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Supporting Material 
 
Formulas and nomenclatures 
 

• TP ~ True positive 
• FP ~ False positive 
• FN ~ False negative 
• TN ~ True negative 
• Precision = !"

!"#$"
 

• Recall (sensitivity) = !"
!"#$%

 

• FDR (False discovery rate) = 1 – precision = $"
!"#$"

 

• F-score (F1) = &!"
&!"#$"#$%

 
 

Sample information 
In total, 1197 WES samples were used in this study (see Supp. Table S1-S2 for 
sample details). 987 were used for ABB model training. For subsequent validation, 
we left 200 germline samples ‘untouched’ during training, that were randomly chosen 
from normal tissue exomes of 450 Chronic Lymphocytic Leukemia patients. We 
chose CLL cases for validation because the availability of WES data for tumor and 
normal tissue allowed us to validate the power of ABB as a quality filter for variant 
calls for both germline and somatic call sets. CLL tumor samples were obtained from 
fresh or cryopreserved mononuclear cells. To purify the fraction of cells affected by 
CLL (or MBL in a few cases, a precursor disease of CLL), samples were incubated 
with a cocktail of magnetically labeled antibodies directed against T cells, natural 
killer cells, monocytes and granulocytes (CD2, CD3, CD11b, CD14, CD15 and 
CD56), adjusted to the percentage of each contaminating population (Puente et al., 
2015 for more details). Hence, purity of both tumor and normal samples is very high 
(>=99%). 
 
For Sanger validation, we chose 10 new (germline) samples not included in training 
or validation before, and for which we had ample amounts of DNA available.  
 
Reducing biases between capture kits 
The main differences found between capture methods are the regions that are 
consistently well covered. Each kit version had specific sets of regions which are 
supposed to be covered by probes according to vendor specifications, but recurrently 
show no or low coverage. This issue led to consistent biases in genotype call rates 
between enrichment kits in these regions, resulting in a strong clustering of samples 
by kit version in SNP-based PCA analysis (data not shown). However, we observed 
that this bias almost completely disappeared when we focused only on regions that 
had at least 10x average coverage in any kit version (Supp. Fig. 1). In order to 
maximize the regions for which we could calculate ABB, we did not simply use the 
region intersection of all kits, but for each position of the exome determined all kit 
versions that show consistently good coverage (average depth >= 10x). Subsequently, 
all statistics required for ABB modeling at the focal position were obtained from the 
subset of kits reaching the minimum quality threshold. Hence, for some genomic 
regions the ABB model has been trained by less than 987 samples.  
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Variant prediction and Sanger validation 
Germline variants used for validating the power of ABB as a quality filter were called 
using GATK-HC with VQSR and quality filtered using the parameters: 
 
1. Genotype quality score with a threshold of >= 20 at individual sites 
2. Read depth >= 10 at individual sites 
3. Alternative allele frequency at individual sites: >= 0.2.  
4. Call rate across the whole cohort: >=80%. 
5. Average alternative allele frequency across all individuals showing the 

variant: >=0.25. 
6. Phred-scaled p-value using Fisher's exact test to detect strand bias (10% worst 

removed)  
7. Variant Quality Score Recalibration: VQRS tranche threshold of 99.9%   

 
Primers for PCR amplification and sequencing for each variant were designed with 
Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/){1} and confirmed for specificity with 
Blat (https://genome.ucsc.edu/). Fragments were amplified by PCR followed by 
Sanger sequencing reaction on an ABI3730xl machine using BigDye (Applied 
Biosystems). Sanger sequences were analyzed using the CLC genomics workbench 
(Qiagen) software. 
 
 
ABB compared to other quality measures 
ABB can be used as a genotype-callability filter on top of other filters such as GATK 
VQSR, Fisher strand bias, genotype quality (GQ), Hardy-Weinberg Equilibrium 
(HWE), GIAB mappability scores etc. In order to validate the power of ABB as 
variant filter we used a variant call set to which all commonly used filter criteria had 
already been applied (see paragraph above). 
 
