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Section 1: Simulation Methods for Figure 1 

The simulation shown in Figure 1 in the main text is meant to give a simple demonstration of how 
standard decoder calibration methods, which are based on minimizing offline prediction error, can fail 
to yield decoder dynamics that maximize online performance.  
 
For all simulated blocks, we simulated 40 neural features with Gaussian noise that were linearly tuned 
to a linear control policy at each time step. That is, the 40 x 1 neural feature vector ft at each time step t 
was given by the equation 
 

𝑓" = 𝐸(𝑔" − 𝑝") + 𝜀" , 
 
where E is a 40 x 2 matrix of tuning coefficients that determined the preferred direction and depth of 
modulation of each feature, gt is a 2 x 1 target position vector, pt is a 2 x 1 cursor position vector, and 
𝜀"~𝑁(0, Σ) is a 40 x 1 Gaussian noise vector. The preferred directions contained E were uniformly 
distributed and their depth of modulation was set equal to 1. The covariance matrix Σ was a diagonal 
matrix with all diagonal entries equal to 2. The target position, gt, was a distance of 1 away from the 
center of the workspace. 
 
While we could have used the PLM to simulate a more realistic control policy, neural noise and visual 
feedback delay, we chose this simple model instead to show that these extra factors are not necessary 
for causing an offline vs. online performance discrepancy.  
 
The simulated blocks were generated as follows. First, we simulated an open-loop dataset that consisted 
of 80 minimum-jerk [2], center-out trajectories that lasted 750 ms each. A velocity Kalman filter was 
calibrated using this dataset according to the methods in Gilja et al. 2012 [3]. Then, this initial decoder 
was used in closed-loop to generate the first closed-loop block of center-out data (“OL Cal Block” in Fig. 
1) consisting of 40 movements. We then proceeded to simulate a series of closed-loop blocks, with each 
one using a decoder that was calibrated on data from the previous closed-loop block (“ReCal 1-5” in Fig. 
1) with 40 movements each. In the “small target” task, the target radius was equal to 1/16; in the “large 
target” task, the target radius was equal to 4/16. The dwell time was 1 second in all tasks. To estimate 
the user’s intended velocity during both the open-loop and closed-loop blocks, we started with the 
original velocity vectors and then rotated them to point towards the target and zeroed them when the 
cursor was overlapping the target (following the ReFIT calibration method [3]). To generate the 
performance surfaces, 40 movements were simulated for each parameter pair.  
 
In Supplemental Figure 1, we show that a failure to optimize online performance is not due to a 
mismatch between the user’s control policy and the assumptions made by ReFIT; even if 𝑔" − 𝑝" is taken 
as the user’s “intended velocity”, the decoder is still suboptimal. 
 
[1] F. R. Willett et al., “Feedback control policies employed by people using intracortical brain–
computer interfaces,” J. Neural Eng., vol. 14, no. 1, p. 016001, Feb. 2017. 

[2] T. Flash and N. Hogan, “The coordination of arm movements: an experimentally confirmed 
mathematical model,” J. Neurosci., vol. 5, no. 7, pp. 1688–1703, 1985. 

[3] V. Gilja et al., “A high-performance neural prosthesis enabled by control algorithm design,” Nat. 
Neurosci., vol. 15, no. 12, pp. 1752–1757, Dec. 2012. 
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Section 2: Additional Simulations for Figure 1 

 

 
Supplemental Figure 1. Identical to Figure 1 in the main text, except that the user’s true intent is used to 
calibrate the decoder (see Supplemental Section 2 for more details). The results demonstrate that a 
failure to optimize online performance is not due to a mismatch between the user’s control policy and 
the assumptions made by ReFIT. Even though there is a perfect match between what the user’s neural 
activity is encoding and what is assumed during decoder calibration, the decoder takes on suboptimal 
gain and smoothing parameters (even when allowed to recalibrate). Here, unlike in the case of ReFIT, 
continued recalibration does not change the parameters very much (they appear to jitter around a fixed 
point that is suboptimal). 
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Section 3: Sensitivity of the Model to Training Data 

 

