New Phytologist Supporting Information

Article title: Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments

Authors: Na Wei, Richard Cronn, Aaron Liston, and Tia-Lynn Ashman

Article acceptance date: 24 September 2018

The following Supporting Information is available for this article:

Methods S1 Additional details of Materials and Methods.

Fig. S1 Distinct separation between diploid and high-order polyploid *Fragaria*, with stomatal length as an example.

Fig. S2 Collection map of Fragaria.

Fig. S3 Climatic niche distances of 72 source *Fragaria* populations to the common gardens.

Fig. S4 Maximum-likelihood (ML) plastid phylogeny of Fragaria.

Fig. S5 Model comparisons for evolutionary dependence control, with stomatal length as an example.

Fig. S6 Model comparisons for evolutionary dependence control, with fitness as an example.

Fig. S7 Central leaflet width was similar among diploid and polyploid *Fragaria* taxa.

Fig. S8 Similar scales of three fitness components.

Table S1 Genotypes and populations of diploid and polyploid Fragaria

Table S2 Soil properties of the three common gardens

Table S3 Pairwise correlations between trait means and trait plasticities

Table S4 Differences in leaf functional traits between diploids and polyploids

Table S5 Pairwise correlations between trait plasticities and between functional traits

Table S6 Differences in trait plasticity between diploids and polyploids

Table S7 Differences in fitness between diploids and polyploids

Table S8 Relationships between average fitness and trait means and trait plasticities

Methods S1 Additional details of Materials and Methods

Common garden soil

Newport beds used a mixture of equal parts beach sand and Bandon fine sandy loam, a low clay content (5–15%) soil derived from the sandy alluvium of coastal marine terraces. Corvallis beds used Chehalis silt clay loam, a richer soil characterized by higher clay content (typically 35–45%). Bend beds used Lundgren ashy sandy loam, a soil characterized by high volcanic ash, glass, and pumice content.

Common garden weather data

We obtained daily data of temperature and rainfall for the three common gardens from different sources: Newport data from the Hatfield Marine Science Center (http://weather.hmsc.oregonstate.edu/weather/weatherproject/archive/), Corvallis and Bend data from AgriMet (https://www.usbr.gov/pn/agrimet/webagdayread.html). We then calculated the monthly mean temperature, monthly rainfall and monthly growing degree days (i.e. the cumulative heat above 10°C) for each garden location, during the course of the field experiment from October 2015 to mid July 2016.

Measurements of leaf functional traits

We collected the largest, fully expanded leaf from each experimental plant in selected beds in each garden. The leaves were scanned using a CanoScan LiDE 220 (Canon, Melville, NY, USA) with an antiglare styrene sheet. We used ImageJ v1.51a (Schneider *et al.*, 2012) to measure leaf area (LA) and the central leaflet width (CLW).

The seven leaf functional traits included: specific leaf area (SLA), which measures the light-capturing leaf area per unit investment of dry mass (Poorter *et al.*, 2009); leaf nitrogen content (*N*_{mass}), which influences photosynthetic potential (Wright *et al.*, 2004); stomatal length (SL) and stomatal density (SD) that regulate plant CO₂ intake and water transpiration (Hetherington & Woodward, 2003); minor vein density (VLA) that reflects hydraulic conductance (Sack & Scoffoni, 2013); trichome density (TD), which can protect plants against water loss (Ehleringer & Björkman, 1978; Sletvold & Ågren, 2012); and carbon isotope

discrimination (Δ^{13} C) that indicates plant intrinsic water use efficiency (Farquhar & Richards, 1984).

We obtained four leaf punches (each of 6 mm in diameter) from the middle portion of the central leaflet of the collected trifoliate leaf each sample, avoiding the midvein. Two leaf punches were used for measuring stomatal density and stomatal length of the abaxial and adaxial sides; one leaf punch was for measuring SLA; and one was for measuring trichome density and then vein density. When the central leaflet was not large enough for all trait measurements, we obtained two leaf punches from the central leaflet for stomatal density and stomatal length measurements, and one leaf punch from each of the two lateral leaflets for SLA, and trichome density and vein density, respectively.

For SLA estimation, one leaf punch per sample was stored in 96-well microplates (Thermo Fisher Scientific, Hampton, NH, USA), and dried at 65°C for 24 h. Leaf punches were then weighed using a Cahn C-35 microbalance (Thermo Fisher Scientific; with precision of 0.0001 mg). SLA was calculated using the known punch area divided by punch weight.

For stomatal measurements, we used a vinyl polysiloxane impression method to obtain the abaxial and adaxial stomata from leaf punches. First, we mixed the vinyl polysiloxane impression material (Patterson Dental, Pittsburgh, PA, USA) of the base and catalyst, and put the mixture onto a microscope slide. Two punches per sample were placed immediately onto the mixture, one for each side of the leaf. We placed another microscope slide on the top, and pressed slightly and held two slides together using binder clips. After the mixture dried (*c*. 15 min), the top slide and leaf punches were removed from the mixture using forceps to obtain permanent leaf impression. We applied clear nail polish to the impression and peeled off the impression using clear tapes, and placed it onto a new microscope slide for measuring stomatal density and stomatal length. The abaxial and adaxial stomata were counted using a Leica DM500 microscope (Leica Microsystems, Wetzlar, Germany) under 400× (10 × 40) magnification. Specifically, we counted the total number of stomata within two randomly selected fields of view (FOV) for each side. Stomatal density was calculated as the average number of stomata within a FOV divided by the area of the FOV. We took images of the abaxial and adaxial stomata, and measured the guard cell lengths of up to five stomata of each side and

3

obtained the average stomatal length. As most *Fragaria* plants only produce stomata on the abaxial side, we only reported abaxial stomatal density and stomatal length.

For trichome density estimation, one leaf punch per sample was stored in 70% ethanol. We counted the number of trichomes on both sides of a leaf punch under a dissecting microscope. If there were no more than 50 trichomes on one side, we counted all the trichomes. If there were >50 trichomes on one side, we counted trichomes within two randomly selected areas (each area = 1.5 mm × 1.5 mm) of a leaf punch. We summed the abaxial and adaxial trichome density for calculating TD. Leaf punches were then returned to 70% ethanol for subsequent vein density measurement.

Vein density here is defined as the total lengths of minor veins per unit leaf area. We only focused on minor veins, as they account for >80% of the total veins of a leaf and are key to leaf hydraulic capacity and photosynthesis (Sack & Scoffoni, 2013). We followed the protocol of Quantifying Leaf Vein Traits (http://prometheuswiki.org/tiki-

index.php?page=Quantifying+leaf+vein+traits), using leaf punches stored in 70% ethanol. We took leaf vein images using a Leica DM500 microscope under 40× magnification, and used ImageJ to record the total lengths of minor veins within a 1 mm × 1 mm area.

The remaining leaf tissue after four leaf punches being taken was dried at 65°C for 48 h, and sent to the Cornell Isotope Laboratory for carbon isotope composition (δ^{13} C) and N_{mass} analysis using a Thermo Delta V isotope ratio mass spectrometer and a NC2500 elemental analyzer. Carbon isotope discrimination (Δ^{13} C) was calculated using the following formula (Farquhar & Richards, 1984):

$$\Delta^{13}C = \frac{\delta^{13}C_{air} - \delta^{13}C_{plant}}{1 + \delta^{13}C_{plant} / 1000}, \text{ where } \delta^{13}C_{air} \text{ equals -8\%}.$$

Plastid phylogeny

The chloroplast nucleotide supermatrix (with 64645 characters), composed of the diploid and polyploid *Fragaria* taxa in this study (except *F. chiloensis* ssp. *chiloensis*) and three other diploid *Fragaria* taxa, as well as the outgroup *Dasiphora fruticosa* ssp. *floribunda* (Fig. S4), was kindly provided by M.S. Dillenberger (Oregon State University). We performed phylogenetic inference

using the maximum likelihood (ML) method with the GTR+F model in RAxML v.8.0.26 (Stamatakis, 2014). Confidence in node support was determined with 1000 bootstrapping replicates.

