, and alkylated enol silyl ether **3a** were performed on ALS/CH Instruments Electrochemical Analyzer using a glassy carbon working electrode, a Pt wire counter electrode, and a ferrocene/ferrocenium reference electrode. Voltammograms were taken at room temperature in a 100 mM MeCN solution of tetrabutylammonium perchlorate (Bu₄N·ClO₄) containing 1 mM of the designated substance. For conversion to the SCE couple, it is known that Fc/Fc⁺ is 380 mV more positive than SCE in MeCN; this value was added from obtained potentials in Fc/Fc⁺ to determine potentials against SCE.

Supplementary Figure 2. SWV plots.

Stern-Volmer Experiments

Emission intensities were recorded on a HORIBA FluoroMax-4P spectrometer. The solutions were excited at 420 nm and the luminescence was measured at 564 nm. Stern-Volmer luminescence quenching experiments were run with freshly prepared a 0.1 mM solutions of $[Ir(dF(CF_3)ppy)_2(4,4'-dCF_3bpy)]PF_6$ in dry dichloroethane (DCE) at room temperature under N₂ atmosphere. In a typical experiment, the solution of Ir complex was added to an appropriate amount of quencher in 5 mL volumetric flask under N₂. The solution was transferred to 1 cm² quartz cell and the emission spectrum of the sample was collected. The data show that enol silyl ether **1a** and alkylated enol silyl ether **3a** are competent at quenching the excited state of the photocatalyst. On the other hand, benzalmalononitrile (**2a**) and 2,4,6-collidine are shown to be unable to quench this excited state.

Supplementary Figure 3. Stern-Volmer Experiments.

Computational Details

The Gaussian 09 Revision D.01 program was used for all calculations.⁶ The 3D molecular structures were depicted by using the CYLview v1.0.561 β .⁷ Local minima and transition states (TS) were located by using the (U)CAM-B3LYP functional⁸ with the 6-311+G(d,p) basis set in the dichloroethane (DCE) continuum solvent of the solvation model based on density (SMD)⁹ and "int=ultrafine" option to aid in better description of a DFT grid. As discussed in the main text, we need to estimate Kohn-Sham SOMO levels of TBS enol ether radicals for comparing the radical reactivity in the addition to olefins.

Since no global functional to treat radical cations properly was reported so far, in addition to CAM-B3LYP, B3LYP¹⁰ (one of the most popular functional for calculating organic molecules) and LC-BLYP¹¹ (used in predicting several orbital properties of radical cationic systems¹²) were also examined for comparison. Harmonic frequency analyses were also performed to identify the stationary points (no/one imaginary frequency for local minima/TSs) and to estimate thermodynamic parameters at 298.15 K and 1 atm. Intrinsic reaction coordinate (IRC) analyses were conducted on the representative TS structures to confirm that the desired chemical transformations occurred through the TSs. The Cartesian coordinates and energies of optimized structures are summarized in the Supplementary Data 1.

Estimation of pK_a of Enol Silyl Ether Radical Cations

It has been recognized that direct determination of pK_a of radical cations, based on thermochemical cycle, deviated by several unit, while relative tendency was reproduced. Therefore, statistical manipulation is required to obtain the pK_a values comparable with the experimentally determined values.^{13,14}

Here, the p*K*_a values of radical cation [**1a**]⁺ of cyclohexanone-derived enol silyl ether was simply estimated by considering acid-base equilibria with various substituted anilines **B**(**X**), whose p*K*_a were experimentally determined (range of -6–16 in MeCN), and tetracyanopropenes **TCNP(X)** (range of -3-5 in MeCN). A linear free energy plot was shown in Supplementary Figure 4 and 5, where the x-axis is the calculated reaction free energy (ΔG) of the equilibrium eq. 1 or eq. 2 with MeCN of the SMD solvent model and the y-axis is experimental p*K*_a values of substituted anilines or tetracyanopropenes. Both plots show excellent linear correlations: R² = 0.988 with a slope = -0.6 and intercept = 8.4 for eq. 1 and R² = 0.997 with a slope = -0.7 and intercept = 8.4 for eq. 2. According to the equilibrium eq. 1 and 2, the intercept of the plot corresponds to p*K*_a of [**1a**]⁺⁺: p*K*_a (MeCN) = 8.4.

