# SUPPLEMENTS 2: FULL DATA OF THE META-ANALYSES (SECTION 1) AND POST-HOC META-ANALYSES (SECTION 2)

# Dopamine in critically ill patients with cardiac dysfunction: a systematic review with meta-analysis and trial sequential analysis

Bart Hiemstra,<sup>1</sup> MD, Geert Koster,<sup>1</sup> MD, Jørn Wetterslev,<sup>2</sup> MD, PhD, Christian Gluud,<sup>2</sup> MD, Dr. Med. Sci., Janus C Jakobsen, <sup>2,3</sup> MD, PhD, Thomas WL Scheeren,<sup>4</sup> MD, PhD, Frederik Keus,<sup>1</sup> MD, PhD, Iwan CC van der Horst,<sup>1</sup> MD, PhD

<sup>1</sup> Department of Critical Care, University of Groningen, University Medical Center Groningen, The Netherlands

<sup>2</sup> The Copenhagen Trial Unit (CTU), Centre for Clinical Intervention Research, Copenhagen, Denmark
 <sup>3</sup> Department of Cardiology, Holbæk Hospital, Denmark

<sup>4</sup> Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, The Netherlands

# Table of contents

|   | 1.1.                                                                                                                                                                                                                                               | E-Table 1: In- and exclusion criteria and outcome of the included trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                      |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|   | 1.2.                                                                                                                                                                                                                                               | E-Table 2: Risk and odds ratios of all outcomes with subgroups analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                      |
|   | 1.3.                                                                                                                                                                                                                                               | Forest plots of mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                      |
|   | 1.4.                                                                                                                                                                                                                                               | Trial sequential analysis of mortality (same as in manuscript)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13                                                                                     |
|   | 1.5.                                                                                                                                                                                                                                               | Forest plots of serious adverse events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                     |
|   | 1.6.                                                                                                                                                                                                                                               | Trial sequential analysis of serious adverse events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                     |
|   | 1.7.                                                                                                                                                                                                                                               | Forest plots of myocardial infarction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                                     |
|   | 1.8.                                                                                                                                                                                                                                               | Trial sequential analysis of myocardial infarction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                     |
|   | 1.9.                                                                                                                                                                                                                                               | Forest plots of ventricular tachyarrhythmias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23                                                                                     |
|   | 1.10.                                                                                                                                                                                                                                              | Trial sequential analysis of ventricular tachyarrhythmias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26                                                                                     |
|   | 1.11.                                                                                                                                                                                                                                              | Forest plots of renal replacement therapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                     |
|   | 1.12.                                                                                                                                                                                                                                              | Trial sequential analysis of renal replacement therapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                     |
|   | 1.13.                                                                                                                                                                                                                                              | Forest plots of atrial tachyarrhythmias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31                                                                                     |
|   | 1.14.                                                                                                                                                                                                                                              | Trial sequential analysis of atrial tachyarrhythmias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                     |
|   | 1.15.                                                                                                                                                                                                                                              | E-Table 2. Reported harmfull outcomes in observational studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34                                                                                     |
|   | 1.16.                                                                                                                                                                                                                                              | Manhattan matrix plot with beneficial outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                                                                     |
|   | 1.17.                                                                                                                                                                                                                                              | Manhattan matrix plot with harmful outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                     |
|   | 1.18.                                                                                                                                                                                                                                              | Funnel plots for small trial bias including publication bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37                                                                                     |
| 2 | . Post                                                                                                                                                                                                                                             | t-hoc analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                                                                     |
|   | 2.1.                                                                                                                                                                                                                                               | E-Table 3: Characteristics of included trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                     |
|   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                                                                                      |
|   | 2.2.                                                                                                                                                                                                                                               | Risk of bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |
|   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44                                                                                     |
|   | 2.2.                                                                                                                                                                                                                                               | Risk of bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44<br>46                                                                               |
|   | 2.2.<br>2.3.                                                                                                                                                                                                                                       | Risk of bias<br>All-cause mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44<br>46<br>46                                                                         |
|   | 2.2.<br>2.3.<br>2.4.                                                                                                                                                                                                                               | Risk of bias<br>All-cause mortality<br>Other outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44<br>46<br>46<br>47                                                                   |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> </ol>                                                                                                                                                                                 | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44<br>46<br>46<br>47<br>60                                                             |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> </ol>                                                                                                                                                                   | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44<br>46<br>46<br>47<br>60<br>61                                                       |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> </ol>                                                                                                                                                     | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality<br>Forest plots of serious adverse events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44<br>46<br>46<br>47<br>60<br>61<br>65                                                 |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> </ol>                                                                                                                                       | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality<br>Forest plots of serious adverse events<br>Trial sequential analysis of serious adverse events                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44<br>46<br>46<br>47<br>60<br>61<br>65<br>66                                           |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> <li>2.9.</li> </ol>                                                                                                                         | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality<br>Forest plots of serious adverse events<br>Trial sequential analysis of serious adverse events<br>Forest plots of myocardial infarction                                                                                                                                                                                                                                                                                                                                                                                                                          | 44<br>46<br>47<br>60<br>61<br>65<br>66<br>70                                           |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> <li>2.9.</li> <li>2.10.</li> </ol>                                                                                                          | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality<br>Forest plots of serious adverse events<br>Trial sequential analysis of serious adverse events<br>Forest plots of myocardial infarction<br>Trial sequential analysis of myocardial infarction                                                                                                                                                                                                                                                                                                                                                                    | 44<br>46<br>47<br>60<br>61<br>65<br>66<br>70<br>71                                     |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> <li>2.9.</li> <li>2.10.</li> <li>2.11.</li> </ol>                                                                                           | Risk of bias<br>All-cause mortality.<br>Other outcomes.<br>Forest plots of mortality.<br>Trial sequential analysis of mortality .<br>Forest plots of serious adverse events.<br>Trial sequential analysis of serious adverse events.<br>Forest plots of myocardial infarction .<br>Trial sequential analysis of myocardial infarction .<br>Trial sequential analysis of myocardial infarction .<br>Forest plots of ventricular tachyarrhythmias.                                                                                                                                                                                                                                                | 44<br>46<br>47<br>60<br>61<br>65<br>66<br>70<br>71<br>75                               |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> <li>2.9.</li> <li>2.10.</li> <li>2.11.</li> <li>2.12.</li> </ol>                                                                            | Risk of bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44<br>46<br>47<br>60<br>61<br>65<br>66<br>70<br>71<br>75<br>76                         |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> <li>2.9.</li> <li>2.10.</li> <li>2.11.</li> <li>2.12.</li> <li>2.13.</li> </ol>                                                             | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality<br>Forest plots of serious adverse events.<br>Trial sequential analysis of serious adverse events.<br>Forest plots of myocardial infarction<br>Trial sequential analysis of myocardial infarction<br>Forest plots of ventricular tachyarrhythmias<br>Trial sequential analysis of ventricular tachyarrhythmias.<br>Forest plots of renal replacement therapy                                                                                                                                                                                                       | 44<br>46<br>47<br>60<br>61<br>65<br>70<br>71<br>75<br>76<br>80                         |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> <li>2.9.</li> <li>2.10.</li> <li>2.11.</li> <li>2.12.</li> <li>2.13.</li> <li>2.14.</li> </ol>                                              | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality<br>Forest plots of serious adverse events<br>Trial sequential analysis of serious adverse events<br>Forest plots of myocardial infarction<br>Trial sequential analysis of myocardial infarction<br>Trial sequential analysis of myocardial infarction<br>Forest plots of ventricular tachyarrhythmias<br>Trial sequential analysis of ventricular tachyarrhythmias<br>Forest plots of renal replacement therapy<br>Trial sequential analysis of renal replacement therapy                                                                                          | 44<br>46<br>47<br>60<br>61<br>65<br>70<br>71<br>75<br>76<br>80<br>81                   |
|   | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> <li>2.9.</li> <li>2.10.</li> <li>2.11.</li> <li>2.12.</li> <li>2.13.</li> <li>2.14.</li> <li>2.15.</li> </ol>                               | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality<br>Forest plots of serious adverse events<br>Trial sequential analysis of serious adverse events<br>Forest plots of myocardial infarction<br>Trial sequential analysis of myocardial infarction<br>Forest plots of ventricular tachyarrhythmias<br>Trial sequential analysis of ventricular tachyarrhythmias<br>Forest plots of renal replacement therapy<br>Trial sequential analysis of renal replacement therapy<br>Forest plots of atrial tachyarrhythmias                                                                                                     | 44<br>46<br>47<br>60<br>61<br>65<br>66<br>70<br>71<br>75<br>76<br>80<br>81<br>85       |
| 3 | <ol> <li>2.2.</li> <li>2.3.</li> <li>2.4.</li> <li>2.5.</li> <li>2.6.</li> <li>2.7.</li> <li>2.8.</li> <li>2.9.</li> <li>2.10.</li> <li>2.11.</li> <li>2.12.</li> <li>2.13.</li> <li>2.14.</li> <li>2.15.</li> <li>2.16.</li> <li>2.17.</li> </ol> | Risk of bias<br>All-cause mortality<br>Other outcomes<br>Forest plots of mortality<br>Trial sequential analysis of mortality<br>Forest plots of serious adverse events<br>Trial sequential analysis of serious adverse events<br>Forest plots of myocardial infarction<br>Trial sequential analysis of myocardial infarction<br>Forest plots of ventricular tachyarrhythmias<br>Trial sequential analysis of ventricular tachyarrhythmias<br>Forest plots of renal replacement therapy<br>Forest plots of atrial tachyarrhythmias<br>Trial sequential analysis of renal replacement therapy<br>Forest plots of atrial tachyarrhythmias<br>Trial sequential analysis of atrial tachyarryhythmias | 44<br>46<br>47<br>60<br>61<br>65<br>66<br>70<br>71<br>75<br>76<br>80<br>81<br>85<br>88 |

| Trial          | Year  | Inclusion criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exclusion criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outcomes                                                         |
|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Acute heart fa | ilure |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |
| Kamiya [1]     | 2015  | <ul> <li>NYHA class III–IV</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Age &lt;20 years or &gt;85 years</li> <li>Systolic blood pressure &lt;90 mmHg</li> <li>Severe liver injury (ASAT/ALAT &gt;100 IU/L)</li> <li>Severe renal failure (creatinine &gt;2.0 mg/dL)</li> <li>Acute myocardial infarction within 3 months</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mortality (in-hospital)<br>Serious adverse events<br>Arrhythmias |
| Chen [4]       | 2013  | <ul> <li>Age ≥18 years</li> <li>Prior clinical diagnosis of HF</li> <li>Enrolled &lt;24 hours of hospital admission</li> <li>Anticipated hospitalization of ≥72 hours</li> <li>At least one symptom (dyspnoea, orthopnoea, or oedema) and one sign (rales on auscultation, peripheral oedema, ascites, pulmonary vascular congestion on chest radiography</li> <li>Estimated GFR &gt;15 but &lt;60 mL/min/1.73 m<sup>2</sup></li> <li>Ability to have a PICC or central line placed &lt;12 hours of randomization and study drug infusion started</li> </ul> | <ul> <li>Received or anticipated need for IV vasoactive treatment or ultrafiltration therapy for HF</li> <li>Systolic blood pressure &lt;90 mmHg</li> <li>Haemoglobin &lt;9 g/dL (&lt;5.6 mmol/L)</li> <li>Renal replacement therapy</li> <li>History of renal artery stenosis &gt;50%</li> <li>Haemodynamically significant arrhythmias &lt;4 weeks</li> <li>Acute coronary syndrome &lt;4 weeks</li> <li>HF secondary to: active myocarditis, hypertrophic obstructive cardiomyopathy, greater than moderate stenotic valvular disease, restrictive or constrictive cardiomyopathy, complex congenital heart disease, constrictive pericarditis</li> <li>Non-cardiac pulmonary oedema</li> <li>Clinical evidence of digoxin toxicity</li> <li>Need for mechanical hemodynamic support</li> <li>Sepsis</li> <li>Terminal illness with expected survival of &lt;1 year</li> <li>Pregnancy or nursing mothers</li> <li>Anticipated need for IV contrast use</li> </ul> | Mortality (60 days)<br>Serious adverse events<br>Arrhythmias     |
| Varriale [10]  | 1997  | <ul> <li>Severe chronic CHF (NYHA class III or IV)</li> <li>Depressed left ventricular function</li> <li>Etiologically related to coronary artery disease or<br/>idiopathic dilated cardiomyopathy</li> <li>Signs of advanced pulmonary and systemic<br/>oedema</li> </ul>                                                                                                                                                                                                                                                                                   | <ul> <li>Systolic blood pressure &lt;100 mmHg</li> <li>Oliguria</li> <li>Serum creatinine &gt;2.9 mg/dL</li> <li>Serum potassium &lt;3.0 mmol/dL</li> <li>Haematocrit &lt;30%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mortality (in-hospital)<br>Arrhythmias                           |

# 1.1. E-Table 1: In- and exclusion criteria and outcome of the included trials

|               | •             | Chemical markers of renal impairment: urea<br>nitrogen ≥25 mg/dL and creatinine ≥1.5 mg/dL.                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Shah [2]      | :             | Age $\geq$ 18 years<br>HF and on daily use of oral loop diuretic > 1 month<br>Enrolled <24h of hospital admission<br>At least one symptom (dyspnoea, orthopnoea, or<br>oedema) and one sign (rales on auscultation,<br>peripheral oedema, ascites) or pulmonary vascular<br>congestion on chest radiography<br>Anticipated need for IV loop diuretics for $\geq$ 48 h | <ul> <li>Systolic blood pressure &lt;90 mmHg</li> <li>Serum creatinine &gt;3.0 mg/dL or renal replacement therapy</li> <li>Anticipated need for IV contrast use</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            | Mortality (30 days)<br>Serious adverse events |
| Arutiunov [6] |               | Age >18 years<br>Decompensated congestive HF with an ischemic<br>origin<br>Sinus rhythm or persistent tachycardia at rest<br>Pulmonary artery wedge pressure >20 mmHg<br>Cardiac index <2.6 L/min/m <sup>2</sup><br><i>LVEF</i> <35%<br>Systolic blood pressure >85 mmHg<br>Serum creatinine <200 μmol/L                                                              | <ul> <li>Systolic blood pressure &lt;85 mmHg)</li> <li>Creatinine &gt;200 μmol/L, GFR &lt;30 ml/min</li> <li>Acute coronary syndrome &lt;2 months</li> <li>Rheumatic valvular heart disease</li> <li>Chronic obstructive pulmonary disease</li> <li>Obstructive or restrictive cardiomyopathy</li> <li>Mobitz II or III atrioventricular blockade without pacemaker</li> <li>Arrhythmia or atrial flutter</li> <li>Heart rate &lt;40 beats/minute</li> <li>Pregnancy or period of breastfeeding</li> <li>Acute cerebrovascular accident &lt;6 months</li> <li>Regular intake of β-blockers</li> </ul> | Mortality (30 days)<br>Myocardial infarction  |
| Hsueh [7]     | •             | HF of NYHA class III or IV;<br>Previously untreated HF or had stopped<br>medications by personal decision for >2 weeks<br>LVEF ≤45%                                                                                                                                                                                                                                   | <ul> <li>Active myocarditis</li> <li>Thyroid disease</li> <li>Severe hypertension</li> <li>Atrial flutter-fibrillation</li> <li>High-degree atrioventricular block</li> <li>Pacemaker therapy</li> <li>Chronic obstructive lung disease</li> <li>Severe hepatic or renal disease</li> <li>Diabetes mellitus</li> </ul>                                                                                                                                                                                                                                                                                | Mortality (72 hours)<br>Arrhythmias           |
| Cotter [9]    | 1997 <b>■</b> | Hospitalised because of congestive HF                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Severe renal failure (serum creatinine &gt;200 µmol/L<br/>or creatinine clearance &lt;30 ml/min)</li> <li>Systolic blood pressure ≤110 mm Hg</li> <li>Severe valvular disease</li> <li>LVEF &gt;40%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               | Mortality (in-hospital)<br>Arrhythmias        |