Phylogenetic general linear mixed models (PLMMs)

PLMMs were performed to validate our use of nested random effects in LMMs (i.e. populations nested in taxa and taxa in ploidy levels, ploidy/taxon/population; see main text) to control for evolutionary dependence among populations and taxa. Here we used the bifurcating, plastid tree (Fig. S4) for fitting PLMMs, due to the difficulty of accounting for reticulate evolutionary histories among diploid and polyploid taxa (Fig. 1) in PLMMs. Owing to the lack of *F. chiloensis* ssp. *chiloensis* in the plastid tree, we assumed that it had the same evolutionary history as *F. chiloensis* ssp. *pacifica*. We conducted PLMMs using the R package MCMCglmm (Hadfield, 2010), with one functional trait (stomatal length, Fig. S5) and the composite fitness (Fig. S6) as examples.

To evaluate how diploids and polyploids differ in stomatal length, similar to the LMM fitted using restricted maximum likelihood (REML) with the package lme4 (Bates *et al.*, 2015) (see main text; Fig. S5, Model 1), we first fitted the same LMM using the Bayesian method with MCMCglmm (Fig. S5, Model 2), where the random effects included ploidy/taxon/population. Then for PLMMs, we fitted two models that differed from the LMMs (Model 1 and Model 2) only in random effects: one PLMM model considered only phylogenetic covariance among taxa (random effects = phylo; Fig. S5, Model 4); one PLMM model considered both populations nested in taxa and phylogenetic covariance among taxa (random effects = taxon/population + phylo; Fig. S5, Model 3). We performed the same four types of models for modeling fitness (Fig. S6).

To fit MCMCgImm models, we used default priors for predictors (fixed effects) and uninformative priors (V = 1, nu = 0.02) for all random effects and residual variance. Models were run with 200000 total MCMC iterations (burin of 100000, and thinning of 100), and convergence was checked graphically. For Bayesian model comparisons based on the deviance

5

information criterion (DIC), we used the package MuMIn (Bartoń, 2017). Least-squares means of predictors in MCMCglmm models were estimated using the package lsmeans (Lenth, 2016).

For both the functional trait (Fig. S5) and composite fitness (Fig. S6), LMM Model 2 (the Bayesian version of Model 1) with nested random effects outperformed PLMM Model 4 that only considered phylogenetic relatedness among taxa, but performed as well as PLMM Model 3 that considered both populations nested in taxa and phylogenetic relatedness among taxa. Fig. S1 Distinct separation between diploid and high-order polyploid *Fragaria*, with stomatal length (SL) as an example. The least-squares mean of SL and 1 SEM are plotted. Significant differences are only observed between diploids (2n = 2x) and high-order polyploids $(2n \ge 6x)$. The response variable (SL) was power transformed to improve normality in a general linear mixed model, where the fixed effects included central leaflet width + climatic niche distance + garden + ploidy + ploidy:garden + ploidy:climatic niche distance, and the nested random effects included ploidy/taxon/population. Owing to the distinct separation between diploids and high-order polyploids, and the dominance of the 8x taxa and genotypes (Table S1; also smaller SEM relative to the 6x and 10x here), we defined ploidy level broadly as diploid or polyploid in the main text and all downstream analyses.

Fig. S2 Collection map of Fragaria from our Wild Strawberry website

(http://wildstrawberry.org/; accessed on April 25, 2018). This worldwide collection of *Fragaria* was conducted as an international collaborative effort from 2013 to 2014. Each dot represents one population, and the collection data of genotypes within each population are available from the Wild Strawberry website. Briefly, achenes (averagely 70 per plant) were collected from 1–28 plants (mean = 15) of individual populations. For this study, we considered *Fragaria* that occur in North America, South America, Europe and Japan.

Fig. S3 Climatic niche distances of 72 source *Fragaria* **populations to the common gardens.** (a) The first two principal components of PCA of the 19 bioclimatic variables and elevation estimates of the 72 source *Fragaria* populations and the three common gardens (the stars). The variables with the largest loadings are indicated by the arrows. (b) The first five PCs, accounting for 94.2% of the variation, were used to calculate Euclidean climatic niche distance between each source population and each garden.

Fig. S4 Maximum-likelihood (ML) plastid phylogeny of *Fragaria*. This phylogeny reflects only the evolutionary histories of the plastid genome, but not the reticulate histories of the nuclear genome among diploid (2n = 2x) and polyploid $(2n \ge 6x)$ taxa (Fig. 1) that are difficult to be incorporated into general linear mixed models for controlling for evolutionary dependence among taxa. This phylogeny included the diploid and polyploid *Fragaria* in this study (black), and those not (grey). Numbers associated with branches are ML bootstrap support values (%) from 1000 replicates.

Fig. S5 Model comparisons for controlling for evolutionary dependence among populations and taxa, with stomatal length (SL) as an example. The response variable (SL) was power transformed to improve normality. LMM Model 2 (the Bayesian version of Model 1) with nested random effects outperformed PLMM Model 4 that only considered phylogenetic covariance among taxa. The least-squares mean and 1 SEM are plotted for diploids (blue) and polyploids (red) at each garden location for each model.

Model		Fixed effects	Random effects	Model type	Method	DIC	ΔDIC		
1	<u></u>	L alimatia nicha distance L	ploidy/taxon/population	LMM	REML ^a				
2	darde	en + ploidy + ploidy:garden	ploidy/taxon/population	LMM	Bayesian⁵	-887.9	0		
3	+ ploi	idy:climatic niche distance	taxon/population + phylo	PLMM	Bayesian ^b	-887.8	0.15		
4	onoral	linear mixed model	phylo	PLMM	Bayesian⁰	-854.1	33.79		
PI MM.	phyloc	inear mixed model	model						
REML,	REML, restricted maximum likelihood								
^a using I	^a using Ime4 package; ^b using MCMCgImm package								
CLW, c	entral l	eaflet width							
		Polyploid O M	lodel 1						
	2.8-	- Diploid M	lodel 2	-	гТ	Тт			
		▲ M	lodel 3	5	2 1	▲ ↓			
		▼ M	lodel 4			ΙL			
	26		TIT	Т					
	2.0		⊥ I	+					
ĉ		тттт	T	T					
un		Ŷ † ↓ ↓			+ т	-			
log	2.4-	-	тТТТ	Ŷ		↓			
ы С		- <u>+</u>	오 ↑ ↑ †	T	ΙI	L			
0)			- 1 1						
		_ т Т т							
	2.2-	$\overline{\mathbf{v}}$							
		+ + <u> </u>							
	20								
	2.0-	Newport	Bend		Corvall	is	_		

Fig. S6 Model comparisons for controlling for evolutionary dependence among populations and taxa, with the composite fitness as an example. The response variable (the composite fitness index) was power transformed (with power parameter = 0.1) to improve normality. LMM Model 2 (the Bayesian version of Model 1) with nested random effects outperformed PLMM Model 4 that only considered phylogenetic covariance among taxa. The least-squares mean and 1 SEM are plotted for diploids (blue) and polyploids (red) at each garden location for each model.

Model	Fixed effects	Random effects	Model type	Method	DIC	ΔDIC
1	climatic niche distance +	ploidy/taxon/population	LMM	REML ^a		
2		ploidy/taxon/population	LMM	Bayesian⁵	-426.0	0
3	+ ploidy:climatic niche distance	taxon/population + phylo	PLMM	Bayesian⁵	-424.9	1.1
4		phylo	PLMM	Bayesian⁵	-352.9	73.05
LMM, g	general linear mixed model					
B 1 1 1 1						

PLMM, phylogenetic general linear mixed model

REML, restricted maximum likelihood

^ausing Ime4 package; ^busing MCMCgImm package

Fig. S7 Central leaflet width was similar among diploid and polyploid *Fragaria* **taxa.** Individual dots represent genotypic values of each taxon in the three common gardens. The boxes denote the 25th, 50th (median) and 75th percentiles, and whiskers mark 1.5 times the interquartile range from the boxes.

Fig. S8 Similar scales of three fitness components. Genotypic median values of survival rate (median = 1), growth (i.e. plant size since transplanting; median = 0.64 dm^2) and asexual reproduction (i.e. stolon dry mass; 0.56 g), together with the 25th and 75th percentiles, are marked by the boxes. The whiskers mark the range of the 10th and 90th percentiles.