High callable sites provided by GIAB  
One exception is the GIAB high confidence regions (HCR) set provided by Genome 
in a Bottle (GIAB v3.3.2), which we did not apply. We therefore compared the 
performance of ABB and GIAB-HCR on identification of false positive variant calls. 
 
GIAB-HCR provides a list of callable sites across the whole genome. Considering all 
exons of the autosomes (79,660,917bp included in the ABB model), GIAB classifies 
75,442,680 sites as callable, leaving 4,218,237 sites as ‘un-callable’. In comparison 
ABB classifies 46,396 sites as low or very low confidence (ABB >= 0.75), which we 
are for the sake of comparison to GIAB considering as ‘un-callable’ from here on.  
 
Of the 46,396 sites labeled un-callable by ABB, 52% are classified as callable by 
GIAB, demonstrating that the two methods are not redundant and that systematic 
errors identified by ABB are not always caught by the GIAB model (see Sup. Fig. 
S3). We wondered if the 24,863 sites labeled un-callable by ABB but not by GIAB 
actually contain false positive variant calls. To this end, we interrogated the 40 false 
positive SNV calls of GATK/VQSR we confirmed as false by Sanger sequencing (out 
of the 209 sites evaluated by Sanger in total). Supp. Table 8 shows the classification 
of GIAB compared to the classification of ABB (split into the 4 ABB confidence 
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regions used throughout our study, i.e. ABB high, medium, low and very low 
confidence). 9 out of 40 (22.5%) false positive SNVs that were classified as callable 
positions by GIAB (i.e. GIAB fails to filter these false positive SNVs) were correctly 
identified as low or very low confidence by ABB. On the other hand, two false 
positives (5%) were correctly classified by GIAB, but not by ABB. Note that ABB 
identified more false positives (30 vs. 23 out of 40), while filtering substantially less 
sites across the whole exome than GIAB (40kb vs. 4MB).  
 
Genotype quality (GQ) 
Although we filtered calls with genotype quality below 20 (1 % error rate), we next 
interrogated if for the remaining variants, ABB correlated negatively with GQ, in 
order to check if the two filter scores were redundant. We split this analysis in two 
parts: (1) analysis of GQ and ABB in 10,000 SNPs randomly subsampled from 10 
individuals analyzed in this project; and (2), correlation of GQ and ABB in 209 calls 
evaluated by Sanger sequencing. We did not find a correlation between GQ and ABB 
in the 10,000 SNPs randomly selected, showing an R2 of 0.0022 (Supp. Fig. S4A). 
Additionally, we observed that ABB biased (ABB >= 0.9) and non-biased (ABB < 
0.75) sites showed the same distribution of GQs, with the vast majority of variants 
reported by GATK having GQ >= 99 (Supp. Fig. S4B-C). 
 
Secondly, no-correlation between ABB and GQ was observed for 209 evaluated by 
Sanger sequencing (R2 = -0.0045, Supp. Fig. S5A), supporting our findings for 
random SNPs. Moreover, the distribution of the GQ values in true positive and false 
positive calls was highly similar, again with most variants having GQ >= 99 (Supp. 
Fig. S5B-C). Our results indicate that GQ cannot be used to identify the type of 
systematic errors that the ABB model has been trained to find. (Supp. Fig. S5B-C). 
 
Hardy-Weinberg Equilibrium (HWE) 
HWE is a powerful variant filter for population-scale studies and frequent variants. 
However, HWE analysis requires large cohorts to gain the statistical power necessary 
to reliably filter false variant calls. Moreover, its power is decreased with rare variants 
with AF < 1% (Graffelman & Moreno, 2013; Huang et al., 2016). Considering these 
limitations, HWE cannot be applied in single case or family diagnostics, and is not 
suitable for de novo germline calls or somatic mutations detected by tumor-normal 
paired analysis. Furthermore, HWE has limited applicability for RVAS tests, as these 
tests by definition rely on rare and ultra-rare variants. 
 