| Giamouzis [5]                     | 2010         | <ul> <li>Age &gt;18 years</li> <li>History of HF</li> <li>Oxygen saturation &lt;90% on admission</li> <li>Deterioration of HF symptoms &lt;6 hours: dyspnoea<br/>at rest, orthopnoea, and paroxysmal nocturnal<br/>dyspnoea, accompanied by signs of congestion (3<sup>rd</sup><br/>heart sound, jugular venous distension, pulmonary<br/>rales)</li> <li>B-type natriuretic peptide &gt;400 pg/mL or NT-<br/>proBNP &gt;1500 pg/mL</li> </ul>                                                              | <ul> <li>Acute de novo HF</li> <li>Systolic blood pressure &lt;90 mmHg</li> <li>Severe renal failure (admission creatinine &gt;215 mmol/L or estimated GFR &gt;30 mL/min/1.73 m<sup>2</sup></li> <li>Severe valvular disease</li> <li>HF secondary to congenital heart disease</li> <li>Scheduled cardiac surgery &lt;2 months</li> <li>Anticipated need for IV contrast use</li> </ul> | Mortality (60 days)<br>Serious adverse events                                            |
|-----------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Triposkiadis [3]                  | 2014         | <ul> <li>Age &gt;18 years</li> <li>History of HF</li> <li>Dyspnoea on minimal exertion or rest dyspnoea<br/>and oxygen saturation &lt;90% on admission</li> <li>At least one or more: signs of congestion (3<sup>rd</sup> heart<br/>sound or pulmonary rales &gt;<sup>1</sup>/<sub>3</sub> or lower extremity/<br/>sacral oedema &gt;1+), interstitial congestion or<br/>pleural effusion on chest radiography, and B-type<br/>natriuretic peptide &gt;400 pg/mL or NT-proBNP<br/>&gt;1500 pg/mL</li> </ul> | <ul> <li>Creatinine &gt;200 µmol/L or GFR &gt;30 mL/min/1.73 m<sup>2</sup></li> <li>Systolic blood pressure &lt;90 mmHg</li> <li>Severe valvular disease</li> <li>HF secondary to complex congenital heart disease</li> <li>Suspected or confirmed acute coronary syndrome</li> <li>Scheduled cardiac surgery &lt;6 months</li> <li>Anticipated need for IV contrast use</li> </ul>     | Mortality (1 year)<br>Serious adverse events<br>Arrhythmias<br>Renal replacement therapy |
|                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |
| Sindone [8]                       | 1998         | <ul> <li>HF of NYHA class IV</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Not described (abstract only)</li> </ul>                                                                                                                                                                                                                                                                                                                                       | Mortality (1 year)                                                                       |
| Sindone [8]<br>Cardiac surgery    | 1998         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Not described (abstract only)</li> </ul>                                                                                                                                                                                                                                                                                                                                       | Mortality (1 year)                                                                       |
|                                   | 1998<br>2000 | <ul> <li>HF of NYHA class IV</li> <li>Manifested with either acute oliguric or anuric renal failure in the postoperative period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Acute renal failure associated with inadequate<br/>cardiac output and tissue perfusion</li> </ul>                                                                                                                                                                                                                                                                              | Mortality (1 year)<br>Renal replacement therapy                                          |
| Cardiac surgery                   |              | <ul> <li>HF of NYHA class IV</li> <li>Manifested with either acute oliguric or anuric</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Acute renal failure associated with inadequate</li> </ul>                                                                                                                                                                                                                                                                                                                      |                                                                                          |
| Cardiac surgery<br>Sirivella [14] | 2000         | <ul> <li>HF of NYHA class IV</li> <li>Manifested with either acute oliguric or anuric renal failure in the postoperative period</li> <li>Adequate cardiac output and tissue perfusion</li> <li>Cardiac surgery requiring cardiopulmonary bypass</li> <li>Preoperative renal dysfunction: creatinine</li> </ul>                                                                                                                                                                                              | <ul> <li>Acute renal failure associated with inadequate cardiac output and tissue perfusion</li> <li>Preoperative renal replacement therapy</li> <li>Usage of enflurane</li> </ul>                                                                                                                                                                                                      | Renal replacement therapy                                                                |

|              |      |                                                                                                                                                                    | <ul> <li>Pregnancy</li> </ul>                                                                                   |                                                                                           |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Hausen [17]  | 1992 | <ul> <li>Age &gt;18 years</li> <li>Mitral valve operation</li> <li>Mitral valve disease</li> <li>CI &lt;2.5 L/min/m<sup>2</sup> pre-operatively at rest</li> </ul> | <ul><li>Revascularization procedures</li><li>Aortic valve operations</li></ul>                                  | Mortality (6 ± 3 months)<br>Myocardial infarction<br>Arrhythmias                          |
| Oppizzi [11] | 1997 | <ul> <li>Severe left ventricular dysfunction (LVEF &lt;35%)</li> <li>Requiring CABG</li> </ul>                                                                     | <ul> <li>The need for an associated intervention during<br/>cardiac surgery</li> </ul>                          | Mortality (in-hospital)<br>Serious adverse events<br>Myocardial infarction<br>Arrhythmias |
| Tarr [16]    | 1993 | <ul> <li>Mitral valve surgery from the time of weaning<br/>from cardiopulmonary bypass</li> </ul>                                                                  | <ul> <li>Failure of drug measured by hemodynamic<br/>parameters and the patient's clinical condition</li> </ul> | Mortality (in-hospital)                                                                   |

Trials are sorted by setting and dose administered. \* The timing of starting the experimental administration differed between these two treatment arms. Abbreviations: AHF, acute heart failure; LVEF, left-ventricular ejection fraction; CABG, coronary artery bypass grafting; CI, cardiac index; GFR, glomerular filtration rate; HF, heart failure; LVEF, left ventricular ejection fraction; NYHA, New York health association.

# 1.2. E-Table 2: Risk and odds ratios of all outcomes with subgroups analyses

|                                |         |          |        |          |              | Test for    |
|--------------------------------|---------|----------|--------|----------|--------------|-------------|
|                                | Trials* | Patients | Events | RR or OR | 95% CI       | Interaction |
| Mortality                      | 15      | 1038     | 150    | 0.92     | 0.68 to 1.23 | P = 1.00    |
| (1) Placebo or control         | 5       | 452      | 84     | 0.93     | 0.63 to 1.38 |             |
| (1) Potentially active control | 12      | 586      | 66     | 0.90     | 0.14 to 5.84 |             |
| (2) Low dose dopamine          | 7       | 568      | 68     | 0.84     | 0.54 to 1.30 |             |
| (2) Moderate dose dopamine     | 7       | 403      | 74     | 0.98     | 0.65 to 1.47 |             |
| (3) Acute heart failure        | 10      | 746      | 132    | 0.90     | 0.67 to 1.23 |             |
| (3) Cardiac surgery            | 5       | 292      | 18     | 0.93     | 0.35 to 2.48 |             |
| Serious adverse events         | 6       | 582      | 113    | 1.18     | 0.91 to 1.53 | P = 0.92    |
| (1) Placebo or control         | 2       | 324      | 41     | 1.48     | 0.82 to 2.67 |             |
| (1) Potentially active control | 5       | 258      | 72     | 1.12     | 0.84 to 1.50 |             |
| (2) Low dose dopamine          | 3       | 335      | 80     | 1.16     | 0.78 to 1.71 |             |
| (2) Moderate dose dopamine     | 3       | 267      | 33     | 1.70     | 0.86 to 3.39 |             |
| (3) Acute heart failure        | 4       | 486      | 59     | 1.54     | 0.94 to 2.53 |             |
| (3) Cardiac surgery            | 2       | 96       | 54     | 1.45     | 0.43 to 4.90 |             |
| Myocardial infarction          | 5       | 339      | 16     | 1.32     | 0.42 to 4.09 | P = 1.00    |
| (1) Placebo or control         | 1       | 83       | 2      | 2.00     | 0.06 to 62.2 |             |
| (1) Potentially active control | 5       | 256      | 14     | 1.21     | 0.35 to 4.20 |             |
| (2) Low dose dopamine          | 2       | 111      | 8      | 1.68     | 0.15 to 18.8 |             |
| (2) Moderate dose dopamine     | 3       | 228      | 8      | 1.99     | 0.47 to 8.36 |             |
| (3) Acute heart failure        | 2       | 202      | 7      | 2.91     | 0.55 to 15.3 |             |
| (3) Cardiac surgery            | 3       | 137      | 9      | 1.09     | 0.27 to 4.33 |             |
| Ventricular tachyarrhythmias   | 8       | 538      | 24     | 2.59     | 0.85 to 7.91 | P = 0.99    |
| (1) Placebo or control         | 3       | 329      | 12     | 3.49     | 0.71 to 17.1 |             |
| (1) Potentially active control | 6       | 209      | 12     | 1.94     | 0.40 to 9.32 |             |
| (2) Low dose dopamine          | 3       | 270      | 10     | 2.12     | 0.08 to 55.3 |             |
| (2) Moderate dose dopamine     | 5       | 268      | 14     | 1.09     | 0.35 to 3.43 |             |
| (3) Acute heart failure        | 6       | 471      | 21     | 1.29     | 0.38 to 4.39 |             |
| (3) Cardiac surgery            | 2       | 67       | 3      | 2.18     | 0.17 to 27.6 |             |
| Renal replacement therapy      | 4       | 371      | 51     | 0.40     | 0.06 to 2.85 | P = 0.93    |
| (1) Placebo or control         | 2       | 113      | 1      | 1.00     | 0.03 to 29.0 |             |
| (1) Potentially active control | 3       | 258      | 50     | 0.42     | 0.05 to 3.58 |             |
| (2) Low dose dopamine          | 3       | 210      | 48     | 0.26     | 0.02 to 3.43 |             |
| (2) Moderate dose dopamine     | 1       | 161      | 3      | 1.16     | 0.15 to 9.15 |             |
| (3) Acute heart failure        | 1       | 161      | 3      | 1.16     | 0.15 to 9.15 |             |
| (3) Cardiac surgery            | 3       | 210      | 48     | 0.26     | 0.02 to 3.43 |             |
| Atrial tachyarrhythmias        | 2       | 181      | 3      | 1.68     | 0.10 to 27.2 | P = 1.00    |
| (1) Placebo or control         | 2       | 103      | 1      | 1.00     | 0.03 to 29.0 |             |
| (1) Potentially active control | 1       | 78       | 2      | 1.81     | 0.06 to 50.8 |             |
| (2) Low dose dopamine          | 1       | 20       | 0      | -        | -            |             |
| (2) Moderate dose dopamine     | 1       | 161      | 3      | 1.16     | 0.14 to 9.65 |             |
| (3) Acute heart failure        | 2       | 181      | 3      | 1.16     | 0.14 to 9.65 |             |
| (3) Cardiac surgery            | 0       | 0        | 0      | -        | -            |             |

\*Some trials compared dopamine with both a control intervention and a potentially active control (i.e. threearm design), which is why the combined number of trials in subgroup analysis 1 differ from the total amount. Abbreviations: RR, relative risk; OR, odds ratio; CI, confidence interval.