Table S1 Genotypes and populations of diploid and polyploid Fragaria

			Geno				
		Populati	type	Clone			Altitude
Ploidy	Taxon	on	#	#	Latitude	Longitude	(m)
diploid	F. vesca ssp. americana	NA.IA.1	2	23	41.7753	-94.4646	362
diploid	F. vesca ssp. americana	NA.NH.3	4	47	44.8710	-71.5036	339
diploid	F. vesca ssp. americana	NA.ON.2	4	48	43.4727	-80.0803	307
diploid	F. vesca ssp. bracteata	NA.BC.2	1	12	48.7990	-123.1370	188
diploid	F. vesca ssp. bracteata	NA.CA.1	4	48	38.7751	-120.4570	1075
diploid	F. vesca ssp. bracteata	NA.CA.3	4	48	39.2647	-123.5900	77
diploid	F. vesca ssp. bracteata	NA.CA.7	4	48	40.8961	-123.7700	850
diploid	F. vesca ssp. bracteata	NA.CO.2	4	48	38.7615	-106.7670	2833
diploid	F. vesca ssp. bracteata	NA.ID.1	4	48	44.0270	-115.8550	1146
diploid	F. vesca ssp. bracteata	NA.OR.3	4	48	44.4348	-120.3370	1573
diploid	F. vesca ssp. bracteata	NA.OR.4	4	48	44.4955	-123.5450	763
diploid	F. vesca ssp. bracteata	NA.OR.8	4	48	42.5768	-124.3900	130
diploid	F. vesca ssp. bracteata	NA.UT.3	4	48	40.4349	-111.6310	2313
diploid	F. vesca ssp. bracteata	NA.WA.2	4	41	48.4819	-118.7270	629
diploid	F. vesca ssp. bracteata	NA.WA.3	4	48	47.9640	-117.1010	912
diploid	F. vesca ssp. vesca	EU.AT.1	3	36	47.8114	13.0867	558
diploid	F. vesca ssp. vesca	EU.CH.5	4	48	46.4909	6.8235	915
diploid	F. vesca ssp. vesca	EU.CZ.1	4	48	50.1550	12.2186	632
diploid	F. vesca ssp. vesca	EU.DE.5	4	47	47.8636	7.8543	833
diploid	F. vesca ssp. vesca	EU.ES.1	4	48	41.2292	-3.4214	1498
diploid	F. vesca ssp. vesca	EU.ES.5	4	48	42.0957	0.6254	1051
diploid	F. vesca ssp. vesca	EU.FI.4	4	48	62.2333	25.7000	113
diploid	F. vesca ssp. vesca	EU.FR.3	4	48	43.3051	-1.2410	242
diploid	F. vesca ssp. vesca	EU.HR.1	4	48	45.8680	15.8462	128
diploid	F. vesca ssp. vesca	EU.IT.1	4	48	46.1636	10.9217	2100
diploid	F. vesca ssp. vesca	EU.NO.1	4	48	60.4119	10.5330	240
diploid	F. vesca ssp. vesca	EU.PL.3	4	48	54.2795	18.0036	178
diploid	F. vesca ssp. vesca	EU.RO.1	4	48	46.4367	23.7638	347
diploid	F. vesca ssp. vesca	EU.SE.1	4	42	55.5222	14.0158	40
diploid	F. vesca ssp. vesca	EU.SE.5	4	48	57.7889	11.8332	13
diploid	F. vesca ssp. vesca	EU.SI.2	4	48	46.5769	15.6092	332
diploid	F. viridis	EU.AT.5	1	12	48.2331	14.8897	230
diploid	F. viridis	EU.CZ.4	4	48	50.5508	14.3697	320
diploid	F. viridis	EU.CZ.7	4	48	50.4067	13.8067	294
diploid	F. viridis	EU.DE.2	4	48	49.8042	7.7410	183
diploid	F. viridis	EU.ES.2	4	48	41.4269	-3.7666	1169
diploid	F. viridis	EU.NO.3	4	48	60.4332	10.4990	211

aipio			VIITUIS		EU.SE.I	4	40	55.5222	14.0156	40
diplo	id	F.	viridis		EU.SE.10	1	12	59.9255	17.6264	21
diplo	id	F.	iinumae		JP.HK.3	4	48	42.8477	141.0960	922
diplo	id	F.	iinumae		JP.HK.7	3	36	42.8685	140.6760	795
polypl	bid	F.	moschata		EU.AT.4	4	45	47.8125	13.0989	672
polypl	bid	F.	moschata		EU.CZ.6	1	12	50.5200	14.3625	285
polypl	bid	F.	moschata		EU.SI.1	4	48	46.6827	16.2951	213
polypl	bic	F.	moschata		EU.SI.3	4	48	46.2847	15.5876	626
polypl	bic	F.	virginiana ssp.	platypetala	NA.CA.12	3	36	40.1418	-121.2670	1323
polypl	bic	F.	virginiana ssp.	platypetala	NA.OR.3	4	48	44.4348	-120.3370	1573
polypl	bic	F.	virginiana ssp.	platypetala	NA.UT.2	4	48	40.3149	-111.2590	2434
polypl	bid	F.	virginiana ssp.	platypetala	NA.WA.1	4	47	47.5269	-121.0790	1022
polypl	bid	F.	virginiana ssp.	virginiana	NA.AB.2	4	47	50.6129	-115.1200	1697
polypl	bid	F.	virginiana ssp.	virginiana	NA.AK.4	4	48	64.7293	-148.1640	120
polypl	bid	F.	virginiana ssp.	virginiana	NA.CO.1	4	48	38.1133	-106.9320	3041
polypl	bid	F.	virginiana ssp.	virginiana	NA.MI.2	4	48	44.6271	-84.5132	349
polypl	bid	F.	virginiana ssp.	virginiana	NA.NY.1	4	48	41.8640	-74.3461	384
polypl	bid	F.	virginiana ssp.	virginiana	NA.ON.1	4	48	45.5701	-78.4340	403
polypl	bid	F.	virginiana ssp.	virginiana	NA.ON.2	4	48	43.4727	-80.0803	307
polypl	bid	F.	virginiana ssp.	virginiana	NA.PA.1	4	48	41.6415	-80.4329	310
polypl	bic	<i>F</i> .	virginiana ssp.	virginiana	NA.VT.1	4	48	42.8852	-73.1156	417
polypl	bid	F.	virginiana ssp.	virginiana	NA.WI.1	2	24	45.2327	-90.6861	392
polypl	bic	<i>F</i> .	chiloensis ssp.	pacifica	NA.AK.1	4	39	58.4290	-135.7610	21
polypl	bic	<i>F</i> .	chiloensis ssp.	pacifica	NA.CA.10	4	39	38.3139	-123.0470	4
polypl	bic	<i>F</i> .	chiloensis ssp.	pacifica	NA.CA.11	3	22	36.3305	-121.8920	38
polypl	bic	<i>F</i> .	chiloensis ssp.	pacifica	NA.CA.2	5	49	37.4666	-122.4450	11
polypl	bic	<i>F</i> .	chiloensis ssp.	pacifica	NA.CA.8	4	45	39.4616	-123.8070	18
polypl	bic	F.	chiloensis ssp.	pacifica	NA.CA.9	4	34	40.7730	-124.2140	3
polypl	bic	<i>F</i> .	chiloensis ssp.	pacifica	NA.OR.1	4	38	44.9167	-124.0270	5
polypl	bic	<i>F</i> .	chiloensis ssp.	chiloensis	SA.CL.2	4	48	-45.5500	-72.0667	268
polypl	bic	<i>F</i> .	chiloensis ssp.	chiloensis	SA.CL.3	4	48	-37.6333	-73.4333	162
polypl	bic	<i>F</i> .	chiloensis ssp.	chiloensis	SA.CL.4	4	48	-38.7333	-71.2500	1255
polypl	bic	<i>F</i> .	chiloensis ssp.	chiloensis	SA.CL.5	4	48	-40.5333	-73.2333	11
polypl	bic	F.	cascadensis		NA.OR.5	4	48	44.4036	-122.0760	1080
polypl	bic	<i>F</i> .	cascadensis		NA.OR.7	4	48	44.5779	-122.1230	1267
Sun)					269	3137			