Nonetheless, we investigated the correlation of ABB and HWE filters for non-rare 
variants in a large cohort (i.e. in a suitable setting for HWE). To this end, we 
measured HWE in 9227 variant sites with a MAF > 1 % within a cohort of 893 
samples from this project. We applied the HWE exact test and marked SNPs with p-
value < 0.01 (Bonferroni corrected) as HWE biased. The Venn diagram (Supp. Fig. 
S6) shows a partial overlap of 30% of SNPs labeled as biased by ABB and/or HWE.  
 
We next compared HWE and ABB on the 209 variants evaluated by Sanger using the 
same parameters as described above for all common variants. The HWE filter 
correctly removed 14 out of 40 false positive calls (35 %), while ABB labeled 21 out 
of 40 variants (52.5 %) as very-low confident sites (ABB >= 0.9) and 30 out of 40 (75 
%) as low confident sites (ABB >= 0.75) (see Supp. Table S9). Although we again 
observed around 30 % of overlap between HWE and ABB classifications, HWE could 
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only detect one false call that slipped through the ABB filter, while ABB identified up 
to 17 FP calls (42.5 % of the total) that passed the HWE filter. On the other hand, 
HWE removed 27 out of the 134 true positive SNPs (~ 20.15 % of TP variants), while 
ABB removed 21 TP SNPs (~ 15.67 %) when using ABB >= 0.9 and 41 (30.60 %) 
when using ABB >= 0.75 as cutoff (Supp. Table S10). 
 
 
Rare Variant Association Study (RVAS) for Chronic Lymphocytic Leukemia 
 
Pre-filtration. To filter out potential false positive variant calls from case and control 
samples we used five statistical annotation scores at individual variant sites and/or 
across individuals: 1) genotype quality score with a threshold of 20 at individual site 
and a minimum average across individuals of 25, 2) minimum of 10 reads for read 
depth, 3) minimum of 80% call rate across case and control cohorts, 4) alternative 
allele frequency with thresholds at individual variant sites of 0.2 and minimum 
average across individuals of 0.25, and 5) Phred-scaled p-value using Fisher's exact 
test to detect strand bias of 200 and removed the worst 10%. In addition, we applied 
the Variant Quality Score Recalibration (VQRS) included in the GATK framework. 
VQSR uses machine-learning algorithms to learn from each dataset the annotation 
profiles of high confident variants and low confident variants, integrating information 
from multiple dimensions 
(https://gatkforums.broadinstitute.org/gatk/discussion/39/variant-quality-score-
recalibration-vqsr). Finally, we removed variants that were outside the intersection of 
all exome enrichment kits (Agilent SureSelect 50Mb and 71Mb and Nimblegen 
SeqEz v3), or in regions that were recurrently under-covered in at least one kit. 
 
Variant annotation. All variants were annotated using ANNOVAR. We removed 
variants not falling in exonic or splicing sites and variants overlapping segmental 
duplications (segdup identity score >= 90%). Furthermore, we annotated the 
functional impact of variants using Combined Annotation Dependent Depletion 
(CADD) score, which is a phred-like score ranging from 1 to 99, and removed likely 
non-damaging variants using a threshold of CADD<10. We further removed variants 
with minor allele frequency (MAF) greater than 0.5% in 1000 Genome Project (1000 
Genomes Project Consortium, 2010) or in Exome Variant Server (EVS) ((National 
Heart, Lung, and Blood Institute Exome Sequencing Project, found at 
http://evs.gs.washington.edu/EVS/) databases.  We also calculated the MAF for each 
variant in our local population using our “control” sample group (individuals 
belonging to different diseases but cancer-free, including Obsessive Compulsive 
Disorder, Intellectual Disability, Alopecia Areata, Fibromyalgia, Parkinson, Essential 
Tremor, Cystic Fibrosis, Spinocerebellar ataxia, Neuromyelitis Optica, Stroke, 
Ataxia, ChiariMalformation, Myasthenia, Progressive Encephalopathy, 
Immunodeficiency, and Vitiligo) and removed variants with local MAF>0.5%. 