#### Forest plots of mortality 1.3.

E-Figures 1.1.1-1.1.3: all trials with worst-best and best-worst case analyses

| Study or Subgroup                                                                                                                                                        | Dopam<br>Events                                |                                               | Contro<br>Events        |           | Weight       | Risk Ratio<br>M-H, Random, 95% Cl       | Risk Ratio<br>M-H, Random, 95% Cl |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------|-----------|--------------|-----------------------------------------|-----------------------------------|
| 2.1.1 All included stu                                                                                                                                                   |                                                |                                               |                         |           |              |                                         |                                   |
| Arutiunov 2010                                                                                                                                                           | 2                                              | 21                                            | 3                       | 20        | 3.0%         | 0.63 [0.12, 3.41]                       |                                   |
| 3ove 2005                                                                                                                                                                | 3                                              | 40                                            | 4                       | 40        | 4.2%         | 0.75 [0.18, 3.14]                       |                                   |
| Chen 2013                                                                                                                                                                | 24                                             | 122                                           | 25                      | 119       | 34.1%        | 0.94 [0.57, 1.54]                       | _ <b>_</b>                        |
| Cotter 1997                                                                                                                                                              | 1                                              | 14                                            | 0                       | 6         | 0.9%         | 1.40 [0.06, 30.23]                      |                                   |
| Jiamouzis 2010                                                                                                                                                           | 3                                              | 30                                            | 3                       | 30        | 3.7%         | 1.00 [0.22, 4.56]                       |                                   |
| Hausen 1992                                                                                                                                                              | ō                                              | 14                                            | Ō                       | 27        |              | Not estimable                           |                                   |
| Hsueh 1998                                                                                                                                                               | ō                                              | 10                                            | ŏ                       | 10        |              | Not estimable                           |                                   |
| Kamiya 2015                                                                                                                                                              | Ő                                              | 12                                            | 2                       | 12        | 1.0%         | 0.20 [0.01, 3.77]                       |                                   |
| Oppizzi 1997                                                                                                                                                             | 3                                              | 13                                            | Ô                       | 13        | 1.0%         | 7.00 [0.40, 123.35]                     |                                   |
| Rosseel 1997                                                                                                                                                             | 0                                              | 35                                            | 0                       | 35        | 1.070        | Not estimable                           |                                   |
| Shah 2014                                                                                                                                                                | 1                                              | 31                                            | 4                       | 61        | 1.8%         |                                         |                                   |
|                                                                                                                                                                          | 0                                              | 8                                             | 4                       | 8         |              | 0.49 [0.06, 4.22]                       | •                                 |
| Sindone 1998<br>Sindone 1998                                                                                                                                             | 1                                              | 8                                             | 2                       | 26        | 1.1%         | 0.14 [0.01, 2.39]<br>1.63 [0.17, 15.66] |                                   |
| Sindone 1998a                                                                                                                                                            |                                                | 8                                             |                         |           | 1.7%         |                                         |                                   |
| Sindone 1998b                                                                                                                                                            | 1                                              |                                               | 1                       | 9         | 1.3%         | 1.13 [0.08, 15.19]                      |                                   |
| Farr 1993a                                                                                                                                                               | 1                                              | 12                                            | 3                       | 25        | 1.8%         | 0.69 [0.08, 6.00]                       |                                   |
| Farr 1993b                                                                                                                                                               | 1                                              | 13                                            | 3                       | 25        | 1.8%         | 0.64 [0.07, 5.57]                       |                                   |
| Friposkiadis 2014                                                                                                                                                        | 9                                              | 28                                            | 18                      | 55        | 19.7%        | 0.98 [0.51, 1.90]                       |                                   |
| Friposkiadis 2014a                                                                                                                                                       | 10                                             | 28                                            | 19                      | 50        | 22.9%        | 0.94 [0.51, 1.73]                       |                                   |
| /arriale 1997                                                                                                                                                            | 0                                              | 10                                            | 0                       | 10        | 400.00       | Not estimable                           |                                   |
| Subtotal (95% CI)                                                                                                                                                        |                                                | 457                                           |                         | 581       | 100.0%       | 0.91 [0.68, 1.21]                       | •                                 |
| Fotal events                                                                                                                                                             | 60                                             |                                               | 90                      |           |              |                                         |                                   |
| Heterogeneity: Tau² =<br>Fest for overall effect:                                                                                                                        |                                                |                                               |                         | (P = 0.9  | 97); I² = 0% | 6                                       |                                   |
|                                                                                                                                                                          |                                                |                                               | 0                       |           |              |                                         |                                   |
| 2.1.2 Worst-best cas                                                                                                                                                     | -                                              |                                               | 2                       | 20        | 2.00         | 0 60 (0 40 0 44)                        |                                   |
| Arutiunov 2010                                                                                                                                                           | 2                                              | 21                                            | 3                       | 20        | 3.0%         | 0.63 [0.12, 3.41]                       |                                   |
| Bove 2005                                                                                                                                                                | 3                                              | 40                                            | 4                       | 40        | 4.2%         | 0.75 [0.18, 3.14]                       |                                   |
| Chen 2013                                                                                                                                                                | 24                                             | 122                                           | 25                      | 119       | 34.1%        | 0.94 [0.57, 1.54]                       |                                   |
| Cotter 1997                                                                                                                                                              | 1                                              | 14                                            | 0                       | 6         | 0.9%         | 1.40 [0.06, 30.23]                      |                                   |
| ∋iamouzis 2010                                                                                                                                                           | 3                                              | 30                                            | 3                       | 30        | 3.7%         | 1.00 [0.22, 4.56]                       |                                   |
| Hausen 1992                                                                                                                                                              | 0                                              | 14                                            | 0                       | 27        |              | Not estimable                           |                                   |
| Hsueh 1998                                                                                                                                                               | 0                                              | 10                                            | 0                       | 10        |              | Not estimable                           |                                   |
| Kamiya 2015                                                                                                                                                              | 0                                              | 12                                            | 2                       | 12        | 1.0%         | 0.20 [0.01, 3.77]                       |                                   |
| Oppizzi 1997                                                                                                                                                             | 3                                              | 13                                            | 0                       | 13        | 1.0%         | 7.00 [0.40, 123.35]                     |                                   |
| Rosseel 1997                                                                                                                                                             | 0                                              | 35                                            | 0                       | 35        |              | Not estimable                           |                                   |
| 3hah 2014                                                                                                                                                                | 1                                              | 31                                            | 4                       | 62        | 1.8%         | 0.50 [0.06, 4.29]                       |                                   |
| Sindone 1998                                                                                                                                                             | 0                                              | 8                                             | 3                       | 8         | 1.1%         | 0.14 [0.01, 2.39]                       | ·                                 |
| Sindone 1998a                                                                                                                                                            | 1                                              | 8                                             | 2                       | 26        | 1.7%         | 1.63 [0.17, 15.66]                      |                                   |
| Sindone 1998b                                                                                                                                                            | 1                                              | 8                                             | 1                       | 9         | 1.3%         | 1.13 [0.08, 15.19]                      |                                   |
| Farr 1993a                                                                                                                                                               | 1                                              | 12                                            | 3                       | 25        | 1.8%         | 0.69 [0.08, 6.00]                       |                                   |
| Farr 1993b                                                                                                                                                               | 1                                              | 13                                            | 3                       | 25        | 1.8%         | 0.64 [0.07, 5.57]                       |                                   |
| Triposkiadis 2014                                                                                                                                                        | 9                                              | 28                                            | 18                      | 55        | 19.7%        | 0.98 [0.51, 1.90]                       |                                   |
| Triposkiadis 2014                                                                                                                                                        | 10                                             | 28                                            | 19                      | 50        | 22.9%        |                                         |                                   |
| /arriale 1997                                                                                                                                                            | 0                                              | 10                                            | 19                      | 10        | 22.370       | 0.94 [0.51, 1.73]<br>Not estimable      | 1                                 |
| Subtotal (95% CI)                                                                                                                                                        | U                                              | 457                                           | U                       |           | 100.0%       | 0.91 [0.68, 1.21]                       | <b>▲</b>                          |
|                                                                                                                                                                          | 20                                             | 437                                           |                         | JOZ       | 100.0%       | 0.51 [0.00, 1.21]                       | T                                 |
| Fotal events                                                                                                                                                             | 60                                             |                                               | 90                      | ~ ~ ~     | 07).17 0.0   | r                                       |                                   |
| Heterogeneity: Tau² =<br>Fest for overall effect:                                                                                                                        |                                                |                                               |                         | (F = 0.)  | 97), I" = 0% | 0                                       |                                   |
| 2.1.3 Best-worst cas                                                                                                                                                     | o analysis                                     |                                               |                         |           |              |                                         |                                   |
| Arutiunov 2010                                                                                                                                                           | 2                                              | 21                                            | 3                       | 20        | 3.0%         | 0.63 [0.12, 3.41]                       |                                   |
| 3ove 2005                                                                                                                                                                | 3                                              | 40                                            | 4                       | 40        | 4.2%         | 0.75 [0.18, 3.14]                       |                                   |
| Chen 2013                                                                                                                                                                | 24                                             | 122                                           | 25                      | 119       | 34.1%        | 0.94 [0.57, 1.54]                       | _ <b>_</b>                        |
| Cotter 1997                                                                                                                                                              | 1                                              | 14                                            | 0                       | 6         | 0.9%         | 1.40 [0.06, 30.23]                      |                                   |
| Jiamouzis 2010                                                                                                                                                           | 3                                              | 30                                            | 3                       | 30        | 3.7%         | 1.00 [0.22, 4.56]                       |                                   |
| Hausen 1992                                                                                                                                                              | Ő                                              | 14                                            | 0                       | 27        |              | Not estimable                           |                                   |
| Hsueh 1998                                                                                                                                                               | 0                                              | 10                                            | 0                       | 10        |              | Not estimable                           |                                   |
| Kamiya 2015                                                                                                                                                              | 0                                              | 12                                            | 2                       | 12        | 1.0%         | 0.20 [0.01, 3.77]                       |                                   |
| ,                                                                                                                                                                        | 3                                              | 12                                            | 2<br>0                  | 12        |              |                                         |                                   |
| Oppizzi 1997                                                                                                                                                             |                                                |                                               |                         |           | 1.0%         | 7.00 [0.40, 123.35]                     |                                   |
| Rosseel 1997                                                                                                                                                             | 0                                              | 35                                            | 0                       | 35        | 4.000        | Not estimable                           |                                   |
| Shah 2014                                                                                                                                                                | 1                                              | 31                                            | 5                       | 62        | 1.9%         | 0.40 [0.05, 3.28]                       |                                   |
| Sindone 1998                                                                                                                                                             | 0                                              | 8                                             | 3                       | 8         | 1.1%         | 0.14 [0.01, 2.39]                       | ·                                 |
| Bindone 1998a                                                                                                                                                            | 1                                              | 8                                             | 2                       | 26        | 1.7%         | 1.63 [0.17, 15.66]                      |                                   |
|                                                                                                                                                                          | 1                                              | 8                                             | 1                       | 9         | 1.3%         | 1.13 [0.08, 15.19]                      |                                   |
| Sindone 1998b                                                                                                                                                            | 1                                              | 12                                            | 3                       | 25        | 1.8%         | 0.69 [0.08, 6.00]                       |                                   |
| Sindone 1998b<br>Farr 1993a                                                                                                                                              |                                                | 13                                            | 3                       | 25        | 1.8%         | 0.64 [0.07, 5.57]                       |                                   |
| Sindone 1998b                                                                                                                                                            | 1                                              |                                               | 18                      | 55        | 19.7%        | 0.98 [0.51, 1.90]                       | _ <b>+</b> _                      |
| Sindone 1998b<br>Farr 1993a                                                                                                                                              | 1<br>9                                         | 28                                            |                         |           | 22.9%        | 0.94 [0.51, 1.73]                       |                                   |
| 3indone 1998b<br>Farr 1993a<br>Farr 1993b                                                                                                                                |                                                | 28<br>28                                      | 19                      | 50        | 22.370       |                                         |                                   |
| Sindone 1998b<br>Farr 1993a<br>Farr 1993b<br>Friposkiadis 2014                                                                                                           | 9                                              |                                               | 19<br>0                 | 50<br>10  | 22.370       |                                         |                                   |
| Sindone 1998b<br>Farr 1993a<br>Farr 1993b<br>Friposkiadis 2014<br>Friposkiadis 2014a                                                                                     | 9<br>10                                        | 28                                            |                         | 10        | 100.0%       | Not estimable                           | •                                 |
| Sindone 1998b<br>Farr 1993a<br>Farr 1993b<br>Friposkiadis 2014<br>Friposkiadis 2014a<br>Aarriale 1997<br>Subtotal (95% CI)                                               | 9<br>10<br>0                                   | 28<br>10                                      | 0                       | 10        |              |                                         | •                                 |
| Sindone 1998b<br>Farr 1993a<br>Farr 1993b<br>Friposkiadis 2014<br>Friposkiadis 2014a<br>Aarriale 1997<br>Subtotal (95% CI)<br>Fotal events                               | 9<br>10<br>0<br>60                             | 28<br>10<br><b>457</b>                        | 0<br>91                 | 10<br>582 | 100.0%       | Not estimable<br>0.90 [0.67, 1.21]      | •                                 |
| Sindone 1998b<br>Farr 1993a<br>Farr 1993b<br>Friposkiadis 2014<br>/arriale 1997<br>S <b>ubtotal (95% CI)</b><br>Fotal events<br>Heterogeneity: Tau <sup>2</sup> =        | 9<br>10<br>0<br>60<br>: 0.00; Chi <sup>a</sup> | 28<br>10<br><b>457</b><br><sup>2</sup> = 6.08 | 0<br>91<br>3, df = 14 ; | 10<br>582 | 100.0%       | Not estimable<br>0.90 [0.67, 1.21]      | •                                 |
| Sindone 1998b<br>"arr 1993a<br>"riposkiadis 2014<br>Triposkiadis 2014<br>"arriale 1997<br>Subtotal (95% CI)<br>Total events                                              | 9<br>10<br>0<br>60<br>: 0.00; Chi <sup>a</sup> | 28<br>10<br><b>457</b><br><sup>2</sup> = 6.08 | 0<br>91<br>3, df = 14 ; | 10<br>582 | 100.0%       | Not estimable<br>0.90 [0.67, 1.21]      | •                                 |
| iindone 1998b<br>'arr 1993a<br>'riposkiadis 2014<br>'riposkiadis 2014a<br>'arriale 1997<br><b>Jubtotal (95% CI)</b><br>'otal events<br>leterogeneity: Tau <sup>2</sup> = | 9<br>10<br>0<br>60<br>: 0.00; Chi <sup>a</sup> | 28<br>10<br><b>457</b><br><sup>2</sup> = 6.08 | 0<br>91<br>3, df = 14 ; | 10<br>582 | 100.0%       | Not estimable<br>0.90 [0.67, 1.21]      |                                   |

8

# E-Figures 1.1.4-1.1.5: subgroup analysis 1 - trials subdivided by risk of bias

|                          | Dopam       |         | Cont      |         |             | Risk Ratio          | Risk Ratio                       |
|--------------------------|-------------|---------|-----------|---------|-------------|---------------------|----------------------------------|
| Study or Subgroup        |             |         | Events    | Total   | Weight      | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
| 2.1.4 Subgroup 1: Lo     | w risk of l |         |           |         |             |                     |                                  |
| Subtotal (95% CI)        |             | 0       |           | 0       |             | Not estimable       |                                  |
| Total events             | 0           |         | 0         |         |             |                     |                                  |
| Heterogeneity: Not ap    | •           |         |           |         |             |                     |                                  |
| Test for overall effect: | Not applic  | able    |           |         |             |                     |                                  |
| 2.1.5 Subgroup 1: Un     | clear or h  | igh ris | k of bias |         |             |                     |                                  |
| Arutiunov 2010           | 2           | 21      | 3         | 20      | 3.0%        | 0.63 [0.12, 3.41]   |                                  |
| Bove 2005                | 3           | 40      | 4         | 40      | 4.2%        | 0.75 [0.18, 3.14]   |                                  |
| Chen 2013                | 24          | 122     | 25        | 119     | 34.1%       | 0.94 [0.57, 1.54]   |                                  |
| Cotter 1997              | 1           | 14      | 0         | 6       | 0.9%        | 1.40 [0.06, 30.23]  |                                  |
| Giamouzis 2010           | 3           | 30      | 3         | 30      | 3.7%        | 1.00 [0.22, 4.56]   |                                  |
| Hausen 1992              | 0           | 14      | 0         | 27      |             | Not estimable       |                                  |
| Hsueh 1998               | 0           | 10      | 0         | 10      |             | Not estimable       |                                  |
| Kamiya 2015              | 0           | 12      | 2         | 12      | 1.0%        | 0.20 [0.01, 3.77]   |                                  |
| Oppizzi 1997             | 3           | 13      | 0         | 13      | 1.0%        | 7.00 [0.40, 123.35] |                                  |
| Rosseel 1997             | 0           | 35      | 0         | 35      |             | Not estimable       |                                  |
| Shah 2014                | 1           | 31      | 4         | 61      | 1.8%        | 0.49 [0.06, 4.22]   |                                  |
| Sindone 1998             | 0           | 8       | 3         | 8       | 1.1%        | 0.14 [0.01, 2.39]   | •                                |
| Sindone 1998a            | 1           | 8       | 2         | 26      | 1.7%        | 1.63 [0.17, 15.66]  |                                  |
| Sindone 1998b            | 1           | 8       | 1         | 9       | 1.3%        | 1.13 [0.08, 15.19]  |                                  |
| Tarr 1993a               | 1           | 12      | 3         | 25      | 1.8%        | 0.69 [0.08, 6.00]   |                                  |
| Tarr 1993b               | 1           | 13      | 3         | 25      | 1.8%        | 0.64 [0.07, 5.57]   |                                  |
| Triposkiadis 2014        | 9           | 28      | 18        | 55      | 19.7%       | 0.98 [0.51, 1.90]   |                                  |
| Triposkiadis 2014a       | 10          | 28      | 19        | 50      | 22.9%       | 0.94 [0.51, 1.73]   |                                  |
| Varriale 1997            | 0           | 10      | 0         | 10      |             | Not estimable       |                                  |
| Subtotal (95% CI)        |             | 457     |           | 581     | 100.0%      | 0.91 [0.68, 1.21]   | •                                |
| Total events             | 60          |         | 90        |         |             |                     |                                  |
| Heterogeneity: Tau² =    |             |         |           | (P = 0. | 97); I² = 0 | %                   |                                  |
| Test for overall effect: | Z=0.66 (    | P = 0.5 | 1)        |         |             |                     |                                  |
|                          |             |         |           |         |             |                     |                                  |
|                          |             |         |           |         |             |                     | 0.01 0.1 1 10 10                 |
| Fest for subaroup diff   | ferences: t | Not an  | hlicable  |         |             |                     | Favours dopamine Favours control |

Test for subgroup differences: Not applicable

# *E-Figures 1.1.6-1.1.7: subgroup analysis 2 – trials subdivided by comparator intervention*

|                                   | Doparr      |                     | Cont        |         |                         | Risk Ratio          | Risk Ratio                       |
|-----------------------------------|-------------|---------------------|-------------|---------|-------------------------|---------------------|----------------------------------|
| Study or Subgroup                 |             |                     | Events      | Total   | Weight                  | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
| 2.1.6 Subgroup 2: Ina             | active con  | trol                |             |         |                         |                     |                                  |
| Chen 2013                         | 24          | 122                 | 25          | 119     | 60.1%                   | 0.94 [0.57, 1.54]   |                                  |
| Shah 2014                         | 1           | 31                  | 4           | 61      | 3.3%                    | 0.49 [0.06, 4.22]   |                                  |
| Sindone 1998                      | 0           | 8                   | 3           | 8       | 1.9%                    | 0.14 [0.01, 2.39]   | •                                |
| Triposkiadis 2014                 | 9           | 28                  | 18          | 55      | 34.7%                   | 0.98 [0.51, 1.90]   | <b>_</b>                         |
| Varriale 1997                     | 0           | 10                  | 0           | 10      |                         | Not estimable       |                                  |
| Subtotal (95% CI)                 |             | 199                 |             | 253     | 100.0%                  | 0.90 [0.61, 1.33]   | <b>+</b>                         |
| Total events                      | 34          |                     | 50          |         |                         |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | : 0.00; Chi | <sup>2</sup> = 2.0! | 9, df = 3 ( | P = 0.5 | 5); I <sup>2</sup> = 0% |                     |                                  |
| Test for overall effect:          | Z=0.53 (    | P = 0.5             | 9)          |         |                         |                     |                                  |
| 2.1.7 Subgroup 2: Po              | tentially a | ctive c             | ontrol      |         |                         |                     |                                  |
| Arutiunov 2010                    | 2           | 21                  | 3           | 20      | 7.0%                    | 0.63 [0.12, 3.41]   |                                  |
| Bove 2005                         | 3           | 40                  | 4           | 40      | 9.6%                    | 0.75 [0.18, 3.14]   |                                  |
| Cotter 1997                       | 1           | 14                  | 0           | 6       | 2.1%                    | 1.40 [0.06, 30.23]  |                                  |
| Giamouzis 2010                    | 3           | 30                  | 3           | 30      | 8.5%                    | 1.00 [0.22, 4.56]   |                                  |
| Hausen 1992                       | 0           | 14                  | 0           | 27      |                         | Not estimable       |                                  |
| Hsueh 1998                        | 0           | 10                  | 0           | 10      |                         | Not estimable       |                                  |
| Kamiya 2015                       | 0           | 12                  | 2           | 12      | 2.3%                    | 0.20 [0.01, 3.77]   |                                  |
| Oppizzi 1997                      | 3           | 13                  | 0           | 13      | 2.4%                    | 7.00 [0.40, 123.35] |                                  |
| Rosseel 1997                      | 0           | 35                  | 0           | 35      |                         | Not estimable       |                                  |
| Sindone 1998a                     | 1           | 8                   | 2           | 26      | 3.8%                    | 1.63 [0.17, 15.66]  |                                  |
| Sindone 1998b                     | 1           | 8                   | 1           | 9       | 2.9%                    | 1.13 [0.08, 15.19]  |                                  |
| Tarr 1993a                        | 1           | 12                  | 3           | 25      | 4.2%                    | 0.69 [0.08, 6.00]   |                                  |
| Tarr 1993b                        | 1           | 13                  | 3           | 25      | 4.2%                    | 0.64 [0.07, 5.57]   |                                  |
| Triposkiadis 2014a                | 10          | 28                  | 19          | 50      | 52.9%                   | 0.94 [0.51, 1.73]   |                                  |
| Subtotal (95% CI)                 |             | 258                 |             | 328     | 100.0%                  | 0.92 [0.59, 1.43]   | <b>•</b>                         |
| Total events                      | 26          |                     | 40          |         |                         |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi | <sup>2</sup> = 3.79 | 5, df = 10  | (P = 0. | 96); l² = 0             | %                   |                                  |
| Test for overall effect:          | Z=0.39 (    | P = 0.7             | 0)          |         |                         |                     |                                  |
|                                   |             |                     |             |         |                         |                     |                                  |
|                                   |             |                     |             |         |                         |                     | 0.01 0.1 1 10 10                 |
| Test for subaroup difi            |             |                     |             |         |                         |                     | Favours dopamine Favours control |