These analyses were also applied to linear TBS enol ethers **1o** ($\mathbf{R} = t\mathbf{B}\mathbf{u}$), **1r** ($\mathbf{R} = \mathbf{Mes}$), and **1s** ($\mathbf{R} = \mathbf{Ph}$), and their p K_a were determined to be 8.4 (**1o**), 6.5 (**1r**), and 4.8 (**1s**), respectively (eq. 3, Supplementary Table 1-6). B3LYP and LC-BLYP always give higher and lower p K_a values compared with CAM-B3LYP, and the difference becomes larger for aryl substituted systems ([**1r**]⁺⁺ and [**1s**]⁺⁺). While the absolute p K_a values depend on the functionals and the reference systems, the acidity order of the radical cations ([**1a**]⁺⁺ \approx [**1o**]⁺⁺ < [**1r**]⁺⁺ < [**1s**]⁺⁺) is not changed. Therefore, the conclusion that [**1s**]⁺⁺ is the most acidic of all calculated radical cations would be acceptable.

Supplementary Figure 4. Linear free energy plot of eq. 1.

Supplementary Figure 5. Linear free energy plot of eq. 2.

Supplementary Figure 6. Linear free energy plot of eq. 3 ($R^1 = t$ -Bu).

Supplementary Figure 7. Linear free energy plot of eq. 4 ($R^1 = t$ -Bu).

Supplementary Figure 8. Linear free energy plot of eq. 3 (R¹ = Mes).

Supplementary Figure 9. Linear free energy plot of eq. 4 (R¹ = Mes).

Supplementary Figure 10. Linear free energy plot of eq. 3 (R¹ = Ph).

Supplementary Figure 11. Linear free energy plot of eq. 4 (R¹ = Ph).

	G /au		G /au	[1a]'⁺	[1o] ^{*+}	[1r] ^{•+}	[1s] ^{*+}	$- pK_a(CH_3CN)^{-}$
TBS enol ether		anilines						
[1a]'⁺	-835.887634	B(4-MeO)	-401.928893	-6.18	-6.14	-9.43	-12.23	11.86
[1a-H] [*]	-835.461696	HB(4-MeO)⁺	-402.364678					
[1o] ^{•+}	-915.608993	B(H)	-287.447382	-3.37	-3.33	-6.62	-9.42	10.62
[1o-H]	-915.182996	HB(H)⁺	-287.878690					
[1r] ^{*+}	-1107.248251	B(4-Br)	-2861.107170	-1.56	-1.52	-4.81	-7.62	9.43
[1r-H] [•]	-1106.827487	HB(4-Br)*	-2861.535596					
[1s]'⁺	-989.422853	B(2,4-F ₂)	-485.966607	0.16	0.20	-3.08	-5.89	8.39
[1s-H] [*]	-989.006563	HB(2,4-F ₂) ⁺	-486.392287					
		B(2-CI)	-747.085815	0.44	0.47	-2.81	-5.62	7.86
		HB(2-CI)⁺	-747.511057					
		B(2,5-Cl₂)	-1206.724615	3.05	3.09	-0.20	-3.00	6.21
		HB(2,5-Cl₂)⁺	-1207.145693					
		B(2.6-CL)	-1206 722090	6 10	6 14	2.86	0.05	5.06
		HB(2 6-Cl ₂) ⁺	-1207 138304	0.10	0.14	2.00	0.00	0.00

Supplementary Table 1. Raw Gibbs free energy at SMD(MeCN)-CAM-B3LYP/6-311+G(d,p) and Gibbs free energy change in the equilibrium of eq. 1 and 3

^a See ref 11

Supplementary Table 2. Raw Gibbs free energy at SMD(MeCN)-CAM-B3LYP/6-311+G(d,p) and Gibbs free energy change in the equilibrium of eq. 2 and 4