 
Sample-based QC. We used two different metrics to detect extreme outlier samples. 
We first removed samples with anomalous variant numbers, by discarding those 
outside the range (25th percentile - 3*interquartile range) and (75th percentile + 
3*interquatile range). We further performed principal component analysis using 
synonymous variants across the whole exome that are not in linkage disequilibrium 
(with r2<0.2) and with a minor allele frequency greater than 1% and removed outliers 
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identified in the first two components. Finally, we obtained 437 CLL cases, 780 
controls (non-cancer patients) and 127.298 variants, which passed all filter criteria.  

 
Rare Variant Association Study. To infer candidate cancer risk genes in the CLL 
dataset we performed SKAT-O, Burden, MiST and KBAC association tests. SKAT-O 
and Burden tests are implemented in the R package SKAT 
(https://www.hsph.harvard.edu/skat/download/) version 1.3.0.  The Null model for 
both tests was computed using the SKAT_Null_Model function with output set to 
dichotomous outcome (out_type= “D”) and no sample adjustment 
(Adjustment=FALSE). For the SKAT-O we used the SKATBinary function with 
default parameters except for “method” that was set to “optimal.adj” (equivalent to 
SKAT-O method). As weights, we used Minor allele frequencies (MAF) of variants 
transformed with Get_Logistic_Weights. The burden test was performed using the 
same function (SKATBinary) and parameters, except for ‘method’, which was set to 
“Burden”.  To perform the MiST test, we used the standalone R package (version 1) 
available at CRAN repository: cran.r-project.org/web/packages/MiST/index.html. 
Specifically, we used the function logit.weight.test with all default parameters. For 
KBAC we used the R implementation (tigerwang.org/software/kbac) and the included 
function KbacTest with parameters alpha=2.5e-06, num.permutation=1000000, and 
with all other parameters set to default values. 
 
 
Source of bias in CTDSP2 and CDC27 analysis 
A large majority of chronic lymphocytic leukaemia patients harboured a variant in the 
gene CTDSP2, but most of these variants showed a significant deviation of AB (Supp. 
Fig. S7). In order to find the reason for this deviated AB and the observed false 
association between CLL and CTDSP2, we divided the controls into two groups 
depending on the capture method used (Agilent SureSelect or Nimblegen SeqEz). As 
shown in Supp. Fig. 8, control samples sequenced using any of the Agilent SureSelect 
kits harboured significantly more variants with deviating AB in CTDSP2 than 
samples sequenced using Nimblegen SeqEz enrichment (P-value = 0.01307 with 
Pearson's chi-squared test, focussing only on the intersected regions of all the kits). 
Therefore, we hypothesise that an issue with some capture probes of the Agilent 
SureSelect kits is causing the bias. Hence, a false association of CTDSP2 and CLL 
was obtained because all CLL samples were processed using Agilent SureSelect, 
while controls were mixed. ABB was able to identify these biased positions based on 
the recurrent observation of deviated AB in a subset of samples. 
  
Performing the same analysis for CDC27, we did not observe any association between 
controls carrying vs. not carrying variants in this gene and the capture method (P-
value = 1 and Supp. Fig. 10). Hence, issues with hybridization oligos cannot explain 
recurrent observation of variants with deviated AB. Literature search revealed that 
biases in the distribution of SNV allele balances in CDC27 could be explained by 
retroduplications affecting a subset of exons (Abyzov et al., 2013; Jia et al., 2012). 
Therefore, we performed coverage analysis of the exons/probes where we observed 
low and very low confidence ABB scores and recurrently deviated AB. In order to 
avoid enrichment-kit specific biases in coverage we performed this analysis in Agilent 
71Mb samples only. We calculated coverage for 11 hybridization probes of interest 
(i.e. probes harbouring weird SNPs) using coordinates provided by the manufacturer. 
Additionally, we performed library size and GC-bias correction. Finally, we separated 
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these samples into 2 groups: samples with deviated AB as detected by ABB, and ones 
with no significant deviation. We compared normalised coverage between groups for 
each probe separately using Wilcoxon test and observed two regions differently 
covered (q-value = 0.0165 after FDR correction, see Supp. Fig. S11). In both probes 
carriers of variants with deviated AB had a median of ~2.5 fold coverage compared to 
~2 fold in non-carriers, indicating an extra retrotransposon duplication (increased 
copy-number), which might harbour a base change compared to the source region. As 
this extra copy is not annotated in the reference genome reads (including potentially 
divergent bases) are mapping to the source region, creating abnormal allele balance 
patterns. This example demonstrates that ABB is able to identify systematic errors 
induced by un-annotated duplications (or more generally un-annotated repeat copies). 
  