# *E-Figures 1.1.8-1.1.10: subgroup analysis 3 – trials subdivided by dose*

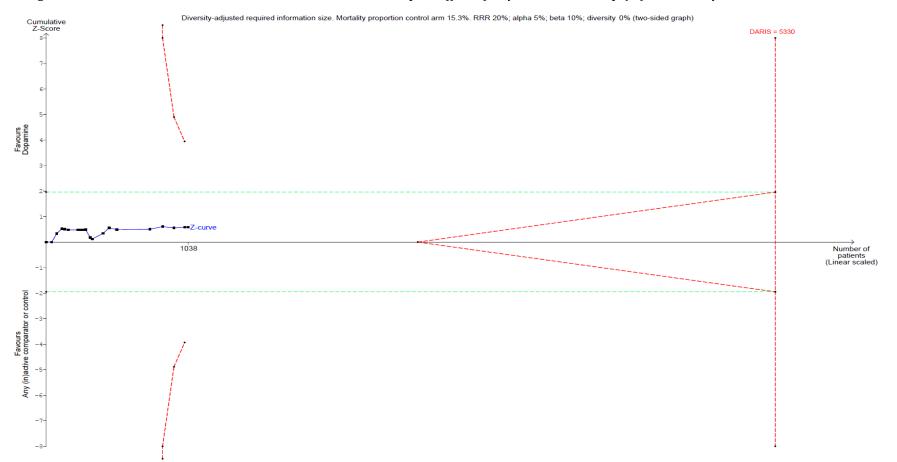
|                                   | Dopan      |                     | Cont        |         |                      | Risk Ratio          | Risk Ratio                       |
|-----------------------------------|------------|---------------------|-------------|---------|----------------------|---------------------|----------------------------------|
| Study or Subgroup                 |            | Total               | Events      | Total   | Weight               | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
| 2.1.8 Subgroup 3: Lov             |            |                     |             |         |                      |                     |                                  |
| Arutiunov 2010                    | 2          | 21                  | 3           | 20      | 6.8%                 | 0.63 [0.12, 3.41]   |                                  |
| Bove 2005                         | 3          | 40                  | 4           | 40      | 9.4%                 | 0.75 [0.18, 3.14]   |                                  |
| Chen 2013                         | 24         | 122                 | 25          | 119     | 77.3%                | 0.94 [0.57, 1.54]   |                                  |
| Kamiya 2015                       | 0          | 12                  | 2           | 12      | 2.2%                 | 0.20 [0.01, 3.77]   |                                  |
| Rosseel 1997                      | 0          | 35                  | 0           | 35      |                      | Not estimable       |                                  |
| Shah 2014                         | 1          | 31                  | 4           | 61      | 4.2%                 | 0.49 [0.06, 4.22]   |                                  |
| Varriale 1997                     | 0          | 10                  | 0           | 10      |                      | Not estimable       |                                  |
| Subtotal (95% CI)                 |            | 271                 |             | 297     | 100.0%               | 0.84 [0.54, 1.30]   | •                                |
| Total events                      | 30         |                     | 38          |         |                      |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi  | <sup>2</sup> = 1.49 | 9, df = 4 ( | P = 0.8 | 3); I <b>2</b> = 0%  | 6                   |                                  |
| Test for overall effect:          | Z = 0.78 ( | P = 0.4             | 4)          |         |                      |                     |                                  |
| 2.1.9 Subgroup 3: Mo              | derate do  | ose                 |             |         |                      |                     |                                  |
| Cotter 1997                       | 1          | 14                  | 0           | 6       | 1.7%                 | 1.40 [0.06, 30.23]  |                                  |
| Giamouzis 2010                    | 3          | 30                  | 3           | 30      | 7.1%                 | 1.00 [0.22, 4.56]   |                                  |
| Hausen 1992                       | Ō          | 14                  | Ō           | 27      |                      | Not estimable       |                                  |
| Hsueh 1998                        | Ō          | 10                  | Ō           | 10      |                      | Not estimable       |                                  |
| Oppizzi 1997                      | 3          | 13                  | 0           | 13      | 2.0%                 | 7.00 [0.40, 123.35] |                                  |
| Tarr 1993a                        | 1          | 12                  | 3           | 25      | 3.5%                 | 0.69 [0.08, 6.00]   |                                  |
| Tarr 1993b                        | . 1        | 13                  | 3           | 25      | 3.5%                 | 0.64 [0.07, 5.57]   |                                  |
| Triposkiadis 2014                 | . 9        | 28                  | 18          | 55      | 37.9%                | 0.98 [0.51, 1.90]   | <b>_</b>                         |
| Triposkiadis 2014a                | 10         | 28                  | 19          | 50      | 44.1%                | 0.94 [0.51, 1.73]   |                                  |
| Subtotal (95% CI)                 |            | 162                 |             |         | 100.0%               | 0.98 [0.65, 1.47]   | •                                |
| Total events                      | 28         |                     | 46          |         |                      |                     | 1                                |
| Heterogeneity: Tau <sup>2</sup> = |            | r = 2.13            |             | P = 0.9 | 0): I <b>2</b> = 0.9 | 6                   |                                  |
| Test for overall effect:          |            |                     |             | , = 0.0 | 0/11 = 0 /           | •                   |                                  |
|                                   |            |                     | -,          |         |                      |                     |                                  |
| 2.1.10 Subgroup 3: Hi             | igh dose   |                     |             |         |                      |                     |                                  |
| Subtotal (95% CI)                 |            | 0                   |             | 0       |                      | Not estimable       |                                  |
| Total events                      | 0          |                     | 0           |         |                      |                     |                                  |
| Heterogeneity: Not ap             | plicable   |                     |             |         |                      |                     |                                  |
| Test for overall effect:          |            | cable               |             |         |                      |                     |                                  |
|                                   |            |                     |             |         |                      |                     |                                  |
|                                   |            |                     |             |         |                      |                     | F                                |
|                                   |            |                     |             |         |                      |                     | 0.01 0.1 1 10 10                 |
| Test for subaroup diff            | erences:   | Chi² = í            | 126 df=     | 1 (P =  | 0.61) P=             | 0%                  | Favours dopamine Favours control |

Test for subgroup differences: Chi<sup>2</sup> = 0.26, df = 1 (P = 0.61), l<sup>2</sup> = 0%

## *E-Figures 1.1.11-1.1.12: subgroup analysis 4 – trials subdivided by clinical setting*

|                                   | Dopam       |                     | Cont        |           |                               | Risk Ratio          | Risk Ratio                       |
|-----------------------------------|-------------|---------------------|-------------|-----------|-------------------------------|---------------------|----------------------------------|
| Study or Subgroup                 |             |                     | Events      | Total     | Weight                        | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
| 2.1.11 Subgroup 4: C              | ardiac su   | rgery               |             |           |                               |                     |                                  |
| Bove 2005                         | 3           | 40                  | 4           | 40        | 47.0%                         | 0.75 [0.18, 3.14]   |                                  |
| Hausen 1992                       | 0           | 14                  | 0           | 27        |                               | Not estimable       |                                  |
| Oppizzi 1997                      | 3           | 13                  | 0           | 13        | 11.7%                         | 7.00 [0.40, 123.35] |                                  |
| Rosseel 1997                      | 0           | 35                  | 0           | 35        |                               | Not estimable       |                                  |
| Tarr 1993a                        | 1           | 12                  | 3           | 25        | 20.7%                         | 0.69 [0.08, 6.00]   |                                  |
| Tarr 1993b                        | 1           | 13                  | 3           | 25        | 20.6%                         | 0.64 [0.07, 5.57]   |                                  |
| Subtotal (95% CI)                 |             | 127                 |             | 165       | 100.0%                        | 0.93 [0.35, 2.48]   |                                  |
| Total events                      | 8           |                     | 10          |           |                               |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi | <sup>2</sup> = 2.26 | 6, df = 3 ( | P = 0.5   | 2); I <sup>2</sup> = 0%       | 6                   |                                  |
| Test for overall effect:          | Z=0.15 (    | P = 0.8             | 8)          |           |                               |                     |                                  |
| 2.1.12 Subgroup 4: N              | lot having  | cardia              | c surger    | у         |                               |                     |                                  |
| Arutiunov 2010                    | 2           | 21                  | 3           | 20        | 3.3%                          | 0.63 [0.12, 3.41]   |                                  |
| Chen 2013                         | 24          | 122                 | 25          | 119       | 37.4%                         | 0.94 [0.57, 1.54]   |                                  |
| Cotter 1997                       | 1           | 14                  | 0           | 6         | 1.0%                          | 1.40 [0.06, 30.23]  |                                  |
| Giamouzis 2010                    | 3           | 30                  | 3           | 30        | 4.1%                          | 1.00 [0.22, 4.56]   |                                  |
| Hsueh 1998                        | 0           | 10                  | 0           | 10        |                               | Not estimable       |                                  |
| Kamiya 2015                       | 0           | 12                  | 2           | 12        | 1.1%                          | 0.20 [0.01, 3.77]   |                                  |
| Shah 2014                         | 1           | 31                  | 4           | 61        | 2.0%                          | 0.49 [0.06, 4.22]   |                                  |
| Sindone 1998                      | 0           | 8                   | 3           | 8         | 1.2%                          | 0.14 [0.01, 2.39]   | •                                |
| Sindone 1998a                     | 1           | 8                   | 2           | 26        | 1.8%                          | 1.63 [0.17, 15.66]  |                                  |
| Sindone 1998b                     | 1           | 8                   | 1           | 9         | 1.4%                          | 1.13 [0.08, 15.19]  |                                  |
| Triposkiadis 2014                 | 9           | 28                  | 18          | 55        | 21.6%                         | 0.98 [0.51, 1.90]   | <b>+</b>                         |
| Triposkiadis 2014a                | 10          | 28                  | 19          | 50        | 25.1%                         | 0.94 [0.51, 1.73]   |                                  |
| Varriale 1997                     | 0           | 10                  | 0           | 10        |                               | Not estimable       |                                  |
| Subtotal (95% CI)                 |             | 330                 |             | 416       | 100.0%                        | 0.90 [0.67, 1.23]   | •                                |
| Total events                      | 52          |                     | 80          |           |                               |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi | <sup>2</sup> = 3.69 | 9, df = 10  | (P = 0.1) | 96); <b>I<sup>2</sup> =</b> 0 | %                   |                                  |
| Test for overall effect:          | Z=0.64 (    | P = 0.5             | 2)          |           |                               |                     |                                  |
|                                   |             |                     |             |           |                               |                     |                                  |
|                                   |             |                     |             |           |                               |                     |                                  |
| Test for subaroup dif             | foronoo.    | 268 - 1             | 000 df_     | 1 /D -    | 0.000 17-                     | 0.07                | Favours dopamine Favours control |

Test for subgroup differences: Chi<sup>2</sup> = 0.00, df = 1 (P = 0.96), l<sup>2</sup> = 0%


# *E-Figure 1.1.13: sensitivity analysis – trials including only patients with cardiac dysfunction*

|                                 | Dopan       | nine     | Cont        | rol       |                         | Risk Ratio          | Risk Ratio            |     |
|---------------------------------|-------------|----------|-------------|-----------|-------------------------|---------------------|-----------------------|-----|
| Study or Subgroup               | Events      | Total    | Events      | Total     | Weight                  | M-H, Random, 95% CI | I M-H, Random, 95% CI |     |
| 2.1.13 Pure cardiac             | : dysfuncti | on stud  | lies        |           |                         |                     |                       |     |
| Arutiunov 2010                  | 2           | 21       | 3           | 20        | 35.0%                   | 0.63 [0.12, 3.41]   | ]                     |     |
| Cotter 1997                     | 1           | 14       | 0           | 6         | 10.5%                   | 1.40 [0.06, 30.23]  | ]                     |     |
| Hsueh 1998                      | 0           | 10       | 0           | 10        |                         | Not estimable       | 9                     |     |
| Oppizzi 1997                    | 3           | 13       | 0           | 13        | 12.0%                   | 7.00 [0.40, 123.35] | ]                     |     |
| Rosseel 1997                    | 0           | 35       | 0           | 35        |                         | Not estimable       | 9                     |     |
| Tarr 1993a                      | 2           | 25       | 6           | 50        | 42.5%                   | 0.67 [0.14, 3.07]   | ]                     |     |
| Varriale 1997                   | 0           | 10       | 0           | 10        |                         | Not estimable       | 9                     |     |
| Subtotal (95% CI)               |             | 128      |             | 144       | 100.0%                  | 0.94 [0.35, 2.54]   | -                     |     |
| Total events                    | 8           |          | 9           |           |                         |                     |                       |     |
| Heterogeneity: Tau <sup>2</sup> | = 0.00; Ch  | i² = 2.4 | 4, df = 3 ( | (P = 0.4) | 9); I <sup>2</sup> = 09 | 6                   |                       |     |
| Test for overall effec          | t: Z = 0.12 | (P = 0.9 | 30)         |           |                         |                     |                       |     |
|                                 |             |          |             |           |                         |                     |                       |     |
|                                 |             |          |             |           |                         |                     |                       | 100 |
|                                 |             |          |             |           |                         |                     |                       | 100 |

Test for subgroup differences: Not applicable

0.01 0.1 1 10 Favours dopamine Favours control

# **1.4.** Trial sequential analysis of mortality (same as in manuscript)



*E-Figure 1.2: the TSA is based on 15 trials, which is the meta-analysed effect of dopamine versus any (in)active comparator intervention.* 