				ΔG /kcal mol ⁻¹				
	G /au		G /au	[1a] ^{`+}	[1o] ^{`+}	[1r] ^{*+}	[1s] ^{`+}	$- p \kappa_a(C \Pi_3 C N)$
TBS enol ether		tetracyanopropen	<u>e</u>					
[1a] ^{*+}	-835.887634	TCNP(NH₂)	-542.072517	4.77	4.81	1.52	-1.28	4.90
[1a-H] [*]	-835.461696	TCNP-H(NH₂) [−]	-541.654181					
[1o] ^{•+}	-915.608993	TCNP(Me)	-525.990880	7.75	7.78	4.50	1.69	3.30
[1o-H]	-915.182996	TCNP-H(Me)⁻	-525.577285					
[1r] ^{*+}	-1107.248251	TCNP(H)	nd ^b					1.30
[1r-H] [•]	-1106.827487	TCNP-H(N) [−]	-486.300151					
[1s] ^{*+}	-989.422853	TCNP(CF₃)	-823.758622	12.77	12.81	9.53	6.72	-0.50
[1s-H] [*]	-989.006563	TCNP-H(CF₃) [−]	-823.353040					
		TCNP(CN)	-578.917068	15.99	16.03	12.74	9.94	-2.80
		TCNP-H(CN) ⁻	-578.516613					

^a See ref 12

^b Converged to 1st order saddle point and not used for the LFER plot

			-					
	G /au		G /au	[1a] ^{⁺+}	[1o] ^{•+}	[1r] ^{*+}	[1s] ^{⁺+}	
TBS enol ether		anilines						
[1a] ^{:+}	-836.226460	B(4-MeO)	-402.141285	-5.29	-5.87	-7.77	-9.33	11.86
[1a-H]	-835.797546	HB(4-MeO)⁺	-402.578624					
[1o] ^{.+}	-916.002889	B(H)	-287.614588	-2.51	-3.09	-4.98	-6.55	10.62
[1o-H] [•]	-915.574901	HB(H)⁺	-288.047495					
[1r] ^{*+}	-1107.754289	B(4-Br)	-2861.173071	-0.70	-1.28	-3.18	-4.74	9.43
[1r-H]	-1107.329326	HB(4-Br)⁺	-2861.603094					
[1s]' ⁺	-989.857161	B(2,4-F ₂)	-486.166904	1.06	0.48	-1.42	-2.99	8.39
[1s-H]	-989.434695	HB(2,4-F ₂) ⁺	-486.594127					
		B(2-CI)	-747.249464	1.61	1.03	-0.87	-2.43	7.86
		HB(2-CI)⁺	-747.675809					
		B(2.5-Cl ₂)	-1206.884794	4.09	3.51	1.61	0.05	6.21
		HB(2,5-Cl₂) ⁺	-1207.307185					
		B(2.6-Cl_)	-1206 882174	6 80	6 22	1 32	2 75	5.06
		HB(2.6-Cl ₂) ⁺	-1207.300252	0.00	0.22	4.02	2.15	5.00

Supplementary Table 3. Raw Gibbs free energy at SMD(MeCN)-(U)B3LYP/6-311+G(d,p) and Gibbs free energy change in the equilibrium of eq. 1 and 3

^a See ref 11

Supplementary Table 4. Raw Gibbs free energy at SMD(MeCN)-(U)B3LYP/6-311+G(d,p) and Gibbs free energy change in the equilibrium of eq. 2 and 4

				ΔG /kcal mol ⁻¹				
	G /au		G /au	[1a] ^{⁺+}	[1o] ^{•+}	[1r] ^{*+}	[1s] ^{⁺+}	
TBS enol ether		tetracyanopropen	<u>e</u>					
[1a] ^{•+}	-836.226460	TCNP(NH ₂)	-542.338339	5.61	5.03	3.13	1.56	11.86
[1a-H] [•]	-835.797546	TCNP-H(NH ₂) [−]	-541.918360					
[1o] ^{*+}	-916.002889	TCNP(Me)	-526.258520	9.92	9.34	7.44	5.87	10.62
[1o-H] [•]	-915.574901	TCNP-H(Me) [−]	-525.845410					
[1r] ^{•+}	-1107.754289	TCNP(H)	-486.952191	13.53	12.95	11.05	9.48	9.43
[1r-H] [*]	-1107.329326	TCNP-H(N) [−]	-486.544838					
[1s] ^{*+}	-989.857161	TCNP(CF ₃)	-824.074635	15.31	14.73	12.83	11.26	8.39
[1s-H] [•]	-989.434695	TCNP-H(CF₃)⁻	-823.670116					
		TCNP(CN)	-579.201573	18.20	17.62	15.72	14.16	7.86
		TCNP-H(CN) ⁻	-578.801669					