			Garden		-
Unit	Variable	Newport	Corvallis	Bend	Method
%	Sand	89	59	65	
%	Silt	6	32	28	Hydrometer
%	Clay	5	9	7	method
	Moisture	0.4	1.2	0.6	θg
%	С	0.93	0.59	0.59	
	Ν	0.07	0.09	0.07	Elementar
ratio	C:N	13.3	6.6	8.4	
_	NO3-N	1.71	5.49	2.87	Lachat
	Р	12.1	33.1	29.0	
	К	41	106	449	
	S	530	650	740	
	Са	241	1873	1651	
	Mg	41	485	386	Mehlich 3
ppm = mg	Mn	2.4	39.4	70.4	Extraction
nutrient/kg	Cu	1.4	4.9	4.1	
3011	Zn	0.3	2.1	3.0	
	Fe	12.5	25.6	16.0	
	В	0.3	0.3	0.5	
					Ammonium
					Acetate
_	Na	25.1	43.7	50.6	Extraction
	CEC (Cation				Ammonium
	exchange				Acetate
_	capacity)	2.4	13.5	13.2	Extraction
рН	рН	5.69	6.27	7.67	
dS/m	EC (electrical				1:1 soil:water
u3/11	conductivity)	0.099	0.238	0.212	

 Table S2 Soil properties of the three common gardens

Soils were collected from each garden in June 2016, and were sent to the Central Analytical Laboratory at Oregon State University for analysis.

Table S3 Pairwise correlations between trait means and trait plasticities for diploids and polyploids

		All		Diploi	ds	Polyploids		
		Correlation coefficient		Correlation coefficient		Correlation coefficient		
Pairwise o	comparison	(<i>r</i>)	P value	(<i>r</i>)	P value	(<i>r</i>)	P value	
SLA.RDPI	SLA.mean	0.08	0.210	-0.02	0.782	0.17	0.075	
SD.RDPI	SD.mean	0.03	0.612	-0.01	0.872	0.06	0.499	
SL.RDPI	SL.mean	0.10	0.111	-0.15	0.071	0.10	0.285	
VLA.RDPI	VLA.mean	0.01	0.864	-0.08	0.372	0.14	0.155	
TD.RDPI	TD.mean	-0.17	0.010	-0.21	0.018	-0.19	0.057	
Δ^{13} C.RDPI	Δ^{13} C.mean	-0.02	0.889	0.14	0.408	-0.11	0.573	
N _{mass} .RDPI	N _{mass} .mean	-0.11	0.363	-0.10	0.549	-0.11	0.572	

Non-parametric Kendall rank correlation coefficient (*r*) was estimated using the R package psych (Revelle, 2017). Functional trait mean was genotypic trait value averaged across all garden environments.

		ANOVA table with Type III sums on squares			
Functional					
trait	Fixed effects (Predictors)	Sum Sq	df	F	Pr(> <i>F</i>)
SLA	central leaflet width	36.36	1	10.38	0.001
	climatic niche distance	11.00	1	3.14	0.077
	garden	712.47	2	101.66	< 2.2e-16
	ploidy	10.87	1	3.10	0.100
	ploidy:garden	55.94	2	7.98	0.000
	ploidy:climatic niche				
	distance	5.11	1	1.46	0.228
	<i>R</i> ² _m : 0.448				
	$R^{2}_{c}: 0.750$				
SL (log)	central leaflet width	0.001	1	0.06	0.805
	climatic niche distance	0.008	1	0.49	0.486
	garden	3.093	2	91.38	< 2.2e-16
	ploidy	0.636	1	37.56	0.000
	ploidy:garden	0.606	2	17.90	0.000
	ploidy:climatic niche				
	distance	0.036	1	2.13	0.145
	<i>R</i> ² _m : 0.594				
	$R_{\rm c}^2$: 0.700				
SD (sqrt)	central leaflet width	0.37	1	0.12	0.734
	climatic niche distance	14.82	1	4.60	0.032
	garden	83.61	2	12.96	0.000
	ploidy	13.55	1	4.20	0.049
	ploidy:garden	37.91	2	5.88	0.003
	ploidy:climatic niche				
	distance	3.11	1	0.96	0.327
	$R^2_{\rm m}: 0.105$				
	$R^2_{c}: 0.346$				
VLA (log)	central leaflet width	0.239	1	8.43	0.004
	climatic niche distance	0.110	1	3.89	0.050
	garden	0.455	1	16.02	0.000
	ploidy	0.135	1	4.74	0.037
	ploidy:garden	0.008	1	0.28	0.597
	ploidy:climatic niche				
	distance	0.035	1	1.25	0.265
	$R_{m}^{2}: 0.359$				
	$R^{2}_{c}: 0.530$				

Table S4 Differences in leaf functional traits between diploids and polyploids

TD (sqrt)	central leaflet width	2.43	1	10.96	0.001
	climatic niche distance	0.46	1	2.09	0.149
	garden	70.03	1	316.10<	2.2e-16
	ploidy	0.21	1	0.96	0.346
	ploidy:garden	1.83	1	8.26	0.004
	ploidy:climatic niche				
	distance	0.01	1	0.04	0.840
	<i>R</i> ² _m : 0.249				
	<i>R</i> ² _c : 0.799				
N _{mass}	central leaflet width	0.79	1	4.64	0.033
	climatic niche distance	0.02	1	0.10	0.747
	garden	29.12	2	85.21<	2e-16
	ploidy	0.10	1	0.57	0.453
	ploidy:garden	1.02	2	2.99	0.053
	ploidy:climatic niche				
	distance	0.15	1	0.88	0.349
	$R^2_{\rm m}$: 0.660				
	$R^{2}_{c}: 0.701$				
$\Delta^{13}C$	central leaflet width	1.14	1	2.22	0.138
	climatic niche distance	4.25	1	8.30	0.004
	garden	19.79	2	19.34	0.000
	ploidy	0.75	1	1.46	0.233
	ploidy:garden	1.50	2	1.47	0.234
	ploidy:climatic niche				
	distance	1.10	1	2.15	0.144
	$R^2_{m}: 0.220$				
	$R^{2}_{c}: 0.448$				

General linear mixed model (LMM) specification:

model <- Imer(Functional trait ~ Fixed effects + (1 | Nested random effects))

Fixed effects: central leaflet width + climatic niche distance + garden + ploidy + ploidy:garden + ploidy:climatic niche distance

Nested random effects: ploidy/taxon/population

The response variable of each LMM was power transformed if necessary. R^2_m , model marginal R^2 representing variance explained by fixed effects; R^2_c , model conditional R^2 representing variance explained by both fixed effects and random effects.

Table S5 Pairwise correlations between trait plasticities and between functional traits for each taxon

			Trait plasticity RDPI correlation		Trait me correlat	ean ion
			Correlation coefficient		Correlation coefficient	
Taxon	Trait	Trait	(<i>r</i>)	P value	(<i>r</i>)	P value
Fragaria vesca	SLA	SD	-0.11	0.760	-0.24	0.496
ssp. americana	SLA	SL	-0.07	0.855	0.16	0.668
	SD	SL	-0.11	0.760	0.07	0.855
	SLA	VLA	-0.11	0.776	-0.06	0.887
	SD	VLA	0.22	0.566	-0.50	0.170
	SL	VLA	0.39	0.301	-0.28	0.469
	SLA	TD	0.39	0.301	0.33	0.381
	SD	TD	0.17	0.668	-0.44	0.231
	SL	TD	-0.11	0.776	-0.11	0.776
	VLA	TD	0.06	0.887	0.50	0.170
	SLA	$\Delta^{13}C$	-0.33	0.784	0.33	0.784
	SD	$\Delta^{13}C$	-0.33	0.784	-0.33	0.784
	SL	$\Delta^{13}C$	-0.33	0.784	1.00	0.000
	VLA	$\Delta^{13}C$	0.33	0.784	-0.33	0.784
	TD	$\Delta^{13}C$	0.33	0.784	-0.33	0.784
	SLA	N _{mass}	-0.33	0.784	1.00	0.000
	SD	N _{mass}	1.00	0.000	-1.00	0.000
	SL	N _{mass}	1.00	0.000	0.33	0.784
	VLA	N _{mass}	0.33	0.784	0.33	0.784
	TD	N _{mass}	-1.00	0.000	0.33	0.784
	$\Delta^{13}C$	N _{mass}	-0.33	0.784	0.33	0.784
Fragaria vesca	SLA	SD	-0.02	0.893	-0.10	0.522
ssp. bracteata	SLA	SL	-0.01	0.972	0.14	0.361
	SD	SL	-0.11	0.484	-0.15	0.337
	SLA	VLA	0.01	0.975	0.15	0.484
	SD	VLA	-0.24	0.248	-0.15	0.484
	SL	VLA	-0.18	0.389	-0.20	0.338
	SLA	TD	-0.05	0.800	0.07	0.728
	SD	TD	0.02	0.924	0.03	0.874
	SL	TD	-0.13	0.525	-0.19	0.354
	VLA	TD	0.07	0.728	0.34	0.096
	SLA	$\Delta^{13}C$	-0.24	0.496	-0.24	0.496
	SD	$\Delta^{13}C$	0.38	0.282	0.24	0.496
	SL	$\Delta^{13}C$	-0.02	0.951	0.07	0.855