#### Forest plots of serious adverse events 1.5.

| 2.2.1 All included studies         Chen 2013       19       122       12       119       15.7%       1.54 [0.78, 3.04]         Siamouzis 2010       6       30       2       30       3.2%       3.00 [0.66, 13.69]         Camiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1       13       1.8%       4.00 [0.51, 31.13]         Ossseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       50       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.20 [0.91, 1.57]         Total events       62       51       -       -       -       -         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%       Test for overall effect Z = 1.29 (P = 0.20)       -       Not estimable         Dipizzi 1997       4       13       1.3       1.8%       4.00 [0.51, 31.13]       -         Subtotal (95% Cl)       268       314       10.0%       1.20 [0.91, 1.57]       -       -         Total events       62       51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Dopan     |          | Cont   |         |                               | Risk Ratio          | Risk Ratio          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|----------|--------|---------|-------------------------------|---------------------|---------------------|
| Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12<br>Not estimable<br>Oppizi 1997 4 13 1 13 18% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% Cl) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 ( $P = 0.40$ ); $P = 2\%$<br>Test for overall effect Z = 1.29 ( $P = 0.20$ )<br><b>2.2.2 Worst-best case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2010 6 31 2 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% Cl) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 ( $P = 0.40$ ); $P = 2\%$<br>Test for overall effect Z = 1.29 ( $P = 0.20$ )<br><b>2.2.3 Best-worst case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2010 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% Cl) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 ( $P = 0.40$ ); $P = 2\%$<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% Cl) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 ( $P = 0.40$ ); $P = 2\%$<br>Test for overall effect Z = 1.29 ( $P = 0.20$ )                                                                                                                                                                              | Study or Subgroup        |           | Total    | Events | Total   | Weight                        | M-H, Random, 95% Cl | M-H, Random, 95% CI |
| Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Karniya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 14.2]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.13 [0.0, 7, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity. Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect $Z = 1.29$ ( $P = 0.20$ )<br><b>2.2.2 Worst-best case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect $Z = 1.29$ (P = 0.20)<br>Triposkiadis 2014 4 2.28 6 50 5.3%<br>Triposkiadis 2014 4 2.28 6 50 5.3%<br>Triposkiadis 2014 4 2.28 6 50 5.3%<br>Triposkiadis 2014 4 2.29 (P = 0.20)<br>Triposkiadis 2014                                                                                            |                          |           |          |        |         |                               |                     |                     |
| Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.0; Chr <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect: Z = 1.29 (P = 0.20)<br><b>2.2.2 Worst-best case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chr <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect: Z = 1.29 (P = 0.20)<br><b>2.2.3 Best-worst case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 7 2 2 2 12 119 15.7%<br>Total events 62 51<br>H                                        |                          |           |          |        |         |                               |                     |                     |
| Oppized 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity. Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 5.09, df = 5 ( $P = 0.40$ ); $P = 2\%$<br>Test for overall effect: Z = 1.29 ( $P = 0.20$ )<br><b>2.2.2 Worst-best case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizz1 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity. Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 5.09, df = 5 ( $P = 0.40$ ); $P = 2\%$<br>Test for overall effect: Z = 1.29 ( $P = 0.20$ )<br><b>2.2.3 Best-worst case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Ofamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizz1 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3%                                                                                 |                          | -         |          |        |         | 3.2%                          |                     |                     |
| Rosseel 1997       25       35       24       35       68.8% $1.04 [0.77, 1.42]$ Triposkiadis 2014       4       28       6       55       5.3% $1.31 [0.40, 4.26]$ Triposkiadis 2014       4       28       6       50       5.3% $1.19 [0.37, 3.86]$ Subtotal (95% CI)       268       314       100.0% $1.20 [0.91, 1.57]$ Total events       62       51         Heterogeneity: Tau" = 0.00; Chi" = 5.09, df = 5 (P = 0.40); P = 2%       Test for overall effect: Z = 1.29 (P = 0.20)         2.2.2 Worst-best case analysis       Not estimable       Not estimable         Giamouzis 2010       6       30       2       30 $3.00 [0.66, 13.69]$ Kamiya 2015       0       12       Not estimable       Not estimable         Oppizzi 1997       4       13 $1.8\%$ $4.00 [0.51, 31.13]$ Rosseel 1997       25       35 $24$ $35$ $68.8\%$ $1.04 [0.77, 1.42]$ Triposkiadis 2014 4       28       6 $50$ $5.3\%$ $1.31 [0.40, 4.26]$ $1.54 [0.78, 3.04]$ $6.36 [0.53, 6.1]$ Giamouzis 2010       6       30       2.30 $3.2\%$ $3.00 [0.66, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                        | -         |          |        |         |                               |                     |                     |
| Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau" = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect $Z = 1.29$ (P = 0.20)<br><b>2.2.2 Worst-best case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Notestimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau" = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect $Z = 1.29$ (P = 0.20)<br><b>2.2.3 Best-worst case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 5 0.2 68 314 100.0% 1.20 [0.91, 1.57]<br>Tota                                                                                                            |                          |           |          |        |         |                               |                     |                     |
| Triposkiadis 2014a 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect Z = 1.29 (P = 0.20)<br>2.2.2 Worst-best case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Karniya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect Z = 1.29 (P = 0.20)<br>2.2.3 Best-worst case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Karniya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 (0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.                                                                                                    |                          |           |          |        |         |                               |                     |                     |
| Subtotal (95% C1) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect Z = 1.29 (P = 0.20)<br><b>2.2.2 Worst-best case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Subtotal (95% C1) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect Z = 1.29 (P = 0.20)<br><b>2.2.3 Best-worst case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% C1) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% C1) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect Z = 1.29 (P = 0.20)<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                        |           |          |        |         |                               |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)<br><b>2.2.2 Worst-best case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: Z = 1.29 (P = 0.20)<br><b>2.2.3 Best-worst case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 5 6.2 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%                                          |                          | 4         |          | 6      |         |                               |                     | •                   |
| Test for overall effect: $Z = 1.29$ (P = 0.20)<br>2.2.2 Worst-best case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>(Armiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% C1) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: Z = 1.29 (P = 0.20)<br>2.2.3 Best-worst case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 2.8 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 2.8 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 2.8 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 2.8 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 2.8 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 2.8 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 2.8 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 2.8 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 7 7 2.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Total events 62 51 | Total events             | 62        |          | 51     |         |                               |                     |                     |
| <b>2.2.2 Worst-best case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)<br><b>2.2.3 Best-worst case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Acamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 7 25 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); P = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |           |          |        | P = 0.4 | 0); <b>I<sup>z</sup> =</b> 2% | 6                   |                     |
| Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); l <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)<br>2.2.3 Best-worst case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.000 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.9 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); l <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)<br>2.2.3 Best-worst case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.000 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.31 [0.9, 37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); l <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                  | Test for overall effect: | Z=1.29 (  | (P = 0.2 | 0)     |         |                               |                     |                     |
| Giamouzis 2010 6 30 2 30 3.2% $3.00 [0.66, 13.69]$<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% $4.00 [0.51, 31.13]$<br>Rosseel 1997 25 35 24 35 68.8% $1.04 [0.77, 1.42]$<br>Triposkiadis 2014 4 28 6 50 5.3% $1.31 [0.40, 4.26]$<br>Triposkiadis 2014 4 28 6 50 5.3% $1.19 [0.37, 3.86]$<br>Subtotal (95% CI) 268 314 100.0% $1.20 [0.91, 1.57]$<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 ( $P = 0.40$ ); $P = 2\%$<br>Test for overall effect: $Z = 1.29 (P = 0.20)$<br>2.2.3 Best-worst case analysis<br>Chen 2013 19 122 12 119 15.7% $1.54 [0.78, 3.04]$<br>Giamouzis 2010 6 30 2 30 $3.2\%$ $3.00 [0.66, 13.69]$<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 $1.8\%$ $4.00 [0.51, 31.13]$<br>Rosseel 1997 25 35 24 35 68.8% $1.04 [0.77, 1.42]$<br>Triposkiadis 2014 4 28 6 50 5.3% $1.31 [0.40, 4.26]$<br>Triposkiadis 2014 4 28 6 50 5.3% $1.31 [0.40, 4.26]$<br>Triposkiadis 2014 4 28 6 50 5.3% $1.31 [0.40, 4.26]$<br>Triposkiadis 2014 4 28 6 50 5.3% $1.31 [0.40, 4.26]$<br>Triposkiadis 2014 4 28 6 50 5.3% $1.19 [0.37, 3.86]$<br>Subtotal (95% CI) 268 314 100.0% $1.20 [0.91, 1.57]$<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 ( $P = 0.40$ ); $P = 2\%$<br>Test for overall effect: $Z = 1.29 (P = 0.20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | -         |          |        |         |                               |                     |                     |
| Karniya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% Cl) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)<br>2.2.3 Best-worst case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Karniya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% Cl) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |           |          |        |         |                               |                     | +                   |
| Oppizi       1997       4       13       1       13       1.8%       4.00 [0.51, 31.13]         Rosseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       55       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%         Test for overall effect: Z = 1.29 (P = 0.20) <b>2.2.3 Best-worst case analysis</b> Chen 2013       19       122       12       119       15.7%       1.54 [0.78, 3.04]         Giamouzis 2010       6       30       2       30       3.2%       3.00 [0.66, 13.69]         Kamiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1.3%       4.00 [0.51, 31.13]       1.34 [0.40, 4.26]         Triposkiadis 2014       4       28       6       50       5.3%       1.31 [0.40, 4.26]       1.20 [0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | -         |          | _      |         | 3.2%                          |                     |                     |
| Rosseel 1997       25       35       24       35 $68.8\%$ $1.04[0.77, 1.42]$ Triposkiadis 2014       4       28       6       55 $5.3\%$ $1.31[0.40, 4.26]$ Triposkiadis 2014a       4       28       6       50 $5.3\%$ $1.19[0.37, 3.86]$ Subtotal (95% CI)       268       314       100.0% $1.20[0.91, 1.57]$ Total events       62       51         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%         Test for overall effect: Z = 1.29 (P = 0.20) <b>2.2.3 Best-worst case analysis</b> Chen 2013       19       122       12       119       15.7%       1.54 [0.78, 3.04]         Giamouzis 2010       6       30       2       30       3.2%       3.00 [0.66, 13.69]         Kamiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1.8%       4.00 [0.51, 31.13]         Rosseel 1997       25       35       24       35       68.8%         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51       5(P = 0.40); I <sup>2</sup> = 2%<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                        | -         |          | -      |         |                               |                     |                     |
| Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)<br>2.2.3 Best-worst case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ••                       |           |          |        |         |                               |                     |                     |
| Triposkiadis 2014a 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); l <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)<br>2.2.3 Best-worst case analysis<br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014a 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br>Subtotal (95% CI) 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); l <sup>2</sup> = 2%<br>Test for overall effect: $Z = 1.29$ (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |           |          |        |         |                               |                     |                     |
| Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%         Test for overall effect: $Z = 1.29$ (P = 0.20) <b>2.2.3 Best-worst case analysis</b> Chen 2013       19       122       12       119       15.7%       1.54 [0.78, 3.04]         Giamouzis 2010       6       30       2       30       3.2%       3.00 [0.66, 13.69]         Kamiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1       13       1.8%       4.00 [0.51, 31.13]         Rosseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]       1.20 [0.91, 1.57]         Total events       62       51       51       140.0%       1.20 [0.91, 1.57]       1.20 [0.91, 1.57]         Total events       62       51       51       1.20 [0.91, 1.57]       1.20 [0.91, 1.57]       1.20 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |           |          |        |         |                               |                     | •                   |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: Z = 1.29 (P = 0.20)<br><b>2.2.3 Best-worst case analysis</b><br>Chen 2013 19 122 12 119 15.7% 1.54 [0.78, 3.04]<br>Giamouzis 2010 6 30 2 30 3.2% 3.00 [0.66, 13.69]<br>Kamiya 2015 0 12 0 12 Not estimable<br>Oppizzi 1997 4 13 1 13 1.8% 4.00 [0.51, 31.13]<br>Rosseel 1997 25 35 24 35 68.8% 1.04 [0.77, 1.42]<br>Triposkiadis 2014 4 28 6 55 5.3% 1.31 [0.40, 4.26]<br>Triposkiadis 2014 4 28 6 50 5.3% 1.19 [0.37, 3.86]<br><b>Subtotal (95% CI)</b> 268 314 100.0% 1.20 [0.91, 1.57]<br>Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 4         |          | 6      |         |                               |                     | •                   |
| Test for overall effect: $Z = 1.29$ (P = 0.20) <b>2.2.3 Best-worst case analysis</b> Chen 2013       19       122       12       119       15.7%       1.54 [0.78, 3.04]         Giamouzis 2010       6       30       2       30       3.2%       3.00 [0.66, 13.69]         Kamiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1       13       1.8%       4.00 [0.51, 31.13]         Rosseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]       1.20 [0.91, 1.57]         Total events       62       51       51       1.29 (P = 0.20)       1.20 [0.91, 1.57]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |           |          |        |         |                               |                     |                     |
| Chen 2013       19       122       12       119       15.7%       1.54 [0.78, 3.04]         Giamouzis 2010       6       30       2       30       3.2%       3.00 [0.66, 13.69]         Kamiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1       13       1.8%       4.00 [0.51, 31.13]         Rosseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       50       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%         Test for overall effect: $Z = 1.29$ (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |           |          |        | P = 0.4 | 0); I <sup>z</sup> = 2%       | 6                   |                     |
| Giamouzis 2010       6       30       2       30       3.2%       3.00 [0.66, 13.69]         Kamiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1       13       1.8%       4.00 [0.51, 31.13]         Rosseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       50       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); l <sup>2</sup> = 2%         Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2.3 Best-worst cas     | e analysi | s        |        |         |                               |                     |                     |
| Kamiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1       13       1.8%       4.00 [0.51, 31.13]         Rosseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       55       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%         Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chen 2013                | 19        | 122      | 12     | 119     | 15.7%                         | 1.54 [0.78, 3.04]   | <b>+</b> •          |
| Kamiya 2015       0       12       0       12       Not estimable         Oppizzi 1997       4       13       1       13       1.8%       4.00 [0.51, 31.13]         Rosseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       55       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%         Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Giamouzis 2010           | 6         | 30       | 2      | 30      | 3.2%                          |                     |                     |
| Rosseel 1997       25       35       24       35       68.8%       1.04 [0.77, 1.42]         Triposkiadis 2014       4       28       6       55       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); i <sup>2</sup> = 2%         Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kamiya 2015              | 0         | 12       | 0      | 12      |                               |                     |                     |
| Triposkiadis 2014       4       28       6       55       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau² = 0.00; Chi² = 5.09, df = 5 (P = 0.40); i² = 2%         Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oppizzi 1997             | 4         | 13       | 1      | 13      | 1.8%                          | 4.00 [0.51, 31.13]  |                     |
| Triposkiadis 2014       4       28       6       55       5.3%       1.31 [0.40, 4.26]         Triposkiadis 2014a       4       28       6       50       5.3%       1.19 [0.37, 3.86]         Subtotal (95% CI)       268       314       100.0%       1.20 [0.91, 1.57]         Total events       62       51         Heterogeneity: Tau² = 0.00; Chi² = 5.09, df = 5 (P = 0.40); i² = 2%         Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rosseel 1997             | 25        | 35       | 24     | 35      | 68.8%                         | 1.04 [0.77, 1.42]   | <b>+</b>            |
| Subtotal (95% CI)         268         314         100.0%         1.20 [0.91, 1.57]           Total events         62         51           Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%           Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Triposkiadis 2014        | 4         | 28       | 6      | 55      | 5.3%                          |                     |                     |
| Total events 62 51<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); I <sup>2</sup> = 2%<br>Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triposkiadis 2014a       | 4         | 28       | 6      | 50      | 5.3%                          | 1.19 [0.37, 3.86]   |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 5.09, df = 5 (P = 0.40); l <sup>2</sup> = 2%<br>Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subtotal (95% CI)        |           | 268      |        | 314     | 100.0%                        | 1.20 [0.91, 1.57]   | ◆                   |
| Test for overall effect: Z = 1.29 (P = 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total events             | 62        |          | 51     |         |                               |                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |           |          |        | P = 0.4 | 0); I² = 2%                   | 6                   |                     |
| '0.01 0.'1 i 1'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |           |          |        |         |                               |                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |           |          |        |         |                               |                     | 0.01 0.1 1 10 1     |

# E-Figures 1.3.1-1.3.3: all trials with worst-best and best-worst case analyses

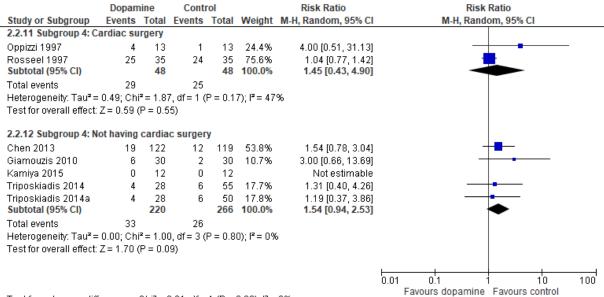
Test for subgroup differences:  $Chi^2 = 0.00$ , df = 2 (P = 1.00),  $I^2 = 0\%$ 

# E-Figures 1.3.4-1.3.5: subgroup analysis 1 - trials subdivided by risk of bias

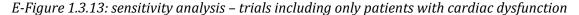
|                                   | Dopam                  | ine      | Contr       | ol      |             | Risk Ratio          | Risk Ratio                       |
|-----------------------------------|------------------------|----------|-------------|---------|-------------|---------------------|----------------------------------|
| Study or Subgroup                 | Events                 | Total    | Events      | Total   | Weight      | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
| 2.2.4 Subgroup 1: Lov             | w risk of t            | oias     |             |         |             |                     |                                  |
| Subtotal (95% CI)                 |                        | 0        |             | 0       |             | Not estimable       |                                  |
| Total events                      | 0                      |          | 0           |         |             |                     |                                  |
| Heterogeneity: Not ap             | plicable               |          |             |         |             |                     |                                  |
| Test for overall effect:          | Not applic             | able     |             |         |             |                     |                                  |
| 2.2.5 Subgroup 1: Un              | clear or h             | igh ris  | k of bias   |         |             |                     |                                  |
| Chen 2013                         | 30                     | 122      | 24          | 119     | 25.9%       | 1.22 [0.76, 1.96]   |                                  |
| Giamouzis 2010                    | 6                      | 30       | 2           | 30      | 2.5%        | 3.00 [0.66, 13.69]  |                                  |
| Kamiya 2015                       | 0                      | 12       | 0           | 12      |             | Not estimable       |                                  |
| Oppizzi 1997                      | 4                      | 13       | 1           | 13      | 1.4%        | 4.00 [0.51, 31.13]  |                                  |
| Rosseel 1997                      | 25                     | 35       | 24          | 35      | 61.8%       | 1.04 [0.77, 1.42]   | +                                |
| Triposkiadis 2014                 | 4                      | 28       | 6           | 55      | 4.2%        | 1.31 [0.40, 4.26]   |                                  |
| Triposkiadis 2014a                | 4                      | 28       | 6           | 50      | 4.2%        | 1.19 [0.37, 3.86]   |                                  |
| Subtotal (95% CI)                 |                        | 268      |             | 314     | 100.0%      | 1.15 [0.91, 1.47]   | •                                |
| Total events                      | 73                     |          | 63          |         |             |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi <sup>a</sup> | ² = 3.96 | 6, df = 5 ( | P = 0.5 | 5); I² = 0% |                     |                                  |
| Test for overall effect:          | Z=1.15 (               | P = 0.2  | !5)         |         |             |                     |                                  |
|                                   |                        |          |             |         |             |                     |                                  |
|                                   |                        |          |             |         |             |                     | 0.01 0.1 i 10 100                |
| Test for subgroup diff            | erences: N             | Vot app  | plicable    |         |             |                     | Favours dopamine Favours control |

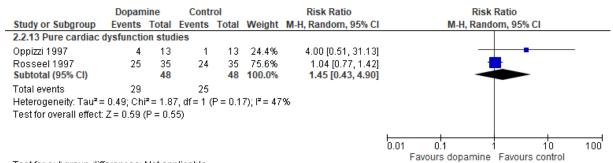
# *E-Figures 1.3.6-1.3.7: subgroup analysis 2 – trials subdivided by comparator intervention*

|                                         | Dopam       | ine                 | Contr       | ol               |                        | Risk Ratio                             | Risk Ratio                                            |
|-----------------------------------------|-------------|---------------------|-------------|------------------|------------------------|----------------------------------------|-------------------------------------------------------|
| Study or Subgroup                       | Events      | Total               | Events      | Total            | Weight                 | M-H, Random, 95% Cl                    | M-H, Random, 95% Cl                                   |
| 2.2.6 Subgroup 2: Ina                   | ctive con   | trol                |             |                  |                        |                                        |                                                       |
| Chen 2013                               | 19          | 122                 | 12          | 119              | 75.2%                  | 1.54 [0.78, 3.04]                      | -+ <b>-</b>                                           |
| Triposkiadis 2014<br>Subtotal (95% CI)  | 4           | 28<br><b>150</b>    | 6           | 55<br><b>174</b> | 24.8%<br><b>100.0%</b> | 1.31 [0.40, 4.26]<br>1.48 [0.82, 2.67] | •                                                     |
| Total events                            | 23          |                     | 18          |                  |                        |                                        |                                                       |
| Heterogeneity: Tau <sup>2</sup> =       | 0.00; Chi   | <b>=</b> 0.08       | 6, df = 1 ( | P = 0.8          | 1); <b>I²</b> = 0%     |                                        |                                                       |
| Test for overall effect:                | Z=1.31 (    | P = 0.1             | 9)          |                  |                        |                                        |                                                       |
| 2.2.7 Subgroup 2: Pot                   | tentially a | ctive c             | ontrol      |                  |                        |                                        |                                                       |
| Giamouzis 2010                          | 6           | 30                  | 2           | 30               | 12.3%                  | 3.00 [0.66, 13.69]                     |                                                       |
| Kamiya 2015                             | 0           | 12                  | 0           | 12               |                        | Not estimable                          |                                                       |
| Oppizzi 1997                            | 4           | 13                  | 1           | 13               | 7.3%                   | 4.00 [0.51, 31.13]                     |                                                       |
| Rosseel 1997                            | 25          | 35                  | 24          | 35               | 62.0%                  | 1.04 [0.77, 1.42]                      | 🖷 -                                                   |
| Triposkiadis 2014a<br>Subtotal (95% CI) | 4           | 28<br><b>118</b>    | 6           | 50<br><b>140</b> | 18.4%<br><b>100.0%</b> | 1.19 [0.37, 3.86]<br>1.34 [0.75, 2.40] |                                                       |
| Total events                            | 39          |                     | 33          |                  |                        |                                        |                                                       |
| Heterogeneity: Tau <sup>2</sup> =       | 0.12; Chi   | <sup>2</sup> = 4.16 | 6, df = 3 ( | P = 0.2          | 5); <b>i²</b> = 28'    | %                                      |                                                       |
| Test for overall effect:                | •           |                     |             |                  |                        |                                        |                                                       |
| Test for subgroup diff                  |             |                     |             |                  |                        |                                        | 0.01 0.1 1 10 100<br>Favours dopamine Favours control |