^a See ref 12

				ΔG /kcal mol ⁻¹				
	G /au		G /au	[1a] ^{*+}	[1o] ^{⁺+}	[1r] ^{*+}	[1s] ^{*+}	$- pK_a(CH_3CN)^*$
TBS enol ether		anilines						
[1a] ^{*+}	-834.331589	B(4-MeO)	-401.015234	-7.44	-8.19	-12.04	-14.51	11.86
[1a-H] [*]	-833.910699	HB(4-MeO)⁺	-401.447988					
[1o] ^{•+}	-913.840835	B(H)	-286.745068	-4.36	-5.10	-8.95	-11.42	10.62
[1o-H]	-913.421129	HB(H)⁺	-287.172899					
[1r] ^{*+}	-1104.996066	B(4-Br)	-2859.902665	-2.50	-3.25	-7.10	-9.57	9.43
[1r-H] [•]	-1104.582502	HB(4-Br)⁺	-2860.327543					
[1s] ^{*+}	-987.472908	B(2,4-F ₂)	-485.028459	-0.87	-1.61	-5.47	-7.93	8.39
[1s-H]	-987.063273	HB(2,4-F ₂) ⁺	-485.450734					
		B(2-CI)	-746.120811	-0.97	-1.71	-5.57	-8.03	7.86
		HB(2-CI)⁺	-746.543245					
		B(2,5-Cl ₂)	-1205.496649	2.02	1.28	-2.57	-5.04	6.21
		HB(2,5-Cl₂)⁺	-1205.914312		-			
		B(2.6-CL)	-1205 404467	5 33	4 58	0.73	-1 74	5.06
		HB(2.6-Cl ₂) ⁺	-1205.906867	0.00	4.50	0.75	-1./4	5.00

Supplementary Table 5. Raw Gibbs free energy at SMD(MeCN)-(U)LC-BLYP/6-311+G(d,p) and Gibbs free energy change in the equilibrium of eq. 1 and 3

^a See ref 11

Supplementary Table 6. Raw Gibbs free energy at SMD(MeCN)-(U)LC-BLYP/6-311+G(d,p) and Gibbs free energy change in the equilibrium of eq. 2 and 4

				ΔG /kcal mol ⁻¹				
	G /au	G /au	[1a] ^{⁺+}	[1o] ^{*+}	[1r] ^{*+}	[1s] ^{*+}		
TBS enol ether		tetracyanopropen	e					
[1a] ^{•+}	-834.331589	TCNP(NH ₂)	-540.871671	3.46	2.72	-1.14	-3.60	11.86
[1a-H] [*]	-833.910699	TCNP-H(NH₂) [−]	-540.456294					
[1o] ^{⁺+}	-913.840835	TCNP(Me)	-524.793872	5.90	5.15	1.30	-1.16	10.62
[1o-H] [*]	-913.421129	TCNP-H(Me) [−]	-524.382381					
[1r] ^{*+}	-1104.996066	TCNP(H)	-485.613673	7.44	6.70	2.85	0.38	9.43
[1r-H] [*]	-1104.582502	TCNP-H(N) [−]	-485.204643					
[1s] ^{*+}	-987.472908	TCNP(CF ₃)	-822.207167	11.10	10.35	6.50	4.03	8.39
[1s-H] [•]	-987.063273	TCNP-H(CF₃) [−]	-821.803961					
		TCNP(CN)	-577.622417	14.12	13.37	9.52	7.06	7.86
		TCNP-H(CN) [−]	-577.224025					

^a See ref 12

Calculation for Radical Addition

(TBS enol ether radical to 1,1-bis(phenylsulfonyl)ethylene)

The reactivity of enol silyl ether-derived allylic radicals was examined by calculating frontier orbital properties and TS of radical addition to 1,1-bis(phenylsulfonyl)ethylene (eq. 5).