	VLA	$\Delta^{13}C$	-0.50	0.170	0.06	0.887
	TD	$\Delta^{13}C$	-0.22	0.566	0.22	0.566
	SLA	N _{mass}	0.56	0.095	0.04	0.902
	SD	N _{mass}	-0.16	0.668	0.31	0.376
	SL	N _{mass}	0.33	0.347	-0.09	0.805
	VLA	N _{mass}	0.28	0.469	-0.33	0.381
	TD	N _{mass}	-0.11	0.776	-0.06	0.887
	$\Delta^{13}C$	N _{mass}	-0.42	0.224	0.27	0.451
Fragaria vesca	SLA	SD	0.02	0.889	0.10	0.429
ssp. vesca	SLA	SL	0.06	0.624	-0.03	0.833
	SD	SL	0.08	0.531	-0.07	0.588
	SLA	VLA	-0.11	0.386	0.05	0.687
	SD	VLA	0.06	0.630	0.15	0.226
	SL	VLA	-0.07	0.613	-0.16	0.216
	SLA	TD	0.00	0.978	-0.04	0.741
	SD	TD	0.04	0.783	-0.10	0.429
	SL	TD	0.10	0.441	-0.03	0.833
	VLA	TD	0.11	0.377	0.14	0.282
	SLA	$\Delta^{13}C$	-0.12	0.667	0.37	0.162
	SD	$\Delta^{13}C$	0.10	0.713	-0.05	0.854
	SL	$\Delta^{13}C$	0.25	0.350	0.08	0.759
	VLA	$\Delta^{13}C$	-0.13	0.623	0.18	0.497
	TD	$\Delta^{13}C$	-0.15	0.579	0.02	0.951
	SLA	N _{mass}	0.03	0.902	-0.10	0.713
	SD	N _{mass}	0.22	0.420	0.12	0.667
	SL	N _{mass}	0.13	0.623	-0.08	0.759
	VLA	N _{mass}	0.02	0.951	-0.18	0.497
	TD	N _{mass}	0.30	0.259	0.05	0.854
	$\Delta^{13}C$	N _{mass}	-0.05	0.854	-0.37	0.162
Fragaria viridis	SLA	SD	0.08	0.687	-0.02	0.917
	SLA	SL	-0.08	0.704	0.22	0.284
	SD	SL	-0.21	0.306	0.03	0.870
	SLA	VLA	0.11	0.613	-0.02	0.920
	SD	VLA	-0.01	0.973	-0.03	0.893
	SL	VLA	0.16	0.460	0.04	0.867
	SLA	TD	0.02	0.920	0.05	0.814
	SD	TD	-0.01	0.973	0.00	1.000
	SL	TD	0.32	0.136	-0.17	0.436
	VLA	TD	0.10	0.637	0.14	0.499
	SLA	$\Delta^{13}C$	0.07	0.867	-0.29	0.493
	SD	$\Delta^{13}C$	0.21	0.610	-0.29	0.493
	SL	$\Delta^{13}C$	-0.36	0.385	0.00	1.000

	VLA	$\Delta^{13}C$	-0.07	0.867	0.21	0.610
	TD	$\Delta^{13}C$	-0.07	0.867	0.43	0.289
	SLA	N _{mass}	0.36	0.385	0.50	0.207
	SD	N _{mass}	-0.21	0.610	-0.07	0.867
	SL	N _{mass}	0.36	0.385	0.36	0.385
	VLA	N _{mass}	-0.07	0.867	0.14	0.736
	TD	N _{mass}	0.36	0.385	-0.07	0.867
	$\Delta^{13}C$	N _{mass}	-0.57	0.139	-0.21	0.610
Fragaria iinumae	SLA	SD	0.33	0.465	0.33	0.465
	SLA	SL	-0.05	0.919	-0.52	0.228
	SD	SL	0.24	0.607	-0.81	0.027
	SLA	VLA	-0.14	0.760	-0.05	0.919
	SD	VLA	0.14	0.760	0.24	0.607
	SL	VLA	-0.62	0.138	-0.24	0.607
	SLA	TD	-0.24	0.607	0.33	0.465
	SD	TD	0.05	0.919	0.43	0.337
	SL	TD	-0.52	0.228	-0.43	0.337
	VLA	TD	0.52	0.228	-0.33	0.465
	SLA	$\Delta^{13}C$	_	-	-	_
	SD	$\Delta^{13}C$	_	-	-	_
	SL	$\Delta^{13}C$	-	-	-	_
	VLA	$\Delta^{13}C$	_	-	-	_
	TD	$\Delta^{13}C$	-	-	-	_
	SLA	N _{mass}	-	-	-	-
	SD	N _{mass}	-	-	-	-
	SL	N _{mass}	-	-	-	-
	VLA	N _{mass}	-	-	-	-
	TD	N _{mass}	-	-	-	-
	$\Delta^{13}C$	N _{mass}	_	-	-	_
Fragaria	SLA	SD	-0.21	0.501	-0.03	0.934
moschata	SLA	SL	0.05	0.868	-0.10	0.739
	SD	SL	-0.08	0.803	-0.21	0.501
	SLA	VLA	-0.15	0.638	0.06	0.852
	SD	VLA	0.18	0.572	0.21	0.508
	SL	VLA	-0.03	0.926	-0.18	0.572
	SLA	TD	-0.27	0.391	-0.15	0.638
	SD	TD	0.61	0.037	-0.06	0.852
	SL	TD	-0.21	0.508	0.21	0.508
	VLA	TD	0.15	0.638	0.55	0.067
	SLA	$\Delta^{13}C$	0.00	1.000	-1.00	0.000
	SD	$\Delta^{13}C$	-0.33	0.667	0.33	0.667
	SL	$\Delta^{13}C$	0.00	1.000	-0.67	0.333