Test for subgroup differences:  $Chi^2 = 0.06$ , df = 1 (P = 0.81),  $I^2 = 0\%$ 

# E-Figures 1.3.8-1.3.10: subgroup analysis 3 – trials subdivided by dose


|                                   | Dopam     | nine                  | Contr        | ol      |                               | Risk Ratio          | Risk Ratio                         |
|-----------------------------------|-----------|-----------------------|--------------|---------|-------------------------------|---------------------|------------------------------------|
| Study or Subgroup                 | Events    | Total                 | Events       | Total   | Weight                        | M-H, Random, 95% Cl | M-H, Random, 95% CI                |
| 2.2.8 Subgroup 3: Lov             | w dose    |                       |              |         |                               |                     |                                    |
| Chen 2013                         | 19        | 122                   | 12           | 119     | 26.8%                         | 1.54 [0.78, 3.04]   |                                    |
| Kamiya 2015                       | 0         | 12                    | 0            | 12      |                               | Not estimable       |                                    |
| Rosseel 1997                      | 25        | 35                    | 24           | 35      | 73.2%                         | 1.04 [0.77, 1.42]   |                                    |
| Subtotal (95% CI)                 |           | 169                   |              | 166     | 100.0%                        | 1.16 [0.78, 1.71]   | ◆                                  |
| Total events                      | 44        |                       | 36           |         |                               |                     |                                    |
| Heterogeneity: Tau² =             | 0.03; Chi | i <sup>2</sup> = 1.43 | 2, df = 1 (l | P = 0.2 | 3); <b>I<sup>2</sup> =</b> 29 | %                   |                                    |
| Test for overall effect:          | Z=0.73 (  | (P = 0.4              | 6)           |         |                               |                     |                                    |
| 2.2.9 Subgroup 3: Mo              | derate do | ose                   |              |         |                               |                     |                                    |
| Giamouzis 2010                    | 6         | 30                    | 2            | 30      | 20.6%                         | 3.00 [0.66, 13.69]  |                                    |
| Hsueh 1998                        | 0         | 10                    | 0            | 10      |                               | Not estimable       |                                    |
| Oppizzi 1997                      | 4         | 13                    | 1            | 13      | 11.3%                         | 4.00 [0.51, 31.13]  |                                    |
| Triposkiadis 2014                 | 4         | 28                    | 6            | 55      | 34.0%                         | 1.31 [0.40, 4.26]   |                                    |
| Triposkiadis 2014a                | 4         | 28                    | 6            | 50      | 34.2%                         | 1.19 [0.37, 3.86]   |                                    |
| Subtotal (95% CI)                 |           | 109                   |              | 158     | 100.0%                        | 1.70 [0.86, 3.39]   | ★                                  |
| Total events                      | 18        |                       | 15           |         |                               |                     |                                    |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi | <sup>2</sup> = 1.7    | 7, df = 3 (l | P = 0.6 | 2); I <sup>2</sup> = 0%       | 6                   |                                    |
| Test for overall effect:          | Z=1.52 (  | (P = 0.1              | 3)           |         |                               |                     |                                    |
| 2.2.10 Subgroup 3: Hi             | igh dose  |                       |              |         |                               |                     |                                    |
| Subtotal (95% CI)                 |           | 0                     |              | 0       |                               | Not estimable       |                                    |
| Total events                      | 0         |                       | 0            |         |                               |                     |                                    |
| Heterogeneity: Not ap             | plicable  |                       |              |         |                               |                     |                                    |
| Test for overall effect:          | Not appli | cable                 |              |         |                               |                     |                                    |
|                                   | . ,       |                       |              |         |                               |                     |                                    |
|                                   |           |                       |              |         |                               |                     | 0.01 0.1 1 10 100                  |
|                                   |           |                       |              |         |                               |                     | Favours dopamine Favours control   |
| Fest for subgroup diff            | erences:  | Chi² = I              | ).92, df =   | 1 (P =  | 0.34), I <sup>z</sup> =       | 0%                  | r avours dopannine Favours control |


Test for subgroup differences: Chi<sup>2</sup> = 0.92, df = 1 (P = 0.34), l<sup>2</sup> = 0%

#### E-Figures 1.3.11-1.3.12: subgroup analysis 4 – trials subdivided by clinical setting

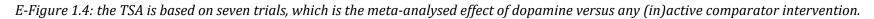


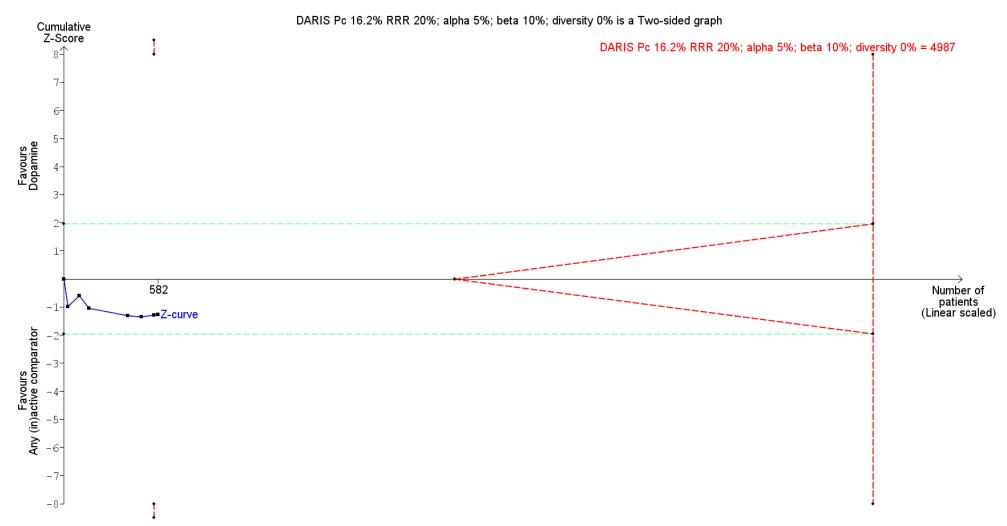
Test for subgroup differences: Chi<sup>2</sup> = 0.01, df = 1 (P = 0.93),  $I^2 = 0\%$ 





Test for subgroup differences: Not applicable


#### E-Figure 1.3.14: sensitivity analysis – SAEs in all trials including mortality


|                                   | Dopam                    | ine     | Contr      | ol      |                         | Risk Ratio          | Risk Ratio          |
|-----------------------------------|--------------------------|---------|------------|---------|-------------------------|---------------------|---------------------|
| Study or Subgroup                 | Events                   | Total   | Events     | Total   | Weight                  | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
| 2.2.15 SAEs including             | g mortality              | 1       |            |         |                         |                     |                     |
| Arutiunov 2010                    | 2                        | 21      | 3          | 20      | 1.2%                    | 0.63 [0.12, 3.41]   |                     |
| Bove 2005                         | 3                        | 40      | 4          | 40      | 1.6%                    | 0.75 [0.18, 3.14]   |                     |
| Chen 2013                         | 43                       | 122     | 37         | 119     | 25.3%                   | 1.13 [0.79, 1.62]   | -                   |
| Cotter 1997                       | 1                        | 14      | 0          | 6       | 0.3%                    | 1.40 [0.06, 30.23]  |                     |
| Giamouzis 2010                    | 9                        | 30      | 5          | 30      | 3.5%                    | 1.80 [0.68, 4.74]   |                     |
| Hausen 1992                       | 0                        | 14      | 0          | 27      |                         | Not estimable       |                     |
| Hsueh 1998                        | 0                        | 10      | 0          | 10      |                         | Not estimable       |                     |
| Kamiya 2015                       | 0                        | 12      | 2          | 12      | 0.4%                    | 0.20 [0.01, 3.77]   |                     |
| Oppizzi 1997                      | 7                        | 13      | 1          | 13      | 0.9%                    | 7.00 [1.00, 49.16]  |                     |
| Rosseel 1997                      | 25                       | 35      | 24         | 35      | 34.8%                   | 1.04 [0.77, 1.42]   | +                   |
| Shah 2014                         | 1                        | 31      | 4          | 61      | 0.7%                    | 0.49 [0.06, 4.22]   |                     |
| Sindone 1998                      | 0                        | 8       | 3          | 8       | 0.4%                    | 0.14 [0.01, 2.39]   | ·                   |
| Sindone 1998a                     | 1                        | 8       | 2          | 26      | 0.6%                    | 1.63 [0.17, 15.66]  |                     |
| Sindone 1998b                     | 1                        | 8       | 1          | 9       | 0.5%                    | 1.13 [0.08, 15.19]  |                     |
| Tarr 1993a                        | 1                        | 12      | 3          | 25      | 0.7%                    | 0.69 [0.08, 6.00]   |                     |
| Tarr 1993b                        | 1                        | 13      | 3          | 25      | 0.7%                    | 0.64 [0.07, 5.57]   |                     |
| Triposkiadis 2014                 | 13                       | 28      | 24         | 55      | 13.2%                   | 1.06 [0.65, 1.75]   | _ <b>_</b>          |
| Triposkiadis 2014a                | 14                       | 28      | 25         | 50      | 15.3%                   | 1.00 [0.63, 1.59]   | -+-                 |
| Varriale 1997                     | 0                        | 10      | 0          | 10      |                         | Not estimable       |                     |
| Subtotal (95% CI)                 |                          | 457     |            | 581     | 100.0%                  | 1.06 [0.89, 1.27]   | •                   |
| Total events                      | 122                      |         | 141        |         |                         |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | : 0.00; Chi <sup>a</sup> | ²= 9.74 | 4, df = 15 | (P = 0. | 84); I <sup>z</sup> = 0 | %                   |                     |
| Test for overall effect:          | Z = 0.67 (               | P = 0.5 | 1)         |         |                         |                     |                     |
|                                   |                          |         |            |         |                         |                     |                     |
|                                   |                          |         |            |         |                         |                     |                     |
|                                   |                          |         |            |         |                         |                     | 0.01 0.1 1 10 100   |

Favours dopamine Favours control

Test for subgroup differences: Not applicable

# **1.6.** Trial sequential analysis of serious adverse events



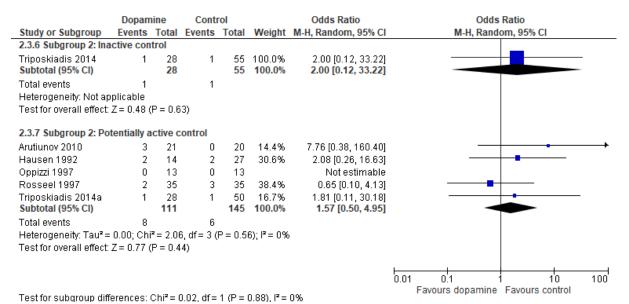


# **1.7.** Forest plots of myocardial infarction

|                                   | Dopam       |                     | Cont        |         |                               | Odds Ratio          | Odds Ratio          |
|-----------------------------------|-------------|---------------------|-------------|---------|-------------------------------|---------------------|---------------------|
| Study or Subgroup                 |             | Total               | Events      | Total   | Weight                        | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
| 2.3.1 All included stu            | dies        |                     |             |         |                               |                     |                     |
| Arutiunov 2010                    | 3           | 21                  | 0           | 20      | 12.3%                         | 7.76 [0.38, 160.40] |                     |
| lausen 1992                       | 2           | 14                  | 2           | 27      | 26.2%                         | 2.08 [0.26, 16.63]  |                     |
| Oppizzi 1997                      | 0           | 13                  | 0           | 13      |                               | Not estimable       |                     |
| Rosseel 1997                      | 2           | 35                  | 3           | 35      | 32.9%                         | 0.65 [0.10, 4.13]   |                     |
| Triposkiadis 2014                 | 1           | 28                  | 1           | 55      | 14.3%                         | 2.00 [0.12, 33.22]  |                     |
| Triposkiadis 2014a                | 1           | 28                  | 1           | 50      | 14.3%                         | 1.81 [0.11, 30.18]  |                     |
| Subtotal (95% CI)                 |             | 139                 |             | 200     | 100.0%                        | 1.63 [0.56, 4.71]   | -                   |
| Total events                      | 9           |                     | 7           |         |                               |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | : 0.00; Chi | ²= 2.08             | 3, df = 4 ( | P = 0.7 | 2); I <sup>z</sup> = 0%       | 6                   |                     |
| Fest for overall effect:          | Z=0.90 (    | P = 0.3             | 7)          |         |                               |                     |                     |
| 2.3.2 Worst-best cas              | e analysi   | s                   |             |         |                               |                     |                     |
| Arutiunov 2010                    | 3           | 21                  | 0           | 20      | 12.3%                         | 7.76 [0.38, 160.40] |                     |
| Hausen 1992                       | 2           | 14                  | 2           | 27      | 26.2%                         | 2.08 [0.26, 16.63]  |                     |
| Oppizzi 1997                      | 0           | 13                  | 0           | 13      |                               | Not estimable       |                     |
| Rosseel 1997                      | 2           | 35                  | 3           | 35      | 32.9%                         | 0.65 [0.10, 4.13]   |                     |
| Friposkiadis 2014                 | 1           | 28                  | 1           | 55      | 14.3%                         | 2.00 [0.12, 33.22]  |                     |
| riposkiadis 2014a                 | 1           | 28                  | 1           | 50      | 14.3%                         | 1.81 [0.11, 30.18]  |                     |
| Subtotal (95% CI)                 |             | 139                 |             | 200     | 100.0%                        | 1.63 [0.56, 4.71]   | -                   |
| Fotal events                      | 9           |                     | 7           |         |                               |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi   | <sup>2</sup> = 2.08 | 3, df = 4 ( | P = 0.7 | 2); <b>I<sup>2</sup> = 0%</b> | 6                   |                     |
| Test for overall effect:          | Z=0.90 (    | P = 0.3             | 7)          |         |                               |                     |                     |
| 2.3.3 Best-worst cas              | e analysi   | 5                   |             |         |                               |                     |                     |
| Arutiunov 2010                    | 3           | 21                  | 0           | 20      | 12.3%                         | 7.76 [0.38, 160.40] |                     |
| Hausen 1992                       | 2           | 14                  | 2           | 27      | 26.2%                         | 2.08 [0.26, 16.63]  |                     |
| Oppizzi 1997                      | 0           | 13                  | 0           | 13      |                               | Not estimable       |                     |
| Rosseel 1997                      | 2           | 35                  | 3           | 35      | 32.9%                         | 0.65 [0.10, 4.13]   |                     |
| Friposkiadis 2014                 | 1           | 28                  | 1           | 55      | 14.3%                         | 2.00 [0.12, 33.22]  |                     |
| Triposkiadis 2014a                | 1           | 28                  | 1           | 50      | 14.3%                         | 1.81 [0.11, 30.18]  |                     |
| Subtotal (95% CI)                 |             | 139                 |             | 200     | 100.0%                        | 1.63 [0.56, 4.71]   |                     |
| Total events                      | 9           |                     | 7           |         |                               |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi   | <b>=</b> 2.08       | 3, df = 4 ( | P = 0.7 | 2); I <sup>2</sup> = 0%       | 6                   |                     |
| Test for overall effect:          |             |                     |             |         |                               |                     |                     |
|                                   |             |                     |             |         |                               |                     |                     |
|                                   |             |                     |             |         |                               |                     | 0.01 0.1 1 10 1     |