Optimized structures of these radicals at UCAM-B3LYP/6-311+G(d,p) level were summarized in Supplementary Figure 12. As described in the main manuscript, spin density at the allylic carbon of each radical correlates with the experimental yield: 0.70 ([**10-H**][•]), 0.64 ([**1r-H**][•]), and 0.51 ([**1s-H**][•]). For [**1s-H**][•], the spin is localized to the Ph group, which is reflected in the bond distance between the oxygen-bearing carbon and the carbon of the Ph group (*a* in Supplementary Figure 12). The C–C distance changes from 1.52 Å to 1.45 Å by substituting *t*-Bu to Ph, indicating the existence of radical delocalization toward an aromatic Ph ring. When Mes is introduced instead of Ph, *a* is elongated again from 1.45 Å to 1.48 Å, and the spin density at the *y*-carbon increases from 0.51 to 0.64. The Mes group cannot adopt a coplanar orientation with the olefin moiety due to the steric repulsion caused by the two *o*-Me groups (the dihedral angle of $C_{ortho}C_{ipso}$ - C_aC_β is 60.1°; highlighted in green in Supplementary Figure 12). Since radical conjugation with the Mes group is partially inhibited in [**1r-H**][•], its spin density at the allylic position and reactivity are comparable with those of [**10-H**][•].

In exploring the most stable TS for the radical addition, 8 kinds of conformers were examined: different orientations of 1) radical and olefin fragments about the forming C–C bond and 2) SO₂Ph groups in olefin about the approaching radical (Supplementary Figure 13-15, Supplementary Table 7). The lowest values of ΔG^{\ddagger} for each substituent (21.2 kcal mol⁻¹ (**TS-AD_t-Bu_1b**), 21.6 kcal mol⁻¹ (**TS-AD_Mes_2b**), and 23.3 kcal mol⁻¹ (**TS-AD_Ph_2b**)) are reported in Table 2 in the main text. These values correlate with the spin density of the C3-carbon and the experimental yield (90% (**10**), 81% (**1r**), 53% (**1s**)). The proper balance of the radical cation acidity and the activation barrier of the radical addition may be a source of the superior reactivity of **1r** in the C– H alkylation.

Supplementary Figure 12. Optimized structures of $[1o-H]^{\cdot}$, $[1r-H]^{\cdot}$, and $[1s-H]^{\cdot}$ at UCAM-B3LYP/6-311+G(d,p). Representative bond distances, spin densities, and dihedral angles between an aromatic ring and an olefin moiety (green) are also shown for $[1r-H]^{\cdot}$ and $[1s-H]^{\cdot}$.

Supplementary Figure 13. Optimized TS structures of radical addition of [**1o-H**][•] to 1,1-bis(phenylsulfonyl)ethylene.

Supplementary Figure 14. Optimized TS structures of radical addition of [**1r-H**][•] to 1,1-bis(phenylsulfonyl)ethylene.

Supplementary Figure 15. Optimized TS structures of radical addition of [**1s-H**][•] to 1,1-bis(phenylsulfonyl)ethylene.

Supplementary Table 7. Electron energy, enthalpy, entropy, Gibbs free energy, relative electron energy and relative Gibbs free energy of eq. S5 at SMD(CH₃CN)-(U)CAM-B3LYP/6-311+G(d,p)