	VLA	$\Delta^{13}C$	0.00	1.000	0.33	0.667
	TD	$\Delta^{13}C$	0.00	1.000	-0.33	0.667
	SLA	N _{mass}	0.00	1.000	0.00	1.000
	SD	N _{mass}	0.33	0.667	0.67	0.333
	SL	N _{mass}	0.67	0.333	-0.33	0.667
	VLA	N _{mass}	0.00	1.000	0.67	0.333
	TD	N _{mass}	0.67	0.333	0.00	1.000
	$\Delta^{13}C$	N _{mass}	0.33	0.667	0.00	1.000
Fragaria	SLA	SD	0.01	0.973	-0.10	0.710
virginiana ssp.	SLA	SL	-0.05	0.866	-0.01	0.973
platypetala	SD	SL	0.56	0.029	-0.39	0.150
	SLA	VLA	-0.09	0.761	0.16	0.564
	SD	VLA	0.22	0.433	-0.07	0.813
	SL	VLA	0.39	0.150	-0.12	0.660
	SLA	TD	0.12	0.660	-0.01	0.973
	SD	TD	0.05	0.866	0.33	0.225
	SL	TD	-0.16	0.564	-0.22	0.433
	VLA	TD	-0.01	0.973	-0.28	0.319
	SLA	$\Delta^{13}C$	0.00	1.000	0.67	0.333
	SD	$\Delta^{13}C$	0.00	1.000	0.00	1.000
	SL	$\Delta^{13}C$	0.00	1.000	-0.67	0.333
	VLA	$\Delta^{13}C$	0.00	1.000	-1.00	0.000
	TD	$\Delta^{13}C$	-0.33	0.667	0.00	1.000
	SLA	N _{mass}	0.00	1.000	0.33	0.667
	SD	N _{mass}	0.00	1.000	-0.33	0.667
	SL	N _{mass}	0.00	1.000	0.33	0.667
	VLA	N _{mass}	0.00	1.000	0.00	1.000
	TD	N _{mass}	0.33	0.667	-1.00	0.000
	$\Delta^{13}C$	N _{mass}	0.33	0.667	0.00	1.000
Fragaria	SLA	SD	-0.04	0.793	0.21	0.211
virginiana ssp.	SLA	SL	0.07	0.690	-0.28	0.092
virginiana	SD	SL	0.18	0.286	-0.46	0.003
	SLA	VLA	-0.02	0.926	0.27	0.106
	SD	VLA	0.02	0.926	0.27	0.097
	SL	VLA	-0.02	0.899	-0.28	0.085
	SLA	TD	0.15	0.380	0.07	0.678
	SD	TD	-0.04	0.819	-0.04	0.799
	SL	TD	0.37	0.021	-0.15	0.371
	VLA	TD	0.06	0.728	0.25	0.136
	SLA	$\Delta^{13}C$	-0.38	0.282	0.07	0.855
	SD	$\Delta^{13}C$	0.56	0.095	0.16	0.668
	SL	$\Delta^{13}C$	0.07	0.855	0.24	0.496

	VLA	$\Delta^{13}C$	-0.02	0.951	-0.42	0.224
	TD	$\Delta^{13}C$	-0.20	0.580	-0.07	0.855
	SLA	N _{mass}	0.20	0.580	-0.20	0.580
	SD	N _{mass}	-0.20	0.580	0.07	0.855
	SL	N _{mass}	0.02	0.951	0.16	0.668
	VLA	N _{mass}	-0.16	0.668	-0.33	0.347
	TD	N _{mass}	0.20	0.580	-0.33	0.347
	$\Delta^{13}C$	N _{mass}	-0.02	0.951	0.29	0.418
Fragaria chiloensis	; SLA	SD	0.06	0.754	0.06	0.754
ssp. pacifica	SLA	SL	0.11	0.601	-0.19	0.343
	SD	SL	-0.08	0.709	-0.27	0.186
	SLA	VLA	0.32	0.140	-0.08	0.716
	SD	VLA	-0.16	0.476	0.11	0.632
	SL	VLA	-0.18	0.429	-0.05	0.833
	SLA	TD	0.07	0.774	-0.28	0.226
	SD	TD	0.07	0.774	-0.29	0.209
	SL	TD	-0.02	0.935	0.24	0.299
	VLA	TD	-0.43	0.053	0.12	0.593
	SLA	$\Delta^{13}C$	0.24	0.607	-0.05	0.919
	SD	$\Delta^{13}C$	0.33	0.465	-0.43	0.337
	SL	$\Delta^{13}C$	-0.33	0.465	-0.24	0.607
	VLA	$\Delta^{13}C$	0.05	0.919	0.43	0.337
	TD	Δ ¹³ C	0.24	0.607	0.71	0.071
	SLA	N _{mass}	0.43	0.337	0.24	0.607
	SD	N _{mass}	-0.24	0.607	0.43	0.337
	SL	N _{mass}	-0.14	0.760	0.43	0.337
	VLA	N _{mass}	-0.14	0.760	-0.43	0.337
	TD	N _{mass}	0.43	0.337	-0.33	0.465
	$\Delta^{13}C$	N _{mass}	0.43	0.337	-0.62	0.138
Fragaria chiloensis	; SLA	SD	-0.10	0.713	-0.20	0.458
ssp. chiloensis	SLA	SL	-0.05	0.854	0.13	0.623
	SD	SL	0.15	0.579	-0.27	0.318
	SLA	VLA	-0.05	0.873	0.24	0.484
	SD	VLA	0.05	0.873	0.02	0.958
	SL	VLA	-0.02	0.958	-0.09	0.790
	SLA	TD	-0.36	0.245	0.42	0.169
	SD	TD	0.27	0.391	-0.09	0.779
	SL	TD	0.42	0.169	-0.09	0.779
	VLA	TD	-0.16	0.631	0.45	0.160
	SLA	$\Delta^{13}C$	-0.33	0.667	0.33	0.667
	SD	$\Delta^{13}C$	0.67	0.333	-1.00	0.000
	SL	$\Delta^{13}C$	-0.33	0.667	-0.67	0.333

	VLA	$\Delta^{13}C$	-0.33	0.784	-0.33	0.784
	TD	$\Delta^{13}C$	0.33	0.667	0.67	0.333
	SLA	N _{mass}	-0.33	0.667	0.67	0.333
	SD	N _{mass}	-0.67	0.333	-0.67	0.333
	SL	N _{mass}	1.00	0.000	-0.33	0.667
	VLA	N _{mass}	1.00	0.000	-0.33	0.784
	TD	N _{mass}	0.33	0.667	1.00	0.000
	$\Delta^{13}C$	N _{mass}	-0.33	0.667	0.67	0.333
Fragaria	SLA	SD	0.21	0.610	-0.36	0.385
cascadensis	SLA	SL	0.29	0.493	0.00	1.000
	SD	SL	0.07	0.867	-0.50	0.207
	SLA	VLA	-0.64	0.086	0.50	0.207
	SD	VLA	0.00	1.000	-0.14	0.736
	SL	VLA	-0.36	0.385	-0.36	0.385
	SLA	TD	-0.07	0.867	-0.14	0.736
	SD	TD	0.00	1.000	0.36	0.385
	SL	TD	-0.07	0.867	-0.29	0.493
	VLA	TD	-0.14	0.736	0.07	0.867
	SLA	$\Delta^{13}C$	-	-	-	-
	SD	$\Delta^{13}C$	-	-	-	-
	SL	$\Delta^{13}C$	-	-	-	-
	VLA	$\Delta^{13}C$	-	-	-	-
	TD	$\Delta^{13}C$	-	-	-	-
	SLA	N _{mass}	-	-	-	-
	SD	N_{mass}	-	-	-	-
	SL	N_{mass}	-	-	-	-
	VLA	N _{mass}	-	-	-	-
	TD	N _{mass}	-	-	-	-
	$\Delta^{13}C$	N _{mass}	_	_	_	_

Non-parametric Kendall rank correlation coefficient (*r*) was estimated using the R package psych (Revelle, 2017). Functional trait mean was genotypic trait value averaged across all garden environments. Missing *r* values were due to few data for carbon isotope discrimination and nitrogen content in some taxa.

			ANOVA table with Type sums of squares			Type III res
Plasticity						
index	Trait plasticity	Fixed effects (Predictors)	Sum Sq	df	F	Pr(>F)
RDPI	SLA.RDPI	climatic niche distance mean	0.0024	1	1.00	0.323
		ploidy	0.0022	1	0.89	0.353
		ploidy:climatic niche distance				
		mean	0.0021	1	0.86	0.358
		$R^2_{m}: 0.012$				
		$R_{\rm c}^2$: 0.154				
	SL.RDPI	climatic niche distance mean	0.0038	1	1.75	0.200
		ploidy	0.0035	1	1.62	0.221
		ploidy:climatic niche distance				
		mean	0.0012	1	0.56	0.462
		$R^2_{m}: 0.051$				
		<i>R</i> ² _c : 0.173				
	SD.RDPI (sqrt)	climatic niche distance mean	0.0008	1	0.06	0.801
		ploidy	0.0045	1	0.37	0.547
		ploidy:climatic niche distance				
		mean	0.0153	1	1.25	0.273
		$R^2_{m}: 0.026$				
		$R_{\rm c}^2: 0.088$				
	VLA.RDPI (sqrt)	climatic niche distance mean	0.0170	1	1.08	0.305
		ploidy	0.0001	1	0.01	0.934
		ploidy:climatic niche distance				
		mean	0.0002	1	0.01	0.920
		$R^2_{m}: 0.006$				
		$R_{\rm c}^2: 0.084$				
	TD.RDPI	climatic niche distance mean	0.0009	1	0.03	0.865
		ploidy	0.0653	1	2.14	0.150
		ploidy:climatic niche distance				
		mean	0.0945	1	3.10	0.084
		$R^2_{m}: 0.015$				
		$R_{c}^{2}: 0.327$				
	N _{mass} .RDPI	climatic niche distance mean	0.0358	1	5.51	0.029
		ploidy	0.0001	1	0.02	0.881
		ploidy:climatic niche distance				
		mean	0.0002	1	0.03	0.872
		$R_{\rm m}^2$: 0.082				
		$R_{c}^{2}: 0.109$				

