
 1

Supplementary Materials for “Principled BCI Decoder Design and Parameter Selection
Using a Feedback Control Model”

Francis R. Willett, Daniel R. Young, Brian A. Murphy, William D. Memberg, Christine H. Blabe, Chethan
Pandarinath, Sergey D. Stavisky, Paymon Rezaii, Jad Saab, Benjamin L. Walter, Jennifer A. Sweet,
Jonathan P. Miller, Jaimie M. Henderson, Krishna V. Shenoy, John D. Simeral, Beata Jarosiewicz, Leigh R.
Hochberg, Robert F. Kirsch, A. Bolu Ajiboye

Section 1: Simulation Methods for Figure 1 .. 2

Section 2: Additional Simulations for Figure 1 .. 3

Section 3: Sensitivity of the Model to Training Data .. 4

Section 4: Dataset Details .. 5

Section 5: Within-session Predictions ... 8

Section 6: Joint Optimization of Gain, Smoothing and an Exponential Speed Transform......... 12

 2

Section 1: Simulation Methods for Figure 1

The simulation shown in Figure 1 in the main text is meant to give a simple demonstration of how
standard decoder calibration methods, which are based on minimizing offline prediction error, can fail
to yield decoder dynamics that maximize online performance.

For all simulated blocks, we simulated 40 neural features with Gaussian noise that were linearly tuned
to a linear control policy at each time step. That is, the 40 x 1 neural feature vector ft at each time step t
was given by the equation

𝑓" = 𝐸(𝑔" − 𝑝") + 𝜀" ,

where E is a 40 x 2 matrix of tuning coefficients that determined the preferred direction and depth of
modulation of each feature, gt is a 2 x 1 target position vector, pt is a 2 x 1 cursor position vector, and
𝜀"~𝑁(0, Σ) is a 40 x 1 Gaussian noise vector. The preferred directions contained E were uniformly
distributed and their depth of modulation was set equal to 1. The covariance matrix Σ was a diagonal
matrix with all diagonal entries equal to 2. The target position, gt, was a distance of 1 away from the
center of the workspace.

While we could have used the PLM to simulate a more realistic control policy, neural noise and visual
feedback delay, we chose this simple model instead to show that these extra factors are not necessary
for causing an offline vs. online performance discrepancy.

The simulated blocks were generated as follows. First, we simulated an open-loop dataset that consisted
of 80 minimum-jerk [2], center-out trajectories that lasted 750 ms each. A velocity Kalman filter was
calibrated using this dataset according to the methods in Gilja et al. 2012 [3]. Then, this initial decoder
was used in closed-loop to generate the first closed-loop block of center-out data (“OL Cal Block” in Fig.
1) consisting of 40 movements. We then proceeded to simulate a series of closed-loop blocks, with each
one using a decoder that was calibrated on data from the previous closed-loop block (“ReCal 1-5” in Fig.
1) with 40 movements each. In the “small target” task, the target radius was equal to 1/16; in the “large
target” task, the target radius was equal to 4/16. The dwell time was 1 second in all tasks. To estimate
the user’s intended velocity during both the open-loop and closed-loop blocks, we started with the
original velocity vectors and then rotated them to point towards the target and zeroed them when the
cursor was overlapping the target (following the ReFIT calibration method [3]). To generate the
performance surfaces, 40 movements were simulated for each parameter pair.

In Supplemental Figure 1, we show that a failure to optimize online performance is not due to a
mismatch between the user’s control policy and the assumptions made by ReFIT; even if 𝑔" − 𝑝" is taken
as the user’s “intended velocity”, the decoder is still suboptimal.

[1] F. R. Willett et al., “Feedback control policies employed by people using intracortical brain–
computer interfaces,” J. Neural Eng., vol. 14, no. 1, p. 016001, Feb. 2017.

[2] T. Flash and N. Hogan, “The coordination of arm movements: an experimentally confirmed
mathematical model,” J. Neurosci., vol. 5, no. 7, pp. 1688–1703, 1985.