 
Supplemental Figure 2. To assess the PLM’s sensitivity to the type of block it was trained on, we 
replicated the summary analyses from Figure 5 for three different training conditions: either the PLM 
was fit to the lowest gain block for each session, the median gain block, or the highest gain block. This 
tests the PLM’s performance when trained under three very different regimes of cursor movement 
dynamics. (A) The analysis in Figure 5B is replicated for each type of block. Overall, good quality 
predictions are achieved for each of the three fitting conditions. Each circle on each panel represents 
the average performance for one block. In the top left corner of each panel, the fraction of variance 
accounted for by the model’s predictions (FVAF) is shown in addition to the mean absolute error of the 
predictions (MAE). To assess the model’s bias and statistical significance, a linear regression was 
performed for each panel that regressed the model’s predictions against the observed data. The 
regression coefficients are shown in the bottom right corner and indicate low bias (the slopes are near 
one and the intercepts are near zero). The regression line is plotted as a dashed black line and the unity 
line as a solid black line for comparison. Finally, the p-value for the slope coefficient is reported. (B) The 
FVAF (fraction of variance accounted for) and MAE (mean absolute error) are summarized for each 
metric; error bars indicate 95% confidence intervals (computed by bootstrap resampling the blocks that 
were included). No large differences in performance are apparent.   
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Section 4: Dataset Details 

 
Supplemental Table 1. A list of all gain and smoothing sessions included in the study.  
 
  

Participant Session Type Date (& 
Post-
Implant 
Day) 

# of 
Blocks 

Dwell 
Time (s) 

Target 
Distance / 
(Target + 
Cursor 
Diameter) 

Max 
Movem
ent 
Time 

Task 
Visuali
zation 

Motor Cue 

T6 Mixed 
Gain/Smooth 

2014.11.05 
(699) 

2 1 3.27 10 Cursor Imagined Index 
+ Thumb 

T6 Mixed Gain 
/Smooth 

2014.11.10 
(704) 

8 1 3.27 10 Cursor Imagined Index 
+ Thumb 

T6 Mixed Gain 
/Smooth 

2014.11.19 
(713) 

8 1 3.27 10 Cursor Imagined Index 
+ Thumb 

T6 Gain 2014.12.10 
(734) 

8 0.15 3.27 10 Cursor Imagined Index 
+ Thumb 

T6 Gain 2015.01.14 
(769) 

8 0.15 3.27 10 Cursor Imagined Index 
+ Thumb 

T6 Smoothing 2015.01.21 
(776) 

8 1 3.27 10 Cursor Imagined Index 
+ Thumb 

T6 Smoothing 2015.02.02 
(788) 

8 1 3.27 10 Cursor Imagined Index 
+ Thumb 

T7 Mixed Gain 
/Smooth 

2014.09.08 
(406) 

10 0.5 or 1 3.27 8.5 or 
10.5 

Cursor Attempted 
Mouse 

T7 Mixed Gain 
/Smooth 

2014.09.11 
(409) 

10 1 3.27 10.5 Cursor Attempted 
Mouse 

T8 Mixed Gain 
/Smooth 

2015.01.26 
(57) 

7 0.5 1.96 8 Cursor 
+ Arm 

Attempted 
Arm  

T8 Mixed 
Gain/Smooth 

2015.01.27 
(58) 

10 0.5 1.96 8 Cursor 
+ Arm 

Attempted 
Arm 

T8 Gain 2015.03.24 
(114) 

15 0.15 1.96 8 Cursor 
+ Arm 

Attempted 
Arm 

T8 Smoothing 2015.06.30 
(212) 

12 0.5 1.96 8 Cursor 
+ Arm 

Attempted 
Arm 

T8 Smoothing 2016.12.22 
(387) 

8 0.5  1.96 8 Cursor 
+ Arm 

Attempted 
Arm 

T8 Smoothing 2016.02.01 
(428) 

10 0.5 1.96 8 Cursor 
+ Arm 

Attempted 
Arm 



 6 

 
Supplemental Table 2. A list of all random target sessions included in the study. Cursor gains and 
effective target radii are reported using a unit of distance equal to the width of the square workspace 
(WW or “workspace width”). Effective target radii are equal to the cursor radius plus the target radius 
and define the region where the center of the cursor must dwell to acquire the target. 
  