(R ¹ , R ²)	<i>E</i> /au	<i>H</i> /au	S /eu	G /au	ΔE /kcal mol ⁻¹	ΔG /kcal mol ⁻¹
1,1-bis(phenylsulfonyl)ethylene	-1637.714023	-1637.458874	139.527	-1637.525168		
[1o-H] [*]	-915.532276	-915.108818	156.782	-915.183310		
TS-AD_tBu_1a	-2553.236443	-2552.555665	249.277	-2552.674104	6.18	21.57
TS-AD_tBu_1b ^a	-2553.235171	-2552.554233	253.409	-2552.674636	6.98	21.24
TS-AD_tBu_1c	-2553.233933	-2552.553140	254.256	-2552.673945	7.76	21.67
TS-AD_tBu_1d	-2553.233498	-2552.552567	251.254	-2552.671946	8.03	22.92
TS-AD_tBu_2a	-2553.233131	-2552.552260	251.276	-2552.671650	8.26	23.11
TS-AD_tBu_2b	-2553.234706	-2552.553594	252.479	-2552.673555	7.27	21.91
TS-AD_tBu_2c	-2553.233127	-2552.552212	252.024	-2552.671957	8.27	22.92
TS-AD_tBu_2d	-2553.233387	-2552.552397	251.324	-2552.671809	8.10	23.01
[1r-H]	-1107.221441	-1106.742045	180.532	-1106.827822		
TS-AD_Mes_1a	-2744.925381	-2744.188832	270.677	-2744.317439	6.33	22.31
TS-AD_Mes_1b	-2744.923264	-2744.186774	272.275	-2744.316140	7.66	23.12
TS-AD_Mes_1c	-2744.921565	-2744.185228	277.444	-2744.317050	8.72	22.55
TS-AD_Mes_1d	-2744.921742	-2744.185555	277.911	-2744.317599	8.61	22.21
TS-AD_Mes_2a	=> converged to	TS-AD_Mes_1a				
TS-AD_Mes_2b ^a	-2744.923877	-2744.187270	276.201	-2744.318502	7.27	21.64
TS-AD_Mes_2c	-2744.920545	-2744.184310	278.007	-2744.316400	9.36	22.96
TS-AD_Mes_2d	-2744.919603	-2744.183163	277.032	-2744.314790	9.95	23.97
[1s-H] [•]	-989.323605	-988.932114	156.857	-989.006642		
TS-AD_Ph_1a	-2627.023676	-2626.374740	248.702	-2626.492907	8.76	24.41
TS-AD_Ph_1b	-2627.022089	-2626.373270	251.686	-2626.492854	9.75	24.45
TS-AD_Ph_1c	-2627.021267	-2626.372448	248.423	-2626.490482	10.27	25.93
TS-AD_Ph_1d	-2627.020483	-2626.371708	252.369	-2626.491617	10.76	25.22
TS-AD_Ph_2a	-2627.018974	-2626.370125	253.966	-2626.490792	11.71	25.74
TS-AD_Ph_2b ^a	-2627.021894	-2626.373039	255.865	-2626.494609	9.87	23.34
TS-AD_Ph_2c	-2627.018844	-2626.370112	255.047	-2626.491293	11.79	25.42
TS-AD_Ph_2d	-2627.020143	-2626.371438	254.258	-2626.492244	10.97	24.83

^aReported in the main text (Table 3).

Supplementary Figure 19. ¹³C NMR spectra of **3b** (major diastereomer).

Supplementary Figure 21. ¹³C NMR spectra of **3b** (minor diastereomer).

Supplementary Figure 25. ¹³C NMR spectra of 3c (minor diastereomer).

Supplementary Figure 27. ¹³C NMR spectra of 3d (major diastereomer).

Supplementary Figure 29. ¹³C NMR spectra of 3d (minor diastereomer).

Supplementary Figure 31. ¹³C NMR spectra of 3e (mixture of diastereomers).

Supplementary Figure 33. ¹³C NMR spectra of 3f (mixture of diastereomers).

Supplementary Figure 35. ¹³C NMR spectra of 3g.

Supplementary Figure 37. ¹³C NMR spectra of 3h.

Supplementary Figure 39. ¹³C NMR spectra of 3i.

Supplementary Figure 41. ¹³C NMR spectra of 3j.

Supplementary Figure 43. ¹³C NMR spectra of 3k (mixture of diastereomers).

Supplementary Figure 45. ¹³C NMR spectra of 3l (mixture of diastereomers).

Supplementary Figure 47. ¹³C NMR spectra of 3m.

Supplementary Figure 51. ¹³C NMR spectra of 30.

Supplementary Figure 55. ¹³C NMR spectra of 3q (major diastereomer).

Supplementary Figure 57. ¹³C NMR spectra of 3q (minor diastereomer).

Supplementary Figure 59. ¹³C NMR spectra of 3r (mixture of E/Z isomers).

Supplementary Figure 63. ¹³C NMR spectra of 3t.