How to use and interpret ABB 
 
As ABB scores are probabilities scaling between 0 and 1, they can be flexibly used in 
various approaches, without the need to apply scaling functions or hard thresholds (as 
for instance methods returning p-values such as HWE would require). If a hard 
threshold is desired we suggest ABB >= 0.9 (relaxed filter, only very likely 
systematic errors are removed) or ABB >=0.75 (strict filter removing likely and very 
likely systematic errors, at the cost of more true positives being removed). 
 
However, we suggest using a combination of quality filters, including for instance 
GQ, FS, HWE, GIAB map-ability and/or specific filters for somatic or de novo 
mutation analysis and ABB. For large cohorts, we additionally use of VQSR and 
genotype callability rate of focal sites across the cohort as features. In combination 
with other filter methods we suggest to use an ABB threshold of >= 0.9 for filtering. 
If variant call precision is a priority (e.g. for detecting de novo or somatic mutation, 
and for RVAS) we suggest to use ABB >=0.75 as threshold. 
 
ABB can be included as a feature in machine learning based classifiers instead of a 
combination of hard filters. For instance, we used ABB in the pathogenicity classifier 
eDiVA-Score (http://ediva.crg.eu, unpublished) as one feature of the random forest 
(RF) model. Here, ABB enables the RF to identify and lower the rank of systematic 
false calls, without applying a hard threshold.  
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Supporting Figures 
 
 

 
Supp. Fig. S1. Principal component analysis (PCA) based on all SNVs of all samples 
used in this study. Colors indicate different exome enrichment kits used to process 
samples. No bias between kits was observed when focusing on regions sufficiently 
covered (>= 10x) in all enrichment kits. 
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Supp. Fig. S2. Distribution of ABB callability confidence per analysis type, showing 
the proportion of high confidence (ABB < 0.15), mid confidence (0.15 £ ABB < 
0.75), low confidence (0.75 £ ABB < 0.90) and very low confidence (ABB ³ 0.9) 
positions for the whole exome (WES), for germline variants (Germline) and for 
somatic variants (Somatic).  
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Supp. Fig. S3. Overlap of GIAB high confidence regions with ABB low and very low 
confidence sites (ABB >= 0.75). Only 47.89% of sites are equally labeled un-callable 
by both methods, while 52.11% of the sites labeled un-callable by ABB are 
considered callable by GIAB.  
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Supp. Fig. S4. GQ of 10,000 variant sites randomly subsampled from 10 samples. 
(A) Correlation plot, R2 = 0.002 (no correlation), (B) histogram of GQ for randomly 
subsampled variants with ABB <= 0.75, and (C) histogram of GQ for randomly 
subsampled variants with ABB >= 0.9.  
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Fig. Supp. S5. GQ and ABB of 209 variants tested by Sanger sequencing. (A) 
Correlation plot with true positives in black, false positives in red (B) histogram of 
GQ true positive variants (C) histogram of GQ for false positive variants.  
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Supp. Fig. S6. Veen diagram of the sites filtered by Hardy-Weinberg Equilibrium test 
(HWE) and ABB (ABB >= 0.9). The analysis was performed in 9227 variant sites 
with population AF > 1 % in a cohort of 893 samples.   
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Supp. Fig. S7. Distribution of allele balances in the gene CTDSP2 for A) controls 
(Spanish non-cancer patients) and B) cases (ICGC-CLL cohort). Variants called by 
GATK HaplotypeCaller are labeled as “CALLED” and variants genotyped by GATK 
as homozygous reference but supporting more alternative alleles than expected by the 
zero-inflated beta distribution are labeled as “MISSED” calls.  
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Supp. Fig. S8. Distribution of allele balances in the gene CTDSP2 for A) Nimblegen 
SeqEz, and B) Agilent SureSelect processed control samples. Variants called by 
GATK HaplotypeCaller are labeled as “CALLED” and variants genotyped by GATK 
as homozygous reference but supporting more alternative alleles than expected by the 
zero-inflated beta distribution are labeled as “MISSED” calls.  
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Supp. Fig. S9. Distribution of allele balances in the gene CDC27 for A) controls 
(Spanish non-cancer patients) and B) cases (ICGC-CLL cohort). Variants called by 
GATK HaplotypeCaller are labeled as “CALLED” and variants genotyped by GATK 
as homozygous reference but supporting more alternative alleles than expected by the 
zero-inflated beta distribution are labeled as “MISSED” calls.  
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Supp. Fig. S10. Distribution of allele balances in the gene CDC27 for A) Nimblegen 
SeqEz, and B) Agilent SureSelect processed control samples. Variants called by 
GATK HaplotypeCaller are labeled as “CALLED” and variants genotyped by GATK 
as homozygous reference but supporting more alternative alleles than expected by the 
zero-inflated beta distribution are labeled as “MISSED” calls.  
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Supp. Fig. S11. GC- and library size- normalized and median-corrected coverage of 2 
exons (A and B) with specified coordinates from Agilent 71MB kit, which harbor 
SNPs with unusual B-allele frequencies detected by ABB in the group ‘Carriers’, but 
noen in the group “Not carriers). We observed a significant difference in median 
coverage between groups, indicating an extra retroduplication copy in the Carrier 
group.   
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Supporting Tables 
Supp. Table S1. Sample information for 1197 germline samples used for training or 
evaluation of the ABB model. 
Supp. Table S2. Sample information for 200 CLL tumor samples used in the 
evaluation of ABB as a quality filter for somatic variant calls. 
Supp. Table S3. Primer designs for Sanger sequencing. 