Participant Date (& 
Post-
Implant 
Day) 

Cursor 
Gains 
(WW/s) 

# of 
blocks 

Cursor 
Smoothi
ng Alpha 

Dwell 
Times 
(s) 

Effective 
Target 
Radii 
(WW) 

Task 
Visuali
zation 

Motor Cue 

T6 2015.03.
06 
(820) 

0.52, 1.04 5 per 
gain 

0.92 0.75 0.07, 0.10, 
0.13 

Cursor Imagined 
Index + 
Thumb 

T6 2015.03.
16 
(830) 

1.09 10 0.92 0.75 0.07, 0.10, 
0.13 

Cursor Imagined 
Index + 
Thumb 

T6 2015.03.
23 
(837) 

3.06 6 0.92 0.15 0.07, 0.10, 
0.13 

Cursor Imagined 
Index + 
Thumb 

T8 2015.03.
11 
(101) 

0.43 15 0.96 0.5 0.11, 0.14, 
0.17 

Cursor 
+ Arm 

Attempted 
Arm 

T8 2015.03.
17 
(107) 

0.74 16 0.94 0.75 0.10, 0.12, 
0.16 

Cursor 
+ Arm 

Attempted 
Arm 

T8 2015.05.
12 
(163) 

1.2 8 0.94 0.75 0.10, 0.12, 
0.16 

Cursor 
+ Arm 

Attempted 
Arm 

T8 2015.05.
28 
(179) 

0.57 4 0.94 0.75 0.10, 0.12, 
0.16 

Cursor 
+ Arm 

Attempted 
Arm 

T8 2015.08.
31 
(274) 

0.40, 0.64 7 per 
gain 

0.94 0.75 0.10, 0.12, 
0.16 

Cursor 
+ Arm 

Attempted 
Arm 

T8 2015.11.
19 
(354) 

0.26 8 0.96 0.75 0.10, 0.12, 
0.16 

Cursor 
+ Arm 

Attempted 
Arm 
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Supplemental Table 3. Parameters for the four sessions that measured the benefit of using a nonlinear 
speed transform function. 
 
  

Participant Date (& 
Post-
Implant 
Day) 

# of 
Blocks 

Dwell 
Time (s) 

Target 
Distance / 
(Target + 
Cursor 
Diameter) 

Max 
Movem
ent 
Time 

Task 
Visuali
zation 

Motor Cue 

T8 2016.06.29 
(577) 

10 4  4 12 Cursor 
+ Arm 

Attempted 
Arm 

T8 2016.07.06 
(584) 

8 4 4 12 Cursor 
+ Arm 

Attempted 
Arm 

T5 2017.09.25 
(404) 

5 1 5 10 4D 
Cursor 

Attempted 
Arm 

T5 2017.10.04 
(413) 

6 1 5 10 4D 
Cursor 

Attempted 
Arm 
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Section 5: Within-session Predictions 

 
Supplemental Figure 3. The data shown in Figure 3 is broken apart by individual session, where each 
four-panel row shows data from a single session. Red circles indicate blocks on which the PLM was fit. 
The results indicate that the PLM is successful at accounting for the within-session variability in 
performance caused by the gain and smoothing parameters alone. The across-session variability in 
performance is caused not only by different gain and smoothing parameters, but also by different levels 
of decoding noise occurring on different days and by each participant’s different overall levels of 
decoding noise, different feedback delays, and/or different control policies. 
 
An alternative version of this figure with zoomed-in axes for each panel is provided below in 
Supplemental Figure 4.  
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Supplemental Figure 4. An alternative version of Supplemental Figure 3 with zoomed-in axes for each 
panel to show more detail (but note that each panel has different axes).  
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Supplemental Figure 5. The ability of the PLM to predict how online performance will change as a 
function of target radius and distance, broken apart by each random target session and each gain and 
smoothing setting tested within that session. Each three-panel row plots data from a single session and 
gain/smoothing setting. Data from each target radius and target distance pair is plotted as a single circle 
(3 radii and 4 distances make for 12 pairs per panel).  
 