Table S6 Differences in trait plasticity between diploids and polyploids

climatic niche distance mean	0.0003	1	0.14	0.714
ploidy	0.0011	1	0.58	0.459
ploidy:climatic niche distance				
mean	0.0001	1	0.06	0.808
$R^2_{\rm m}: 0.077$				
<i>R</i> ² _c : 0.083				
climatic niche distance mean	0.0024	1	0.41	0.526
ploidy	0.0042	1	0.71	0.406
ploidy:climatic niche distance				
mean	0.0038	1	0.64	0.427
$R^2_{\rm m}: 0.007$				
$R^{2}_{c}: 0.150$				
climatic niche distance mean	0.0109	1	1.81	0.192
ploidy	0.0103	1	1.70	0.207
ploidy:climatic niche distance				
mean	0.0042	1	0.70	0.411
$R^{2}_{m}: 0.043$				
<i>R</i> ² _c : 0.135				
climatic niche distance mean	0.0085	1	0.36	0.551
ploidy	0.0197	1	0.83	0.365
ploidy:climatic niche distance				
mean	0.0358	1	1.49	0.223
$R^{2}_{m}: 0.012$				
$R^{2}_{c}: 0.012$				
climatic niche distance mean	0.0364	1	1.00	0.323
ploidy	0.0000	1	0.00	0.982
ploidy:climatic niche distance				
mean	0.0000	1	0.00	0.979
$R^2_{\rm m}: 0.006$				
$R^{2}_{c}: 0.086$				
climatic niche distance mean	0.0001	1	0.00	0.968
ploidy	0.1507	1	3.09	0.084
ploidy:climatic niche distance				
mean	0.1595	1	3.27	0.075
$R^{2}_{m}: 0.017$				
$R_{c}^{2}: 0.060$				
climatic niche distance mean	0.0709	1	6.25	0.022
ploidy	0.0001	1	0.01	0.919
ploidy:climatic niche distance				
mean	0.0001	1	0.01	0.932
$R^2_{\rm m}: 0.087$				
	climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.077$ $R^2_c : 0.083$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.007$ $R^2_c : 0.150$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.043$ $R^2_c : 0.135$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.012$ $R^2_c : 0.012$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.006$ $R^2_c : 0.086$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.006$ $R^2_c : 0.086$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.017$ $R^2_c : 0.060$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.017$ $R^2_c : 0.060$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.017$ $R^2_c : 0.060$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.017$ $R^2_c : 0.060$ climatic niche distance mean ploidy ploidy:climatic niche distance mean $R^2_m : 0.017$	climatic niche distance mean 0.0003 ploidy 0.0011 ploidy:climatic niche distancemean $R^2_m: 0.077$ $R^2_c: 0.083$ climatic niche distance mean 0.0024 ploidy 0.0042 ploidy:climatic niche distancemeanmean 0.0038 $R^2_m: 0.007$ $R^2_c: 0.150$ climatic niche distance mean 0.0109 ploidy:climatic niche distance mean 0.0042 ploidy:climatic niche distance mean 0.0042 $R^2_m: 0.043$ $R^2_c: 0.135$ climatic niche distance mean 0.0085 ploidy 0.0197 ploidy:climatic niche distancemeanmean 0.0358 $R^2_m: 0.043$ $R^2_c: 0.012$ climatic niche distance mean 0.0358 $R^2_m: 0.012$ $R^2_c: 0.012$ climatic niche distance mean 0.0000 ploidy:climatic niche distancemeanmean 0.0000 ploidy:climatic niche distancemeanmean 0.0000 ploidy:climatic niche distancemeanmean 0.0001 ploidy:climatic niche distancemeanmean 0.1507 ploidy:climatic niche distancemeanmean 0.1507 ploidy:climatic niche distancemeanmean 0.1595 $R^2_c: 0.060$ $R^2_c: 0.060$ climatic niche distance mean 0.0709 ploidy:climatic niche distancemeanmean 0.0001 ploidy:climatic niche distance <td>climatic niche distance mean 0.0003 1 ploidy 0.0011 1 ploidy:climatic niche distance mean 0.0001 1 R^2_m: 0.077 R^2_c: 0.083 </td> <td>climatic niche distance mean 0.0003 1 0.14 ploidy 0.0011 1 0.58 ploidy:climatic niche distance mean 0.0001 1 0.06 R^2_m: 0.077 R^2_c: 0.083 . . . climatic niche distance mean 0.0024 1 0.41 ploidy 0.0042 1 0.71 ploidy:climatic niche distance . . . mean 0.0038 1 0.64 R^2_m: 0.007 . . . R^2_c: 0.150 . . . climatic niche distance mean 0.0109 1 1.81 ploidy 0.0103 1 1.70 ploidy:climatic niche distance . . . mean 0.0042 1 0.70 R^2_c: 0.0135 . . . climatic niche distance mean 0.0085 1 0.36 ploidy:climatic niche distance mean 0.0364 1 1.0</td>	climatic niche distance mean 0.0003 1 ploidy 0.0011 1 ploidy:climatic niche distance mean 0.0001 1 R^2_m : 0.077 R^2_c : 0.083	climatic niche distance mean 0.0003 1 0.14 ploidy 0.0011 1 0.58 ploidy:climatic niche distance mean 0.0001 1 0.06 R^2_m : 0.077 R^2_c : 0.083 . . . climatic niche distance mean 0.0024 1 0.41 ploidy 0.0042 1 0.71 ploidy:climatic niche distance . . . mean 0.0038 1 0.64 R^2_m : 0.007 . . . R^2_c : 0.150 . . . climatic niche distance mean 0.0109 1 1.81 ploidy 0.0103 1 1.70 ploidy:climatic niche distance . . . mean 0.0042 1 0.70 R^2_c : 0.0135 . . . climatic niche distance mean 0.0085 1 0.36 ploidy:climatic niche distance mean 0.0364 1 1.0

ΡI

Δ ¹³ C.Pl (sqrt)	climatic niche distance mean	0.0003	1 0.09	0.772
	ploidy	0.0027	1 0.72	0.409
	ploidy:climatic niche distance			
	mean	0.0005	1 0.12	0.735
	$R^2_{m}: 0.078$			
	$R^2_{c}: 0.093$			

General linear mixed model (LMM) specification:

model <- Imer(Trait plasticity ~ Fixed effects + (1 | Nested random effects)) Fixed effects: climatic niche distance mean (i.e. genotypic climatic niche distance averaged across all garden environments) + ploidy + ploidy:climatic niche distance mean Nested random effects: ploidy/taxon/population

RDPI, relative distance plasticity index; PI phenotypic plasticity index. The response variable of each LMM was power transformed if necessary. R^2_m , model marginal R^2 representing variance explained by fixed effects; R^2_c , model conditional R^2 representing variance explained by both fixed effects and random effects.

		ANOVA table with Type III sums of squares				
Fitness	Fixed effects (Predictors)	Sum Sq	df	F	Pr(> <i>F</i>)	
(Composite fitr	ess climatic niche distance	2.23	1	71.54	2.22E-16	
index) ^{0.1}	garden	35.08	2	562.96	< 2.2E-16	
	ploidy	0.62	1	20.02	7.05E-05	
	ploidy:garden	0.31	2	4.99	0.007	
	ploidy:climatic niche					
	distance	0.32	1	10.24	0.001	
	R^2_{m} : 0.614					
	$R^{2}_{c}: 0.712$					

Table S7 Differences in fitness between diploids and polyploids

General linear mixed model (LMM) specification:

model <- Imer(Fitness ~ Fixed effects + (1 | Nested random effects))

Fixed effects: climatic niche distance + garden + ploidy + ploidy:garden + ploidy:climatic niche distance

Nested random effects: ploidy/taxon/population

The response variable of the LMM was power transformed (power parameter = 0.1). R^{2}_{m} , model marginal R^{2} representing variance explained by fixed effects; R^{2}_{c} , model conditional R^{2} representing variance explained by both fixed effects and random effects.