[3] V. Gilja et al., “A high-performance neural prosthesis enabled by control algorithm design,” Nat.
Neurosci., vol. 15, no. 12, pp. 1752–1757, Dec. 2012.

 3

Section 2: Additional Simulations for Figure 1

Supplemental Figure 1. Identical to Figure 1 in the main text, except that the user’s true intent is used to
calibrate the decoder (see Supplemental Section 2 for more details). The results demonstrate that a
failure to optimize online performance is not due to a mismatch between the user’s control policy and
the assumptions made by ReFIT. Even though there is a perfect match between what the user’s neural
activity is encoding and what is assumed during decoder calibration, the decoder takes on suboptimal
gain and smoothing parameters (even when allowed to recalibrate). Here, unlike in the case of ReFIT,
continued recalibration does not change the parameters very much (they appear to jitter around a fixed
point that is suboptimal).

 4

Section 3: Sensitivity of the Model to Training Data

Supplemental Figure 2. To assess the PLM’s sensitivity to the type of block it was trained on, we
replicated the summary analyses from Figure 5 for three different training conditions: either the PLM
was fit to the lowest gain block for each session, the median gain block, or the highest gain block. This
tests the PLM’s performance when trained under three very different regimes of cursor movement
dynamics. (A) The analysis in Figure 5B is replicated for each type of block. Overall, good quality
predictions are achieved for each of the three fitting conditions. Each circle on each panel represents
the average performance for one block. In the top left corner of each panel, the fraction of variance
accounted for by the model’s predictions (FVAF) is shown in addition to the mean absolute error of the
predictions (MAE). To assess the model’s bias and statistical significance, a linear regression was
performed for each panel that regressed the model’s predictions against the observed data. The
regression coefficients are shown in the bottom right corner and indicate low bias (the slopes are near
one and the intercepts are near zero). The regression line is plotted as a dashed black line and the unity
line as a solid black line for comparison. Finally, the p-value for the slope coefficient is reported. (B) The
FVAF (fraction of variance accounted for) and MAE (mean absolute error) are summarized for each
metric; error bars indicate 95% confidence intervals (computed by bootstrap resampling the blocks that
were included). No large differences in performance are apparent.

 5

Section 4: Dataset Details

Supplemental Table 1. A list of all gain and smoothing sessions included in the study.

Participant Session Type Date (&
Post-
Implant
Day)

of
Blocks

Dwell
Time (s)

Target
Distance /
(Target +
Cursor
Diameter)

Max
Movem
ent
Time

Task
Visuali
zation

Motor Cue

T6 Mixed
Gain/Smooth

2014.11.05
(699)

2 1 3.27 10 Cursor Imagined Index
+ Thumb

T6 Mixed Gain
/Smooth

2014.11.10
(704)

8 1 3.27 10 Cursor Imagined Index
+ Thumb

T6 Mixed Gain
/Smooth

2014.11.19
(713)

8 1 3.27 10 Cursor Imagined Index
+ Thumb

T6 Gain 2014.12.10
(734)

8 0.15 3.27 10 Cursor Imagined Index
+ Thumb

T6 Gain 2015.01.14
(769)

8 0.15 3.27 10 Cursor Imagined Index
+ Thumb

T6 Smoothing 2015.01.21
(776)

8 1 3.27 10 Cursor Imagined Index
+ Thumb

T6 Smoothing 2015.02.02
(788)

8 1 3.27 10 Cursor Imagined Index
+ Thumb

T7 Mixed Gain
/Smooth

2014.09.08
(406)

10 0.5 or 1 3.27 8.5 or
10.5

Cursor Attempted
Mouse

T7 Mixed Gain
/Smooth

2014.09.11
(409)

10 1 3.27 10.5 Cursor Attempted
Mouse

T8 Mixed Gain
/Smooth

2015.01.26
(57)

7 0.5 1.96 8 Cursor
+ Arm

Attempted
Arm

T8 Mixed
Gain/Smooth

2015.01.27
(58)

10 0.5 1.96 8 Cursor
+ Arm

Attempted
Arm

T8 Gain 2015.03.24
(114)