For the dial-in time and movement time panels, the circles are colored by target radius (red = small, 
green = medium, blue = large). For the translation time panel, the circles are colored by target distance 
(dark = close, light = far). For each row, the dwell time (D), gain (β), and smoothing setting (α) are 
indicated. 
 
An alternative version of this figure with zoomed-in axes for each panel is provided below in 
Supplemental Figure 6.  
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Supplemental Figure 6. An alternative version of Supplemental Figure 5 with zoomed-in axes for each 
panel to show more detail (but note that each panel has different axes). 
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Section 6: Joint Optimization of Gain, Smoothing and an Exponential Speed Transform 

Here we argue that adding an exponential nonlinearity by itself, without optimizing its parameters in 
concert with decoder gain and smoothing, my not lead to any performance improvement. Thus, 
although the idea of an exponential nonlinearity could have been easily conceived without a model like 
the PLM, there would be no straightforward way to optimize it or accurately measure its performance 
improvement relative to an optimized linear decoder. We illustrate this point with a simulation 
experiment. 

For this experiment, we first fit the PLM parameters to a block of T8 data. Then, we simulated 
performance when using an exponential nonlinearity for a difficult task with a dwell time of 2 seconds 
and an effective target radius (target plus cursor radius) equal to 1/10 of the target distance. We 
performed separate gain and smoothing parameter optimizations for each exponent value (16 different 
exponent values evenly spaced from 1 to 4). The results (Supplemental Figure 7) show that there is an 
optimal exponent at 2.6 that decreases the total movement time from 5.8 seconds to 4.8 seconds. 
Importantly, the optimal gain and smoothing values depend on the exponent, indicating that this is a 
difficult joint optimization problem. We can’t necessarily expect good performance simply by taking 
good gain and smoothing values for a linear decoder (exponent = 1) and then simply increasing the 
exponent. Panel B illustrates this point explicitly. In panel B, simulated movement time is shown when 
taking the optimal gain and smoothing values for a linear decoder (exponent = 1) and then increasing 
the exponent. Performance only improves slightly for small exponents (<1.2) and at 2.6 actually 
decreases performance substantially.  

 

Supplemental Figure 7. Optimal gain and smoothing parameters change as a function of the exponent of an 
exponential speed transform function (as used in Fig. 8E-H). (A) A separate gain and smoothing optimization was 
completed for each exponent value; as the exponent increases, the optimal gain increases and the optimal 
smoothing value decreases. The optimal gain and smoothing values for the best exponent (2.6) are quite different 
from those of a linear decoder (exponent = 1). Shaded regions indicate 95% confidence intervals (30 separate 
optimizations were performed). (B) Combining an exponential nonlinearity with gain and smoothing values that 
were optimal for the linear case (exponent = 1) does not lead to the same performance improvement. In fact, 
performance is worse when the exponent is 2.6.  

Why does the optimal gain increase as a function of the exponent? The exponential nonlinearity causes 
speeds less than 1 to become slower; thus, the gain must be increased to compensate. But how much 
should the gain increase? This question is difficult to answer in a quantitatively precise way without 
using a model. 

It may be helpful to consider what it might have taken to perform the experiment in Figure 8 without 
the PLM. First, gain and smoothing values would have had to been swept through trial and error to find 
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good values for the linear decoder. Then, for several different candidate exponents, more gain and 
smoothing parameter sweeps would have had to have been performed. This could easily consume 
weeks of valuable experimental time. Moreover, the results may not have been accurate, since decoding 
noise can vary from day to day, making optimal parameters on one day potentially suboptimal on 
another day. Finally, how could we confirm that the experimenter had swept enough values to ensure a 
fair comparison? In many studies, these factors are not considered and performance for only a single set 
of decoder parameters are reported, making it unclear how the results would change if the parameters 
were changed. The PLM provides a fast and objective way to jointly optimize over several parameters at 
the same time, making for more objective and informative decoder comparisons.  

 

 

 

 