E-Figures 1.5.1-1.5.3: all trials with worst-best and best-worst case analyses

Test for subgroup differences:  $Chi^2 = 0.00$ , df = 2 (P = 1.00),  $I^2 = 0\%$ 

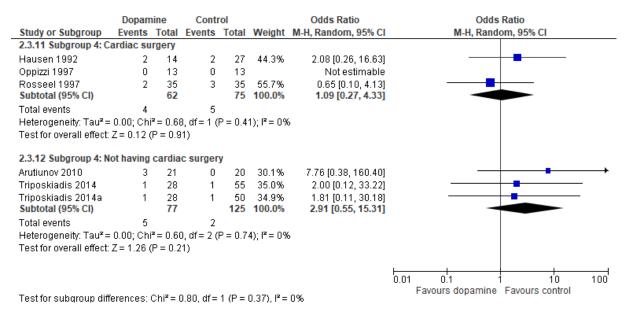

# E-Figures 1.5.4-1.5.5: subgroup analysis 1 - trials subdivided by risk of bias

|                                   | Dopam                    | ine     | Contr        | ol      |                               | Odds Ratio          | Odds Ratio                           |
|-----------------------------------|--------------------------|---------|--------------|---------|-------------------------------|---------------------|--------------------------------------|
| Study or Subgroup                 | Events                   | Total   | Events       | Total   | Weight                        | M-H, Random, 95% Cl | M-H, Random, 95% Cl                  |
| 2.3.4 Subgroup 1: Lo              | w risk of b              | ias     |              |         |                               |                     |                                      |
| Subtotal (95% CI)                 |                          | 0       |              | 0       |                               | Not estimable       |                                      |
| Total events                      | 0                        |         | 0            |         |                               |                     |                                      |
| Heterogeneity: Not ap             | plicable                 |         |              |         |                               |                     |                                      |
| Test for overall effect:          | Not applic               | able    |              |         |                               |                     |                                      |
| 2.3.5 Subgroup 1: Un              | clear or hi              | igh ris | k of bias    |         |                               |                     |                                      |
| Arutiunov 2010                    | 3                        | 21      | 0            | 20      | 12.3%                         | 7.76 [0.38, 160.40] | <b>_</b> >                           |
| Hausen 1992                       | 2                        | 14      | 2            | 27      | 26.2%                         | 2.08 [0.26, 16.63]  |                                      |
| Oppizzi 1997                      | 0                        | 13      | 0            | 13      |                               | Not estimable       |                                      |
| Rosseel 1997                      | 2                        | 35      | 3            | 35      | 32.9%                         | 0.65 [0.10, 4.13]   |                                      |
| Triposkiadis 2014                 | 1                        | 28      | 1            | 55      | 14.3%                         | 2.00 [0.12, 33.22]  |                                      |
| Triposkiadis 2014a                | 1                        | 28      | 1            | 50      | 14.3%                         | 1.81 [0.11, 30.18]  |                                      |
| Subtotal (95% CI)                 |                          | 139     |              | 200     | 100.0%                        | 1.63 [0.56, 4.71]   | -                                    |
| Total events                      | 9                        |         | 7            |         |                               |                     |                                      |
| Heterogeneity: Tau <sup>2</sup> = | : 0.00; Chi <sup>a</sup> | ²= 2.08 | 3, df = 4 (l | P = 0.7 | 2); <b>I<sup>2</sup> = 0%</b> | 6                   |                                      |
| Test for overall effect:          | Z = 0.90 (i              | P = 0.3 | 7)           |         |                               |                     |                                      |
|                                   |                          |         |              |         |                               |                     |                                      |
|                                   |                          |         |              |         |                               |                     |                                      |
|                                   |                          |         |              |         |                               |                     | Favours dopamine Favours control     |
| Test for subgroup diff            | foroncoe · N             | Jot and | dicable      |         |                               |                     | r aroaro aopaninio il avodio control |

Test for subgroup differences: Not applicable

Favours dopamine Favours control

#### E-Figures 1.5.6-1.5.7: subgroup analysis 2 – trials subdivided by comparator intervention




*E-Figures 1.5.8-1.5.10: subgroup analysis 3 – trials subdivided by dose* 

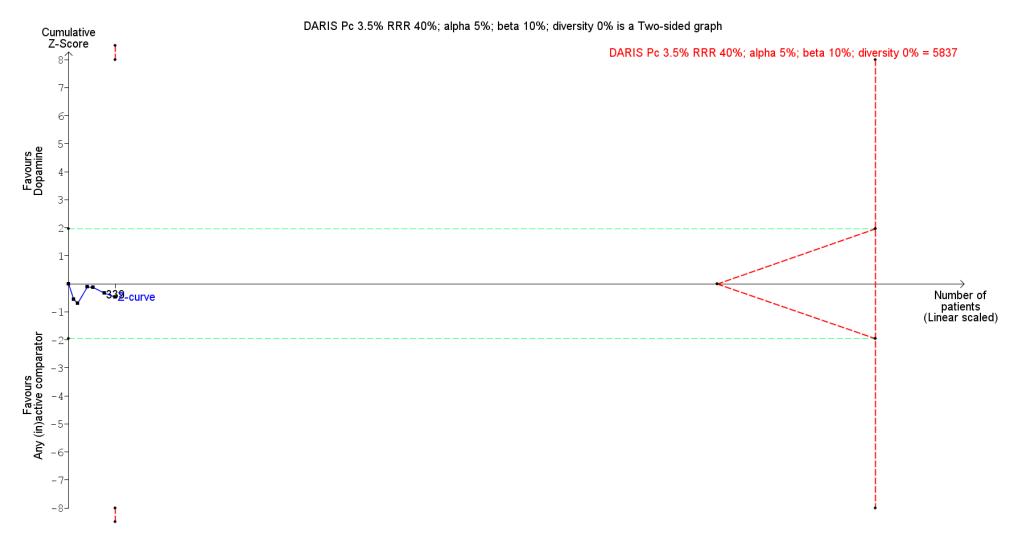

|                                   | Dopan        | nine     | Contr  | ol      |             | Odds Ratio          | Odds Ratio                       |
|-----------------------------------|--------------|----------|--------|---------|-------------|---------------------|----------------------------------|
| Study or Subgroup                 | Events       | Total    | Events | Total   | Weight      | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
| 2.3.8 Subgroup 3: Lo              | w dose       |          |        |         |             |                     |                                  |
| Arutiunov 2010                    | 3            | 21       | 0      | 20      | 38.4%       | 7.76 [0.38, 160.40] |                                  |
| Rosseel 1997                      | 2            | 35       | 3      | 35      | 61.6%       | 0.65 [0.10, 4.13]   |                                  |
| Subtotal (95% CI)                 |              | 56       |        | 55      | 100.0%      | 1.68 [0.15, 18.75]  |                                  |
| Total events                      | 5            |          | 3      |         |             |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | •            |          | • •    | P = 0.1 | 6); I² = 49 | %                   |                                  |
| Test for overall effect           | Z = 0.42 (   | (P = 0.6 | 7)     |         |             |                     |                                  |
| 2.3.9 Subgroup 3: Mo              | oderate de   | ose      |        |         |             |                     |                                  |
| Hausen 1992                       | 2            | 14       | 2      | 27      | 47.8%       | 2.08 [0.26, 16.63]  |                                  |
| Oppizzi 1997                      | 0            | 13       | 0      | 13      |             | Not estimable       |                                  |
| Triposkiadis 2014                 | 1            | 28       | 1      | 55      | 26.1%       | 2.00 [0.12, 33.22]  |                                  |
| Triposkiadis 2014a                | 1            | 28       | 1      | 50      | 26.1%       | 1.81 [0.11, 30.18]  |                                  |
| Subtotal (95% CI)                 |              | 83       |        | 145     | 100.0%      | 1.99 [0.47, 8.36]   |                                  |
| Total events                      | 4            |          | 4      |         |             |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | •            |          |        | P = 1.0 | 0); I² = 0% | 6                   |                                  |
| Test for overall effect           | : Z = 0.94 ( | (P = 0.3 | 5)     |         |             |                     |                                  |
| 2.3.10 Subgroup 3: H              | ligh dose    |          |        |         |             |                     |                                  |
| Subtotal (95% CI)                 |              | 0        |        | 0       |             | Not estimable       |                                  |
| Total events                      | 0            |          | 0      |         |             |                     |                                  |
| Heterogeneity: Not ap             | oplicable    |          |        |         |             |                     |                                  |
| Test for overall effect           | Not appli    | cable    |        |         |             |                     |                                  |
|                                   |              |          |        |         |             |                     |                                  |
|                                   |              |          |        |         |             |                     | 0.01 0.1 1 10 10                 |
|                                   |              |          |        |         |             |                     | Favours dopamine Favours control |

Test for subgroup differences:  $Chi^2 = 0.01$ , df = 1 (P = 0.91), l<sup>2</sup> = 0%

#### E-Figures 1.5.11-1.5.12: subgroup analysis 4 – trials subdivided by clinical setting



*E-Figure 1.5.13: sensitivity analysis – trials including only patients with cardiac dysfunction* 




Test for subgroup differences: Not applicable

Favours dopamine Favours contro

# 1.8. Trial sequential analysis of myocardial infarction

*E-Figure 1.6: the TSA is based on six trials, which is the meta-analysed effect of dopamine versus any (in)active comparator intervention.* 



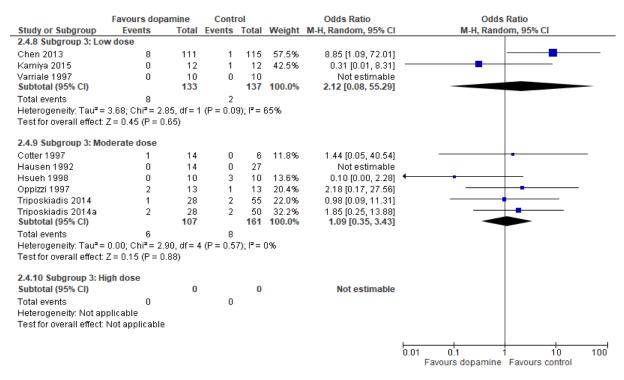
#### 1.9. Forest plots of ventricular tachyarrhythmias

*E-Figures 1.7.1-1.7.3: all trials with worst-best and best-worst case analyses* 

|                                     | Dopan      |                       | Cont        |         |                         | Odds Ratio          | Odds Ratio                            |
|-------------------------------------|------------|-----------------------|-------------|---------|-------------------------|---------------------|---------------------------------------|
| Study or Subgroup                   |            | Total                 | Events      | Total   | Weight                  | M-H, Random, 95% Cl | M-H, Random, 95% Cl                   |
| 2.4.1 All included stu              |            |                       |             |         |                         |                     |                                       |
| Chen 2013                           | 8          | 111                   | 1           | 115     | 20.3%                   | 8.85 [1.09, 72.01]  |                                       |
| Cotter 1997                         | 1          | 14                    | 0           | 6       | 8.9%                    | 1.44 [0.05, 40.54]  |                                       |
| Hausen 1992                         | 0          | 14                    | 0           | 27      |                         | Not estimable       |                                       |
| Hsueh 1998                          | 0          | 10                    | 3           | 10      | 10.1%                   | 0.10 [0.00, 2.28]   | · · · · · · · · · · · · · · · · · · · |
| Kamiya 2015                         | 0          | 12                    | 1           | 12      | 9.0%                    | 0.31 [0.01, 8.31]   |                                       |
| Oppizzi 1997                        | 2          | 13                    | 1           | 13      | 14.6%                   | 2.18 [0.17, 27.56]  |                                       |
| Triposkiadis 2014                   | 1          | 28                    | 2           | 55      | 15.6%                   | 0.98 [0.09, 11.31]  |                                       |
| Triposkiadis 2014a                  | 2          | 28                    | 2           | 50      | 21.6%                   | 1.85 [0.25, 13.88]  |                                       |
| /arriale 1997                       | 0          | 10                    | 0           | 10      |                         | Not estimable       |                                       |
| Subtotal (95% CI)                   |            | 240                   |             | 298     | 100.0%                  | 1.46 [0.52, 4.10]   | -                                     |
| Total events                        | 14         |                       | 10          |         |                         |                     |                                       |
| Heterogeneity: Tau <sup>2</sup> =   | 0.22; Chi  | i <sup>z</sup> = 6.76 | 6, df = 6 ( | P = 0.3 | 4); I <sup>2</sup> = 11 | %                   |                                       |
| Test for overall effect:            | Z = 0.72 ( | (P = 0.4              | 7)          |         |                         |                     |                                       |
| 2.4.2 Worst-best cas                | e analvsi  | s                     |             |         |                         |                     |                                       |
| Chen 2013                           | 8          | 111                   | 1           | 115     | 20.3%                   | 8.85 [1.09, 72.01]  | <b>_</b>                              |
| Cotter 1997                         | 1          | 14                    | O           | 6       | 8.9%                    | 1.44 [0.05, 40.54]  |                                       |
| Hausen 1992                         | O          | 14                    | Ŭ           | 27      | 0.070                   | Not estimable       |                                       |
| Hsueh 1998                          | 0          | 10                    | 3           | 10      | 10.1%                   | 0.10 [0.00, 2.28]   | · · · · · · · · · · · · · · · · · · · |
| Kamiya 2015                         | 0          | 12                    | 1           | 12      | 9.0%                    | 0.31 [0.01, 8.31]   | e                                     |
| Oppizzi 1997                        | 2          | 13                    | 1           | 13      | 14.6%                   | 2.18 [0.17, 27.56]  |                                       |
| Triposkiadis 2014                   | 1          | 28                    | 2           | 55      | 15.6%                   | 0.98 [0.09, 11.31]  |                                       |
| Triposkiadis 2014                   | 2          | 28                    | 2           | 50      | 21.6%                   | 1.85 [0.25, 13.88]  |                                       |
| /arriale 1997                       | 2          | 10                    | 2           | 10      | 21.0%                   | Not estimable       |                                       |
| Subtotal (95% CI)                   | 0          | 240                   | 0           |         | 100.0%                  | 1.46 [0.52, 4.10]   |                                       |
| Total events                        | 14         | 240                   | 10          | 230     | 100.070                 | 1.40 [0.52, 4.10]   |                                       |
| Heterogeneity: Tau² =               |            | <b>2</b> - 6 70       |             | 0-00    | 4V-12 - 1.1             | ox.                 |                                       |
| Test for overall effect:            |            |                       |             | r – 0.5 | 4),1 - 11               | 70                  |                                       |
| 2.4.3 Best-worst cas                | o analvei  |                       |             |         |                         |                     |                                       |
|                                     | -          |                       | 4           | 445     | 20.20                   | 0.05 14 00 70 041   |                                       |
| Chen 2013                           | 8          | 111                   | 1           | 115     | 20.3%                   | 8.85 [1.09, 72.01]  |                                       |
| Cotter 1997                         | 1          | 14                    | 0           | 6       | 8.9%                    | 1.44 [0.05, 40.54]  |                                       |
| Hausen 1992                         | 0          | 14                    | 0           | 27      | 40.40                   | Not estimable       |                                       |
| Hsueh 1998<br>Kamina 2016           | 0          | 10                    | 3           | 10      | 10.1%                   | 0.10 [0.00, 2.28]   |                                       |
| Kamiya 2015                         | 0          | 12                    | 1           | 12      | 9.0%                    | 0.31 [0.01, 8.31]   |                                       |
| Oppizzi 1997<br>Triana dia dia 2014 | 2          | 13                    | 1           | 13      | 14.6%                   | 2.18 [0.17, 27.56]  |                                       |
| Triposkiadis 2014                   | 1          | 28                    | 2           | 55      | 15.6%                   | 0.98 [0.09, 11.31]  |                                       |
| Triposkiadis 2014a                  | 2          | 28                    | 2           | 50      | 21.6%                   | 1.85 [0.25, 13.88]  |                                       |
| /arriale 1997                       | 0          | 10                    | 0           | 10      | 400.05                  | Not estimable       |                                       |
| Subtotal (95% CI)                   |            | 240                   |             | 298     | 100.0%                  | 1.46 [0.52, 4.10]   |                                       |
| Total events                        | 14         |                       | 10          |         |                         |                     |                                       |
| Heterogeneity: Tau <sup>2</sup> =   | •          |                       |             | P = 0.3 | 4); I <sup>2</sup> = 11 | %                   |                                       |
| Test for overall effect:            | Z = 0.72 ( | (P = 0.4              | 7)          |         |                         |                     |                                       |
|                                     |            |                       |             |         |                         |                     |                                       |
|                                     |            |                       |             |         |                         |                     | 0.01 0.1 1 10                         |