15 0.15 1.96 8 Cursor
+ Arm

Attempted
Arm

T8 Smoothing 2015.06.30
(212)

12 0.5 1.96 8 Cursor
+ Arm

Attempted
Arm

T8 Smoothing 2016.12.22
(387)

8 0.5 1.96 8 Cursor
+ Arm

Attempted
Arm

T8 Smoothing 2016.02.01
(428)

10 0.5 1.96 8 Cursor
+ Arm

Attempted
Arm

 6

Supplemental Table 2. A list of all random target sessions included in the study. Cursor gains and
effective target radii are reported using a unit of distance equal to the width of the square workspace
(WW or “workspace width”). Effective target radii are equal to the cursor radius plus the target radius
and define the region where the center of the cursor must dwell to acquire the target.

Participant Date (&
Post-
Implant
Day)

Cursor
Gains
(WW/s)

of
blocks

Cursor
Smoothi
ng Alpha

Dwell
Times
(s)

Effective
Target
Radii
(WW)

Task
Visuali
zation

Motor Cue

T6 2015.03.
06
(820)

0.52, 1.04 5 per
gain

0.92 0.75 0.07, 0.10,
0.13

Cursor Imagined
Index +
Thumb

T6 2015.03.
16
(830)

1.09 10 0.92 0.75 0.07, 0.10,
0.13

Cursor Imagined
Index +
Thumb

T6 2015.03.
23
(837)

3.06 6 0.92 0.15 0.07, 0.10,
0.13

Cursor Imagined
Index +
Thumb

T8 2015.03.
11
(101)

0.43 15 0.96 0.5 0.11, 0.14,
0.17

Cursor
+ Arm

Attempted
Arm

T8 2015.03.
17
(107)

0.74 16 0.94 0.75 0.10, 0.12,
0.16

Cursor
+ Arm

Attempted
Arm

T8 2015.05.
12
(163)

1.2 8 0.94 0.75 0.10, 0.12,
0.16

Cursor
+ Arm

Attempted
Arm

T8 2015.05.
28
(179)

0.57 4 0.94 0.75 0.10, 0.12,
0.16

Cursor
+ Arm

Attempted
Arm

T8 2015.08.
31
(274)

0.40, 0.64 7 per
gain

0.94 0.75 0.10, 0.12,
0.16

Cursor
+ Arm

Attempted
Arm

T8 2015.11.
19
(354)

0.26 8 0.96 0.75 0.10, 0.12,
0.16

Cursor
+ Arm

Attempted
Arm

 7

Supplemental Table 3. Parameters for the four sessions that measured the benefit of using a nonlinear
speed transform function.

Participant Date (&
Post-
Implant
Day)

of
Blocks

Dwell
Time (s)

Target
Distance /
(Target +
Cursor
Diameter)

Max
Movem
ent
Time

Task
Visuali
zation

Motor Cue

T8 2016.06.29
(577)

10 4 4 12 Cursor
+ Arm

Attempted
Arm

T8 2016.07.06
(584)

8 4 4 12 Cursor
+ Arm

Attempted
Arm

T5 2017.09.25
(404)

5 1 5 10 4D
Cursor

Attempted
Arm

T5 2017.10.04
(413)

6 1 5 10 4D
Cursor

Attempted
Arm

 8

Section 5: Within-session Predictions

Supplemental Figure 3. The data shown in Figure 3 is broken apart by individual session, where each
four-panel row shows data from a single session. Red circles indicate blocks on which the PLM was fit.
The results indicate that the PLM is successful at accounting for the within-session variability in
performance caused by the gain and smoothing parameters alone. The across-session variability in
performance is caused not only by different gain and smoothing parameters, but also by different levels
of decoding noise occurring on different days and by each participant’s different overall levels of
decoding noise, different feedback delays, and/or different control policies.

An alternative version of this figure with zoomed-in axes for each panel is provided below in
Supplemental Figure 4.

 9

Supplemental Figure 4. An alternative version of Supplemental Figure 3 with zoomed-in axes for each
panel to show more detail (but note that each panel has different axes).

