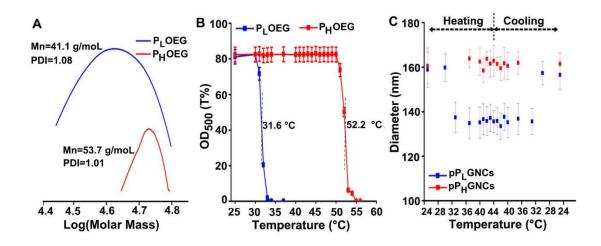

pH- and photothermal-driven multistage delivery nanoplatform for overcoming cancer drug resistance

Wenjing Huang^{1, ‡}, Hao Zhao^{1, ‡}, Jiangshan Wan¹, Yang Zhou¹, Qingbo Xu¹, Yanbing Zhao^{1,2,*}, Xiangliang Yang^{1,2,*}, Lu Gan^{1,2,*}


- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China

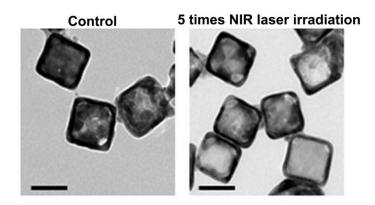
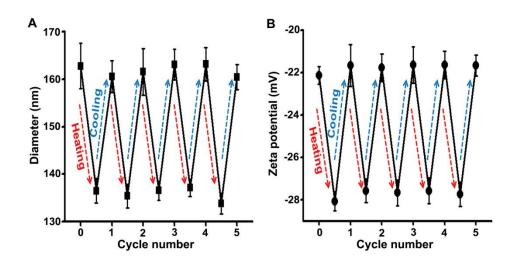
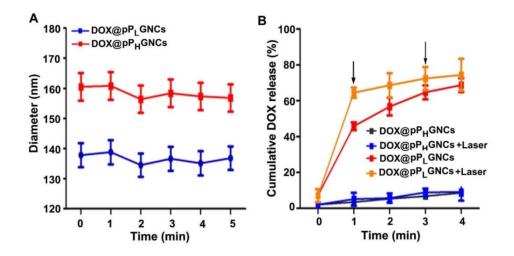
[#]These authors contributed equally to this work.

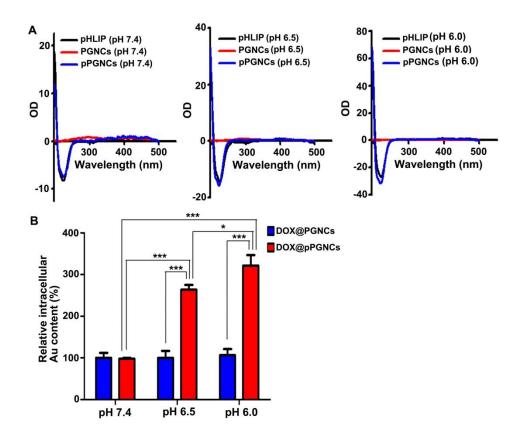
*Corresponding author: E-mail: lugan@mail.hust.edu.cn (L. Gan), zhaoyb@mail.hust.edu.cn (Y. Zhao), yangxl@mail.hust.edu.cn (X. Yang)

Figure S1. Identification of PMEO₂MA₈₀-OEGMA₁₂₀, PMEO₂MA₁₂₀-OEGMA₈₀ and PMEO₂MA₁₆₀-OEGMA₄₀. (A) Chemical structure of PMEO₂MA₈₀-OEGMA₁₂₀, PMEO₂MA₁₂₀-OEGMA₈₀ and PMEO₂MA₁₆₀-OEGMA₄₀. (B) ¹H-NMR spectra of PMEO₂MA₈₀-OEGMA₁₂₀, PMEO₂MA₁₂₀-OEGMA₈₀ and PMEO₂MA₁₆₀-OEGMA₄₀.

Figure S2. Characterization of P_LOEG and P_HOEG . (A) GPC spectra of P_LOEG and P_HOEG . (B) Transmittance of P_LOEG and P_HOEG at 500 nm after incubation in PBS at the indicated temperatures for 5 min. (C) Diameter change of P_LOEG and P_HOEG incubating in PBS at the different temperatures. The data are presented as the mean \pm SD (n = 3).

Figure S3. UV-Vis-NIR spectra of GNCs, pGNCs, pPGNCs, DOX@PGNCs, DOX@PGNCs and DOX@pPGNCs undergoing five cycles of 808 nm laser irradiation $(0.7 \text{ W/cm}^2, 10 \text{ min})$ and then cooling to room temperature (10 min).


Figure S4. TEM images of DOX@pPGNCs after undergoing five cycles of 808 nm laser irradiation (0.7 W/cm^2 , 10 min) and then cooling to room temperature (10 min). Scale bar: 50 nm.

