Removal of soil biota alters soil feedback effects on plant growth and defense chemistry

Minggang Wang^{1,2,3}, Wei-bin Ruan^{1,2*}, Olga Kostenko², Sabrina Carvalho², S. Emilia Hannula², Patrick P.J. Mulder⁴, Fengjiao Bu⁵, Wim H. van der Putten^{2,6}, T. Martijn Bezemer^{2,7}

¹College of Life Sciences, Nankai University, Tianjin 300071, China
²Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, PO Box 50, 6700 AB, Wageningen, The Netherlands
³Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-23053 Alnarp, Sweden
⁴RIKILT - Wageningen University & Research, PO Box 230, 6700 AE, Wageningen, The Netherlands
⁵Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
⁶Laboratory of Nematology, Wageningen University & Research, PO Box 8123, 6700 ES, Wageningen, The Netherlands
⁷Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands

*Corresponding author

Wei-bin Ruan Address: College of Life Sciences, Nankai University, Tianjing 300071, China Tel: 86-22-2350-4397 Fax: 86-22-2350-8800 Emails for correspondence: <u>ruanweibin2004@hotmail.com</u>

Supporting information

Table S1 PERMANOVA results for effects of soil conditioning[#] (NP, P, P+B and P+A) on the composition of bacterial and fungal communities in each of watery inocula (1000 μ m, 20 μ m, 5 μ m and 0.2 μ m) and in the whole soil inocula.

Inocula ^a	Bacterial community			Fungal community		
	$R^{2(b)}$	Р	Stress ^c	R^2	Р	Stress
Whole soil	0.26	< 0.05	0.07	0.25	< 0.05	0.07
1000µm	0.38	< 0.05	0.05	0.31	< 0.005	0.12
20µm	0.59	< 0.001	0.06	0.35	< 0.001	0.12
5µm	0.47	< 0.001	0.07	-	-	-
0.2µm	-	-	-	-	-	-

[#]Soil conditioning treatments includes soil that was not conditioned (NP), soil conditioned by *J. vulgaris* plants (P), or by *J. vulgaris* plants that were exposed to belowground (P+B) or aboveground (P+A) herbivores.

^aInocula indicates the soil suspensions that went through 1000 μ m, 20 μ m, 5 μ m, 0.2 μ m mesh size as well as the whole soil inocula, respectively.

 ${}^{b}R^{2}$ values represent the proportional variations of bacterial or fungal community composition explained by conditioning treatments.

^cStress values represent a measure of "goodness-of-fit" for the NMDS.

Treatment	reatment df Plant patho fungi		thogenic	AMF		Endophytes	
		F	Р	F	Р	F	Р
Conditioning ^a	3	0.50	0.685	44.4	<0.001 ^c	3.68	0.018
Inocula ^b	2	115.1	<0.001	17.3	<0.001	171.0	<0.001
Conditioning×Inocula	6	3.0	0.014	2.4	0.041	2.59	0.030
Error	48						

Table S2 ANOVA results for effects of soil conditioning (NP, P, P+B and P+A) and soil inocula (Whole soil, $1000\mu m$, $20\mu m$) on the relative abundances of different plant-associated fungi, including plant pathogens, arbuscular mycorrhizal fungi (AMF) and plant endophytes.

^aConditioning treatments includes soil that was not conditioned (NP), soil conditioned by undamaged *J. vulgaris* plants (P), or by *J. vulgaris* plants that were exposed to belowground (P+B) or aboveground (P+A) herbivores.

 b Inocula indicates the soil suspensions that went through 1000 μ m, 20 μ m as well as the whole soil inocula.

^cBold p values indicate significant effects at P<0.05.

Fig. S1 Mean (\pm SE) relative abundances of plant pathogenic fungi (**a**), arbuscular mycorrhizal fungi (AMF, **b**) and plant endophytes (**c**) in 20µm, 1000µm and whole soil inocula that were created from unconditioned soil (NP), soil conditioned by plants (P), by plants exposed to belowground (P+B) or by plants exposed to aboveground (P+A) herbivory. Bars with identical letters are not significantly different based on a Tukey *post hoc* test at p < 0.05 level according to one-way ANOVA. Statistics are shown in Table S2.