		ANOVA table with Type III sums of					
		squares					
Functional							
trait for		6	.16	-			
model	Fixed effects (Predictors)	Sum Sq	ar	F	Pr(>F)		
SLA	climatic niche distance mean	0.055	1	2.22	0.141		
	SLA.RDPI	0.034	1	1.37	0.243		
	SLA.mean	0.137	1	5.57	0.019		
	ploidy:SLA.RDPI	0.004	1	0.17	0.681		
	ploidy:SLA.mean	0.049	1	1.99	0.175		
	$R_{\rm m}^2$: 0.053						
	<u><i>R</i>²_c: 0.581</u>						
SL	climatic niche distance mean	0.043	1	1.91	0.172		
	SL.RDPI	0.511	1	22.72	0.000		
	SL.mean	0.235	1	10.46	0.001		
	ploidy:SL.RDPI	0.033	1	1.47	0.226		
	ploidy:SL.mean	0.000	1	0.01	0.925		
	$R_{\rm m}^2$: 0.253						
	$R_{c}^{2}: 0.553$						
SD	climatic niche distance mean	0.049	1	2.01	0.161		
	SD.RDPI	0.001	1	0.05	0.818		
	SD.mean	0.013	1	0.55	0.459		
	ploidy:SD.RDPI	0.185	1	7.58	0.006		
	ploidy:SD.mean	0.030	1	1.23	0.276		
	$R^2_{m}: 0.192$						
	$R^{2}_{c}: 0.539$						
VLA	climatic niche distance mean	0.008	1	0.36	0.553		
	VLA.RDPI	0.000	1	0.00	0.997		
	VLA.mean	0.106	1	4.69	0.031		
	ploidy:VLA.RDPI	0.085	1	3.76	0.054		
	ploidy:VLA.mean	0.159	1	7.03	0.015		
	<i>R</i> ² _m : 0.203						
	$R_{\rm c}^2$: 0.575						
TD	climatic niche distance mean	0.020	1	0.98	0.326		
	TD.RDPI	0.360	1	17.62	0.000		
	TD.mean	0.122	1	5.98	0.015		
	ploidy:TD.RDPI	0.048	1	2.36	0.126		
	ploidy:TD.mean	0.050	1	2.45	0.124		
	<i>R</i> ² _m : 0.265						

Table S8 Relationships between average fitness and trait means and trait plasticities in heterogeneous garden environments

$R^{2}_{c}: 0.662$				
climatic niche distance mean	0.020	1	0.93	0.340
N _{mass} .RDPI	0.000	1	0.00	0.969
N _{mass} .mean	0.000	1	0.01	0.927
ploidy: N _{mass} . RDPI	0.000	1	0.00	0.948
ploidy: N _{mass} . mean	0.066	1	3.06	0.088
<i>R</i> ² _m : 0.227				
$R^{2}_{c}: 0.547$				
climatic niche distance mean	0.023	1	1.11	0.297
Δ ¹³ C.RDPI	0.036	1	1.72	0.195
Δ ¹³ C.mean	0.003	1	0.15	0.704
ploidy:∆ ¹³ C.RDPI	0.007	1	0.36	0.553
ploidy:∆ ¹³ C.mean	0.050	1	2.42	0.137
<i>R</i> ² _m : 0.280				
$R_{c}^{2}: 0.563$				
	$R^2_c: 0.662$ climatic niche distance mean $N_{mass}.RDPI$ $N_{mass}.RDPI$ ploidy: $N_{mass}.RDPI$ ploidy: $N_{mass}.mean$ $R^2_m: 0.227$ $R^2_c: 0.547$ climatic niche distance mean $\Delta^{13}C.RDPI$ $\Delta^{13}C.RDPI$ $\Delta^{13}C.mean$ ploidy: $\Delta^{13}C.RDPI$	$\begin{array}{c c} R^2{}_{\rm c}: 0.662 \\ \hline climatic niche distance mean & 0.020 \\ N_{\rm mass}. RDPI & 0.000 \\ N_{\rm mass}. mean & 0.000 \\ ploidy: N_{\rm mass}. RDPI & 0.000 \\ ploidy: N_{\rm mass}. mean & 0.066 \\ R^2{}_{\rm m}: 0.227 \\ \hline R^2{}_{\rm c}: 0.547 \\ \hline climatic niche distance mean & 0.023 \\ \Delta^{13} C. RDPI & 0.036 \\ \Delta^{13} C. mean & 0.003 \\ ploidy: \Delta^{13} C. RDPI & 0.007 \\ ploidy: \Delta^{13} C. mean & 0.050 \\ R^2{}_{\rm m}: 0.280 \\ R^2{}_{\rm c}: 0.563 \\ \hline \end{array}$	$\begin{array}{c c} \hline R^2{}_{\rm c}: 0.662 \\ \hline climatic niche distance mean & 0.020 & 1 \\ \hline N_{\rm mass}. {\rm RDPI} & 0.000 & 1 \\ \hline N_{\rm mass}. {\rm mean} & 0.000 & 1 \\ \hline ploidy: N_{\rm mass}. {\rm RDPI} & 0.000 & 1 \\ \hline ploidy: N_{\rm mass}. {\rm mean} & 0.066 & 1 \\ \hline R^2{}_{\rm m}: 0.227 \\ \hline R^2{}_{\rm c}: 0.547 \\ \hline climatic niche distance mean & 0.023 & 1 \\ \Delta^{13}{\rm C.RDPI} & 0.036 & 1 \\ \Delta^{13}{\rm C.mean} & 0.003 & 1 \\ \hline ploidy: \Delta^{13}{\rm C.RDPI} & 0.007 & 1 \\ \hline ploidy: \Delta^{13}{\rm C.mean} & 0.050 & 1 \\ \hline R^2{}_{\rm m}: 0.280 \\ \hline R^2{}_{\rm c}: 0.563 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

General linear mixed model specification:

model <- Imer((Fitness mean)^{0.1} ~ Fixed effects + (1 | Nested random effects)) Fixed effects: climatic niche distance mean + trait plasticity + trait mean + ploidy:trait plasticity + ploidy:trait mean, where climatic niche distance mean and trait mean represent genotypic values averaged across all garden environments

Nested random effects: ploidy/taxon/population

The response variable (genotypic fitness averaged across all garden environments) of each LMM was power transformed (power parameter = 0.1). R^2_m , model marginal R^2 representing variance explained by fixed effects; R^2_c , model conditional R^2 representing variance explained by both fixed effects and random effects.

References

- **Bartoń K. 2017.** MuMIn: Multi-model inference. R package version 1.40.40. https://CRAN.R-project.org/package=MuMIn.
- Bates D, Machler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models using Ime4. *Journal of Statistical Software* 67: 1-48.
- Ehleringer JR, Björkman O. 1978. Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36: 151-162.
- **Farquhar GD, Richards RA. 1984.** Isotopic composition of plant carbon correlates with wateruse efficiency of wheat genotypes. *Australian Journal of Plant Physiology* **11**: 539-552.
- **Hadfield JD. 2010.** MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. *Journal of Statistical Software* **33**: 1-22.
- Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. *Nature* 424: 901-908.
- Lenth RV. 2016. Least-squares means: the R package Ismeans. *Journal of Statistical Software* 69: 1-33.
- **Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R. 2009.** Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. *New Phytologist* **182**: 565-588.
- **Revelle W. 2017.** psych: Procedures for personality and psychological research, Northwestern University, Evanston, Illinois, USA. R package version 1.7.8. https://CRAN.R-project.org/package=psych.
- Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. *New Phytologist* **198**: 983-1000.
- Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. *Nature Methods* 9: 671-675.
- Sletvold N, Ågren J. 2012. Variation in tolerance to drought among Scandinavian populations of Arabidopsis lyrata. Evolutionary Ecology 26: 559-577.
- **Stamatakis A. 2014.** RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**: 1312-1313.
- Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.