 10

Supplemental Figure 5. The ability of the PLM to predict how online performance will change as a
function of target radius and distance, broken apart by each random target session and each gain and
smoothing setting tested within that session. Each three-panel row plots data from a single session and
gain/smoothing setting. Data from each target radius and target distance pair is plotted as a single circle
(3 radii and 4 distances make for 12 pairs per panel).

For the dial-in time and movement time panels, the circles are colored by target radius (red = small,
green = medium, blue = large). For the translation time panel, the circles are colored by target distance
(dark = close, light = far). For each row, the dwell time (D), gain (β), and smoothing setting (α) are
indicated.

An alternative version of this figure with zoomed-in axes for each panel is provided below in
Supplemental Figure 6.

 11

Supplemental Figure 6. An alternative version of Supplemental Figure 5 with zoomed-in axes for each
panel to show more detail (but note that each panel has different axes).

 12

Section 6: Joint Optimization of Gain, Smoothing and an Exponential Speed Transform

Here we argue that adding an exponential nonlinearity by itself, without optimizing its parameters in
concert with decoder gain and smoothing, my not lead to any performance improvement. Thus,
although the idea of an exponential nonlinearity could have been easily conceived without a model like
the PLM, there would be no straightforward way to optimize it or accurately measure its performance
improvement relative to an optimized linear decoder. We illustrate this point with a simulation
experiment.

For this experiment, we first fit the PLM parameters to a block of T8 data. Then, we simulated
performance when using an exponential nonlinearity for a difficult task with a dwell time of 2 seconds
and an effective target radius (target plus cursor radius) equal to 1/10 of the target distance. We
performed separate gain and smoothing parameter optimizations for each exponent value (16 different
exponent values evenly spaced from 1 to 4). The results (Supplemental Figure 7) show that there is an
optimal exponent at 2.6 that decreases the total movement time from 5.8 seconds to 4.8 seconds.
Importantly, the optimal gain and smoothing values depend on the exponent, indicating that this is a
difficult joint optimization problem. We can’t necessarily expect good performance simply by taking
good gain and smoothing values for a linear decoder (exponent = 1) and then simply increasing the
exponent. Panel B illustrates this point explicitly. In panel B, simulated movement time is shown when
taking the optimal gain and smoothing values for a linear decoder (exponent = 1) and then increasing
the exponent. Performance only improves slightly for small exponents (<1.2) and at 2.6 actually
decreases performance substantially.

Supplemental Figure 7. Optimal gain and smoothing parameters change as a function of the exponent of an
exponential speed transform function (as used in Fig. 8E-H). (A) A separate gain and smoothing optimization was
completed for each exponent value; as the exponent increases, the optimal gain increases and the optimal
smoothing value decreases. The optimal gain and smoothing values for the best exponent (2.6) are quite different
from those of a linear decoder (exponent = 1). Shaded regions indicate 95% confidence intervals (30 separate
optimizations were performed). (B) Combining an exponential nonlinearity with gain and smoothing values that
were optimal for the linear case (exponent = 1) does not lead to the same performance improvement. In fact,
performance is worse when the exponent is 2.6.

Why does the optimal gain increase as a function of the exponent? The exponential nonlinearity causes
speeds less than 1 to become slower; thus, the gain must be increased to compensate. But how much
should the gain increase? This question is difficult to answer in a quantitatively precise way without
using a model.

It may be helpful to consider what it might have taken to perform the experiment in Figure 8 without
the PLM. First, gain and smoothing values would have had to been swept through trial and error to find

 13

good values for the linear decoder. Then, for several different candidate exponents, more gain and
smoothing parameter sweeps would have had to have been performed. This could easily consume
weeks of valuable experimental time. Moreover, the results may not have been accurate, since decoding
noise can vary from day to day, making optimal parameters on one day potentially suboptimal on
another day. Finally, how could we confirm that the experimenter had swept enough values to ensure a
fair comparison? In many studies, these factors are not considered and performance for only a single set
of decoder parameters are reported, making it unclear how the results would change if the parameters
were changed. The PLM provides a fast and objective way to jointly optimize over several parameters at
the same time, making for more objective and informative decoder comparisons.