Supp. Table S4. Performance of LR1 in the training, testing, and evaluation set. 
Supp. Table S5. Contingency table for repetitive element fraction in very low and 
high confidence sites. 
Supp. Table S6. Overlap of validated somatic variants from three studies (Tarpey et 
al., 2013; Papaemmanuil et al., 2014) and known cancer driver mutations hotspots 
(Chang et al., 2016) with positions labeled as systematic errors by ABB. 

Supp. Table S7. Results of Sanger sequencing validation for 209 random sites. 
Supp. Table S8. Classification of false positive SNV sites (as evaluated by Sanger 
sequencing) by GIAB and ABB. Sites are grouped by ABB confidence levels and 
GIAB classification. GIAB correctly classified 23 out of 40 and ABB 30 out of 40 
false positives. 9/40 false positives are only found by ABB (shown in bold), 2 out of 
40 false positives are only found by GIAB. 

Supp. Table S9. Performance of ABB score and Hardy-Weinberg equilibrium filter 
on Sanger-identified false positive calls. 

Supp. Table S10. Performance of ABB score and Hardy-Weinberg equilibrium filter 
on Sanger-validated true positive calls. 

Supp. Table S11. Sanger validation of candidate disease variants found in various 
studies, including true positive and false positive SNV calls. Red: very low-
confidence sites (ABB >= 0.9), orange: low confidence sites (0.75 <= ABB < 0.9), 
yellow: mid-confidence sites (0.15 <= ABB < 0.75), and green: high-confidence sites 
(ABB < 0.15). 
Supp. Table S12. List of variant sites labeled as significant in the ABB association 
test based on Missed-Called ratio (FDR) obtained from the missed-called ratio test 
(methods). 

Supp. Table S13. Genes labeled as prone to false positive associations based on three 
test (methods): Missed-Called ratio (FDR) obtained from the missed-called ratio test; 
Association re-genotyped (FDR) from association chi square test between cases and 
control including re-genotyped variants; Association ABB (FDR) association analysis 
with chi square test removing prone to significant variant sites. 