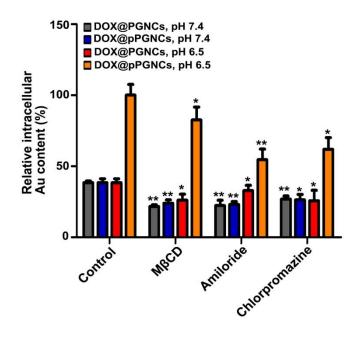

Figure S5. Change in size (A) and zeta potential (B) of DOX@pPGNCs undergoing five cycles of 808 nm laser irradiation (0.7 W/cm², 10 min) and then cooling to room temperature (10 min).

Figure S6. Characterization of DOX@pPLOEG and DOX@pPHOEG upon NIR laser irradiation. (A) Diameter of DOX@pPLOEG and DOX@pPHOEG upon 808 nm laser irradiation (0.7 W/cm²) for different time intervals. (B) *In vitro* DOX release profiles from DOX@pPLOEG and DOX@pPHOEG in PBS with or without 808 nm laser irradiation (0.7 W/cm²) for 5 min. Black arrows indicate the irradiation points. The data are presented as the mean \pm SD (n = 3).

Figure S7. Conformation and cellular internalization of pPGNCs at different pH values. (A) CD spectra of pHLIP, PGNCs and pPGNCs at different pH values. (B) Cellular uptake of DOX@PGNCs and DOX@pPGNCs by MCF-7/ADR cells at different pH values. The data are presented as the mean \pm SD (n = 3). **P*<0.05, ****P*<0.001.

Figure S8. Cellular internalization of DOX@PGNCs and DOX@pPGNCs in MCF-7/ADR cells pretreated with 5 mM M β CD, 10 µg/mL chlorpromazine or 2 mM amiloride for 1 h, followed by treatment with DOX@PGNCs or DOX@pPGNCs at Au concentration of 10 µg/mL at pH 7.4 or 6.5 for 12 h. The data are presented as the mean \pm SD (n = 3). **P*<0.05, ***P*<0.001 compared with the corresponding control group.

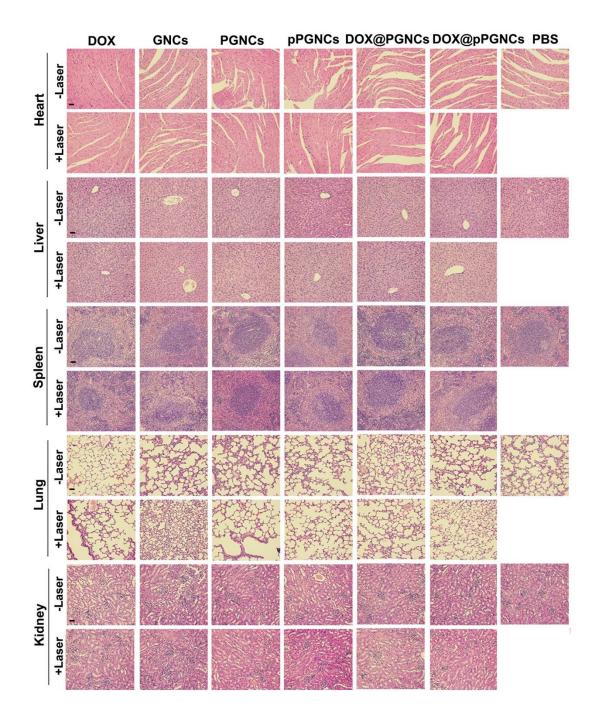


Figure S9. Histological observation of major organs, including heart, liver, spleen, lung and kidney after treatment by H&E staining. Scale bar is $200 \ \mu m$.

DMEO M			ⁱ , <i>k</i> Da		MEO ₂ MA	A/OEGMA ^b
	PMEO ₂ MA _x -OEGMA _{200-x}		<i>M</i> _n (meas)	PDI^{a}	R(theo)	<i>R</i> (meas)
P _L OEG	x=160	42.6	41.1	1.08	0.67	0.67
POEG	x=120	47.0	48.8	1.06	1.50	1.54
P _H OEG	x=80	51.5	53.7	1.01	4.00	3.95

Table S1. Molecular weight and composition characterization of the $PMEO_2MA_x$ -OEGMA200-x polymers

^a M_n (theo) represents the theoretic values of number-average molecular weight (M_n), which was calculated according to the feeding ratio between monomer and initiator. M_n (meas) represents the measured values of M*n* with the polydispersitivity index (PDI) measured by GPC.

^b The molar ratio of both monomers (MEO₂MA and OEGMA). R(theo) represents the feeding ratio of MEO₂MA and OEGMA, and R(meas) represents the measured value of MEO₂MA and OEGMA amount in polymers by ¹H-NMR.

Sample	α-helix	β-sheet	β-turn	random coil
pHLIP (pH 7.4)	8.9%	65.9%	6.5%	18.7%
pHLIP (pH 6.5)	26.9%	34.1%	20.2%	18.8%
pHLIP (pH 6.0)	51.2%	20.6%	22.9%	5.3%
pPGNCs (pH 7.4)	13.0%	56.9%	10.8%	19.3%
pPGNCs (pH 6.5)	27.0%	42.7%	16.0%	14.4%
pPGNCs (pH 6.0)	52.8%	10.8%	22.7%	13.7%

Table S2. Secondary conformation of pHLIP and pPGNCs at different pH values byCD analysis