Supplementary Figure 65. ¹³C NMR spectra of 3u (Z isomer).

Supplementary Figure 67. 13 C NMR spectra of 3u (*E* isomer).

Supplementary Figure 69. ¹³C NMR spectra of 3v.

Supplementary Figure 73. ¹³C NMR spectra of 3x.

Supplementary Figure 75. ¹³C NMR spectra of 3y.

Supplementary Figure 77. ¹³C NMR spectra of 3z.

Supplementary Figure 79. ¹³C NMR spectra of 3Aa.

Supplementary Figure 81. ¹³C NMR spectra of 3Ab (major diastereomer).

Supplementary Figure 83. ¹³C NMR spectra of 3Ac (mixture of diastereomers).

Supplementary Figure 85. ¹³C NMR spectra of 5a (major diastereomer).

Supplementary Figure 87. ¹³C NMR spectra of **5a** (minor diastereomer).

Supplementary Figure 91. ¹³C NMR spectra of 5c.

Supplementary Figure 97. ¹³C NMR spectra of 5e (minor diastereomer).

Supplementary Figure 99. ¹³C NMR spectra of S9 (mixture of diastereomers).

Supplementary Figure 101. ¹³C NMR spectra of 5g (mixture of diastereomers).

Supplementary Figure 103. ¹³C NMR spectra of S10.

Supplementary Figure 105. ¹³C NMR spectra of 5h.

Supplementary References

- Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C– H bonds enabled by proton-coupled electron transfer. *Nature* 539, 268-271 (2016).
- Lowry, M. S., Hudson, W. R., Pascal, R. A. Jr. & Bernhard, S. Accelerated luminophore discovery through combinatorial synthesis. J. Am. Chem. Soc. 126, 14129-14135 (2004).
- 3. Sarabèr, F. C. E., Dratch, S., Bosselaar, G., Jansen, B. J. M. & de Groot, A. Domino Mukaiyama– Michael reactions in the synthesis of polycyclic systems. *Tetrahedron* **62**, 1717-1725 (2006).
- 4. Ito, H., Ohmiya, H. & Sawamura, M. Construction of methylenecycloheptane frameworks through 7-exo-dig cyclization of acetylenic silyl enol ethers catalyzed by triethynylphosphine–gold complex. *Org. Lett.* **12**, 4380-4383 (2010).
- Sumida, Y., Yorimitsu, H. & Oshima, K. Palladium-catalyzed preparation of silyl enolates from α,β-unsaturated ketones or cyclopropyl ketones with hydrosilanes. *J. Org. Chem.* 74, 7986-7989 (2009).
- Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.
- 7. Legault, C. Y. CYLview, 1.0b, Université de Sherbrooke, 2009.
- 8. Yanai, T., Tew, D. & Handy, N. A new hybrid exchange-correlation functional using the Coulombattenuating method (CAM-B3LYP). *Chem. Phys. Lett.* **393**, 51–57 (2004).
- Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
- Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 5648–5652 (1993).
- 11. Iikura, H., Tsuneda, T., Yanai, T. & Hirao, K. A long-range correction scheme for generalizedgradient-approximation exchange functionals. J. Chem. Phys. 115, 3540–3544 (2001).
- Riffet, V., Jacquemin, D., Cauët, E. & Frison, G. Benchmarking DFT and TD-DFT functionals for the ground and excited states of hydrogen-rich peptide radicals. *J. Chem. Theory Comput.* 10, 3308–3318 (2014).
- Kütt, A., Leito, I., Kaljurand, I., Sooväli, L., Vlasov, V. M., Yagupolskii, L. M. & Koppel, I. A. A comprehensive self-consistent spectrophotometric acidity scale of neutral Brønsted acids in acetonitrile. J. Org. Chem. 71, 2829–2838 (2006).
- Kütt, A., Rodima, T., Saame, J., Raamat, E., Mäemets, V., Kaljurand, I., Koppel, I. A., Garlyauskayte, R. Y., Yagupolskii, Y. L., Yagupolskii, L. M., Bernhardt, E., Willner, H. & Leito, I. Equilibrium acidities of superacids. *J. Org. Chem.* 76, 391–395 (2011).