Proton Gradient-Dependent Transport of *p*-Glucocoumaryl Alcohol in Differentiating Xylem of Woody Plants

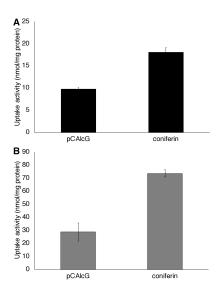
Taku Tsuyama^{1*}, Yasuyuki Matsushita², Kazuhiko Fukushima², Keiji Takabe³, Kazufumi Yazaki⁴, Ichiro Kamei¹

¹Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan

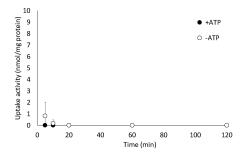
²Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan

³Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

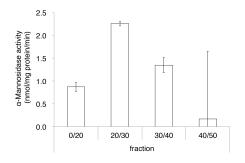
⁴Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011,


Japan

*Corresponding Author:


T. Tsuyama

Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan


Tel.: 81-985-58-7182 Fax: 81-985-58-7182 E-mail: tsuyama@cc.miyazaki-u.ac.jp

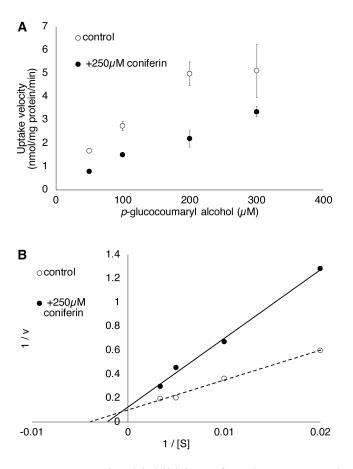

Figure S1. Uptake of lignin precursors into membrane vesicles obtained from differentiating xylem of hybrid poplar (*Populus sieboldii* × *P. grandidentata*) (A), Japanese cypress (*Chamaecyparis obtusa*) (B), respectively. Membrane vesicles were incubated with 50 μ M of each compound in the presence of 5 mM ATP for 20 min. pCAlcG; *p*-glucocoumaryl alcohol. Data are means ± SD of three replicates.

Figure S2. A time course of *p*-coumaryl alcohol uptake in hybrid poplar membrane vesicles. Membrane vesicles were incubated with 50 μ M of *p*-coumaryl alcohol in the presence (•) or absence (•) of 5 mM Mg/ATP. Data are means ± SD of three replicates.

Figure S3. Alfa-mannosidase activity in sucrose gradient-fractions of hybrid poplar was used as a marker of central vacuole²⁴. Membrane fractions were incubated with 5 mM *p*-nitrophenyl- α -D-mannopyranoside in 100 mM sodium citrate buffer (pH 4.6) for 1 h, followed by measurements of absorbance at 400 nm for determination of liberated *p*-nitrophenol. Data are means ± SD of three replicates.

Figure S4. Mixed-inhibition of *p*-glucocoumaryl alcohol transport by coniferin. (A), Membrane fractions of hybrid poplar were incubated for 5 min in the presence of 5 mM Mg/ATP and each concentration of *p*-glucocoumaryl alcohol with (•) or without (\circ) 250 μ M coniferin. Data are means of three replicates. (B), Lineweaver-Burk plots of results in (A). Calculated apparent K_m values were 256 μ M (control) or 451 μ M (+250 μ M coniferin) and calculated V_{max} values were 10.14 nmol • mg protein⁻¹ • min⁻¹ (control) or 7.86 nmol • mg protein⁻¹ • min⁻¹ (+250 μ M coniferin).

Table S1. K_m values of the *p*-glucocoumaryl alcohol uptake for comparison with respect to secondary transporters

Compounds	plant species	$K_{ m m}$
<i>p</i> -glucocoumaryl alcohol	hybrid poplar	160-260 μM*
coniferin	hybrid poplar	$60-80 \ \mu M^{16}$
coniferin	Japanese cypress	24-26 μ M ¹⁶
isovitexin	barley	$82 \ \mu M^{19}$
saponin	barley, Arabidopsis	50–100 μ M ²⁰
salicylic acid 2-O-D-glucoside	tobacco	$11 \ \mu M^{21}$
berberine	Coptis japonica	$43.7 \ \mu M^{22}$
salicylic acid glucose ester	Arabidopsis thaliana	$38 \ \mu M^{23}$

*, present study.