0.01 0.1 1 10 Favours dopamine Favours control

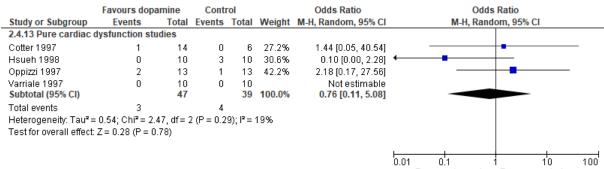
# E-Figures 1.7.4-1.7.5: subgroup analysis 1 - trials subdivided by risk of bias


| Chudu an Culturation                       | Favours dopa                 |           | Contr     |                        | 14/    | Odds Ratio          | Odds Ratio                                            |
|--------------------------------------------|------------------------------|-----------|-----------|------------------------|--------|---------------------|-------------------------------------------------------|
| Study or Subgroup                          | Events                       | Total     | Events    | Total                  | weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                                   |
| 2.4.4 Subgroup 1: Lov<br>Subtotal (95% Cl) | v risk of bias               | 0         |           | 0                      |        | Not estimable       |                                                       |
| Total events                               | 0                            |           | 0         |                        |        |                     |                                                       |
| Heterogeneity: Not app                     | plicable                     |           |           |                        |        |                     |                                                       |
| Test for overall effect: I                 | Not applicable               |           |           |                        |        |                     |                                                       |
| 2.4.5 Subgroup 1: Und                      | lear or high ris             | k of bia  | s         |                        |        |                     |                                                       |
| Chen 2013                                  | 8                            | 111       | 1         | 115                    | 20.3%  | 8.85 [1.09, 72.01]  |                                                       |
| Cotter 1997                                | 1                            | 14        | 0         | 6                      | 8.9%   | 1.44 [0.05, 40.54]  |                                                       |
| Hausen 1992                                | 0                            | 14        | 0         | 27                     |        | Not estimable       |                                                       |
| Hsueh 1998                                 | 0                            | 10        | 3         | 10                     | 10.1%  | 0.10 [0.00, 2.28]   | • • • · · · · · · · · · · · · · · · · ·               |
| Kamiya 2015                                | 0                            | 12        | 1         | 12                     | 9.0%   | 0.31 [0.01, 8.31]   |                                                       |
| Oppizzi 1997                               | 2                            | 13        | 1         | 13                     | 14.6%  | 2.18 [0.17, 27.56]  |                                                       |
| Triposkiadis 2014                          | 1                            | 28        | 2         | 55                     | 15.6%  | 0.98 [0.09, 11.31]  |                                                       |
| Triposkiadis 2014a                         | 2                            | 28        | 2         | 50                     | 21.6%  | 1.85 [0.25, 13.88]  |                                                       |
| /arriale 1997                              | 0                            | 10        | 0         | 10                     |        | Not estimable       |                                                       |
| Subtotal (95% CI)                          |                              | 240       |           | 298                    | 100.0% | 1.46 [0.52, 4.10]   | -                                                     |
| Total events                               | 14                           |           | 10        |                        |        |                     |                                                       |
| Heterogeneity: Tau <sup>2</sup> =          | 0.22; Chi <sup>2</sup> = 6.7 | 6, df = 6 | (P = 0.34 | 4); I <sup>2</sup> = 1 | 11%    |                     |                                                       |
| Test for overall effect: 2                 | Z = 0.72 (P = 0.4            | 7)        |           |                        |        |                     |                                                       |
|                                            |                              |           |           |                        |        |                     |                                                       |
|                                            |                              |           |           |                        |        |                     | 0.01 0.1 1 10 100<br>Favours dopamine Favours control |

*E-Figures 1.7.6-1.7.7: subgroup analysis 2 – trials subdivided by comparator intervention* 

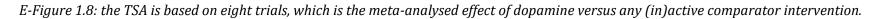
|                                                                                        | Favours dopa                           |                      | Contr            |                        |                         | Odds Ratio                                                                    | Odds Ratio                            |
|----------------------------------------------------------------------------------------|----------------------------------------|----------------------|------------------|------------------------|-------------------------|-------------------------------------------------------------------------------|---------------------------------------|
| Study or Subgroup                                                                      | Events                                 | Total                | Events           | Total                  | weight                  | M-H, Random, 95% Cl                                                           | M-H, Random, 95% Cl                   |
| 2.4.6 Subgroup 2: Ina                                                                  | ictive control                         |                      |                  |                        |                         |                                                                               |                                       |
| Chen 2013                                                                              | 8                                      | 111                  | 1                | 115                    | 54.1%                   | 8.85 [1.09, 72.01]                                                            |                                       |
| Triposkiadis 2014                                                                      | 1                                      | 28                   | 2                | 55                     | 45.9%                   | 0.98 [0.09, 11.31]                                                            |                                       |
| Varriale 1997                                                                          | 0                                      | 10                   | 0                | 10                     |                         | Not estimable                                                                 |                                       |
| Subtotal (95% CI)                                                                      |                                        | 149                  |                  | 180                    | 100.0%                  | 3.23 [0.36, 28.60]                                                            |                                       |
| Total events                                                                           | 9                                      |                      | 3                |                        |                         |                                                                               |                                       |
| Heterogeneity: Tau <sup>2</sup> =                                                      | 1.14; Chi <sup>2</sup> = 1.8           | 5, df = 1            | (P = 0.1)        | 7); I <sup>2</sup> = - | 46%                     |                                                                               |                                       |
| Test for overall effect:                                                               | Z = 1.05 (P = 0.)                      | 29)                  |                  |                        |                         |                                                                               |                                       |
| <b>2.4.7 Subgroup 2: Po</b><br>Cotter 1997<br>Hausen 1992<br>Hsueh 1998<br>Kamiya 2015 | tentially active (<br>1<br>0<br>0<br>0 | 14<br>14<br>10<br>12 | 0<br>0<br>3<br>1 | 6<br>27<br>10<br>12    | 13.1%<br>15.1%<br>13.4% | 1.44 (0.05, 40.54)<br>Not estimable<br>0.10 (0.00, 2.28)<br>0.31 (0.01, 8.31) | · · · · · · · · · · · · · · · · · · · |
| Oppizzi 1997                                                                           | 2                                      | 13                   | 1                | 13                     | 22.6%                   | 2.18 [0.17, 27.56]                                                            |                                       |
| Triposkiadis 2014a<br>Subtotal (95% CI)                                                | 2                                      | 28<br>91             | 2                | 50                     | 35.8%<br>100.0%         | 1.85 [0.25, 13.88]<br>0.94 [0.28, 3.15]                                       |                                       |
| Total events                                                                           | 5                                      |                      | 7                |                        |                         |                                                                               |                                       |
| Heterogeneity: Tau² =<br>Test for overall effect:                                      |                                        |                      | (P = 0.4)        | 9); I² = I             | 0%                      |                                                                               |                                       |
|                                                                                        |                                        |                      |                  |                        |                         |                                                                               |                                       |

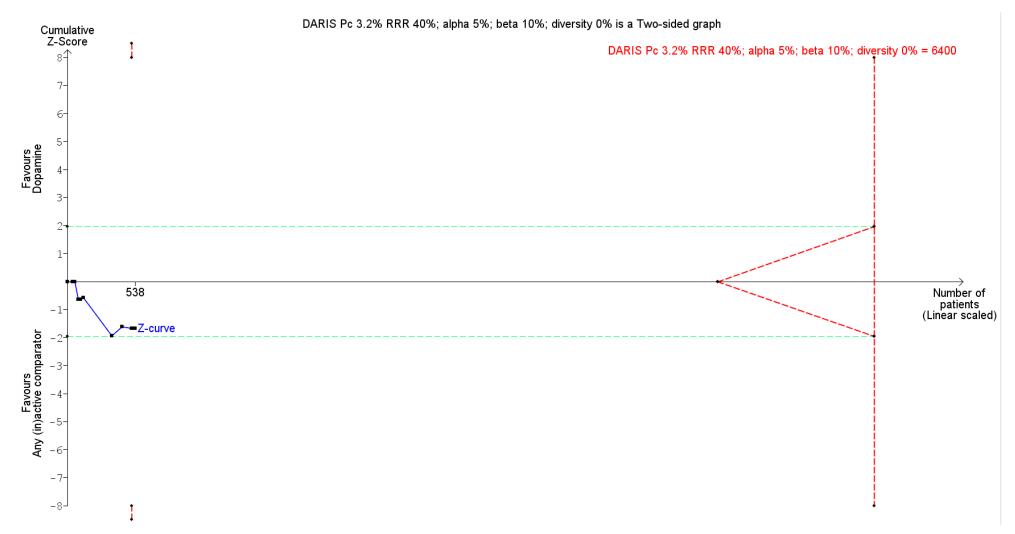
24


#### E-Figures 1.7.8-1.7.10: subgroup analysis 3 - trials subdivided by dose



E-Figures 1.7.11-1.7.12: subgroup analysis 4 – trials subdivided by clinical setting


|                                   | Favours dopar                 |           | Contr    |                        |        | Odds Ratio          | Odds Ratio          |
|-----------------------------------|-------------------------------|-----------|----------|------------------------|--------|---------------------|---------------------|
| Study or Subgroup                 | Events                        | lotal     | Events   | lotal                  | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
| 2.4.11 Subgroup 4: C              | ardiac surgery                |           |          |                        |        |                     |                     |
| Hausen 1992                       | 0                             | 14        | 0        | 27                     |        | Not estimable       |                     |
| Oppizzi 1997                      | 2                             | 13        | 1        | 13                     | 100.0% | 2.18 [0.17, 27.56]  |                     |
| Subtotal (95% CI)                 |                               | 27        |          | 40                     | 100.0% | 2.18 [0.17, 27.56]  |                     |
| Total events                      | 2                             |           | 1        |                        |        |                     |                     |
| Heterogeneity: Not ap             | plicable                      |           |          |                        |        |                     |                     |
| Test for overall effect:          | Z = 0.60 (P = 0.5             | 5)        |          |                        |        |                     |                     |
| 2.4.12 Subgroup 4: N              | ot having cardia              | c surge   | ery      |                        |        |                     |                     |
| Chen 2013                         | 8                             | 111       | 1        | 115                    | 22.6%  | 8.85 [1.09, 72.01]  |                     |
| Cotter 1997                       | 1                             | 14        | 0        | 6                      | 11.2%  | 1.44 [0.05, 40.54]  |                     |
| Hsueh 1998                        | 0                             | 10        | 3        | 10                     | 12.6%  | 0.10 [0.00, 2.28]   | ←                   |
| Kamiya 2015                       | 0                             | 12        | 1        | 12                     | 11.4%  | 0.31 [0.01, 8.31]   |                     |
| Triposkiadis 2014                 | 1                             | 28        | 2        | 55                     | 18.3%  | 0.98 [0.09, 11.31]  | <b>+</b>            |
| Triposkiadis 2014a                | 2                             | 28        | 2        | 50                     | 23.8%  | 1.85 [0.25, 13.88]  |                     |
| Varriale 1997                     | 0                             | 10        | 0        | 10                     |        | Not estimable       |                     |
| Subtotal (95% CI)                 |                               | 213       |          | 258                    | 100.0% | 1.29 [0.38, 4.39]   |                     |
| Total events                      | 12                            |           | 9        |                        |        |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.59; Chi <sup>2</sup> = 6.68 | 3. df = 5 | (P = 0.2 | 5); I <sup>2</sup> = ( | 25%    |                     |                     |
| Test for overall effect:          |                               | -         |          |                        |        |                     |                     |
|                                   |                               | -         |          |                        |        |                     |                     |
|                                   |                               |           |          |                        |        |                     |                     |
|                                   |                               |           |          |                        |        |                     | i0.01 0.1 i 10 10   |


E-Figure 1.7.13: sensitivity analysis - trials including only patients with cardiac dysfunction



Favours dopamine Favours control

# 1.10. Trial sequential analysis of ventricular tachyarrhythmias





# 1.11. Forest plots of renal replacement therapy

|                                   | Dopan       | ine                 | Contr      | ol      |                        | Risk Ratio          | Risk Ratio          |
|-----------------------------------|-------------|---------------------|------------|---------|------------------------|---------------------|---------------------|
| Study or Subgroup                 |             | Total               | Events     | Total   | Weight                 | M-H, Random, 95% CI | M-H, Random, 95% Cl |
| 2.5.1 All included stu            | dies        |                     |            |         |                        |                     |                     |
| Bove 2005                         | 4           | 40                  | 4          | 40      | 30.2%                  | 1.00 [0.27, 3.72]   |                     |
| Costa 1990                        | 0           | 18                  | 0          | 12      |                        | Not estimable       |                     |
| Sirivella 2000                    | 4           | 60                  | 36         | 40      | 32.7%                  | 0.07 [0.03, 0.19]   | <b>_</b>            |
| Triposkiadis 2014                 | 0           | 28                  | 1          | 55      | 17.2%                  | 0.64 [0.03, 15.31]  |                     |
| Triposkiadis 2014a                | 1           | 28                  | 1          | 50      | 19.9%                  | 1.79 [0.12, 27.46]  |                     |
| Subtotal (95% CI)                 |             | 174                 |            | 197     | 100.0%                 | 0.44 [0.07, 2.75]   |                     |
| Total events                      | 9           |                     | 42         |         |                        |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | = 2.41; Chi | <sup>2</sup> = 13.0 | 09, df = 3 | (P = 0. | 004); I <sup>2</sup> = | 77%                 |                     |
| Test for overall effect:          | Z=0.87 (    | P = 0.3             | 8)         |         |                        |                     |                     |
| 2.5.2 Worst-best cas              | se analysi  | s                   |            |         |                        |                     |                     |
| Bove 2005                         | 4           | 40                  | 4          | 40      | 24.7%                  | 1.00 [0.27, 3.72]   | <b>_</b>            |
| Costa 1990                        | 6           | 24                  | 0          | 12      | 16.8%                  | 6.76 [0.41, 110.86] |                     |
| Sirivella 2000                    | 4           | 60                  | 36         | 40      | 26.4%                  | 0.07 [0.03, 0.19]   | <b>_</b>            |
| Triposkiadis 2014                 | 0           | 28                  | 1          | 55      | 15.0%                  | 0.64 [0.03, 15.31]  |                     |
| Triposkiadis 2014a                | 1           | 28                  | 1          | 50      | 17.1%                  | 1.79 [0.12, 27.46]  |                     |
| Subtotal (95% CI)                 |             | 180                 |            | 197     | 100.0%                 | 0.72 [0.12, 4.27]   |                     |
| Total events                      | 15          |                     | 42         |         |                        |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | = 2.91; Chi | <sup>2</sup> = 18.1 | 10, df = 4 | (P = 0. | 001); I <sup>z</sup> = | 78%                 |                     |
| Test for overall effect:          | Z=0.37 (    | P = 0.7             | 1)         |         |                        |                     |                     |
| 2.5.3 Best-worst cas              | se analysi  | s                   |            |         |                        |                     |                     |
| Bove 2005                         | 4           | 40                  | 4          | 40      | 30.2%                  | 1.00 [0.27, 3.72]   | <b>+</b>            |
| Costa 1990                        | 0           | 24                  | 0          | 12      |                        | Not estimable       |                     |
| Sirivella 2000                    | 4           | 60                  | 36         | 40      | 32.7%                  | 0.07 [0.03, 0.19]   | <b>_</b>            |
| Triposkiadis 2014                 | 0           | 28                  | 1          | 55      | 17.2%                  | 0.64 [0.03, 15.31]  |                     |
| Triposkiadis 2014a                | 1           | 28                  | 1          | 50      | 19.9%                  | 1.79 [0.12, 27.46]  |                     |
| Subtotal (95% CI)                 |             | 180                 |            | 197     | 100.0%                 | 0.44 [0.07, 2.75]   |                     |
| Total events                      | 9           |                     | 42         |         |                        |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | = 2.41; Chi | <sup>2</sup> = 13.0 | 09, df = 3 | (P = 0. | 004); I <sup>z</sup> = | 77%                 |                     |
| Test for overall effect:          | Z=0.87 (    | P = 0.3             | 8)         |         |                        |                     |                     |
|                                   |             |                     |            |         |                        |                     |                     |
|                                   |             |                     |            |         |                        |                     | 0.01 0.1 i 10 10    |

*E-Figures 1.9.1-1.9.3: all trials with worst-best and best-worst case analyses* 

Test for subgroup differences:  $Chi^2 = 0.18$ , df = 2 (P = 0.91),  $l^2 = 0\%$ 

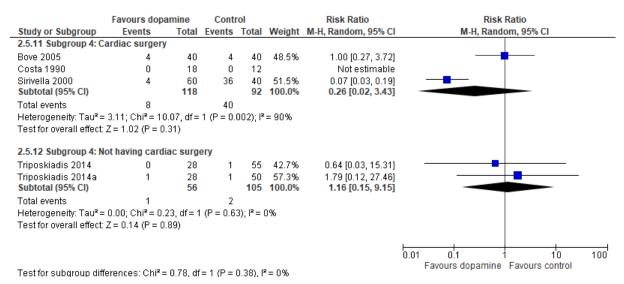
# E-Figures 1.9.4-1.9.5: subgroup analysis 1 - trials subdivided by risk of bias

|                                   | Favours dopar                   | nine     | Contr      | ol                   |        | Risk Ratio          | Risk Ratio                             |
|-----------------------------------|---------------------------------|----------|------------|----------------------|--------|---------------------|----------------------------------------|
| Study or Subgroup                 | Events                          | Total    | Events     | Total                | Weight | M-H, Random, 95% Cl | M-H, Random, 95% CI                    |
| 2.5.4 Subgroup 1: Lo              | w risk of bias                  |          |            |                      |        |                     |                                        |
| Subtotal (95% CI)                 |                                 | 0        |            | 0                    |        | Not estimable       |                                        |
| Total events                      | 0                               |          | 0          |                      |        |                     |                                        |
| Heterogeneity: Not ap             | oplicable                       |          |            |                      |        |                     |                                        |
| Test for overall effect:          | Not applicable                  |          |            |                      |        |                     |                                        |
| 2.5.5 Subgroup 1: Un              | clear or high ris               | k of bia | S          |                      |        |                     |                                        |
| Bove 2005                         | 4                               | 40       | 4          | 40                   | 30.2%  | 1.00 [0.27, 3.72]   | <b>+</b>                               |
| Costa 1990                        | 0                               | 18       | 0          | 12                   |        | Not estimable       |                                        |
| Sirivella 2000                    | 4                               | 60       | 36         | 40                   | 32.7%  | 0.07 [0.03, 0.19]   | <b>_</b>                               |
| Triposkiadis 2014                 | 0                               | 28       | 1          | 55                   | 17.2%  | 0.64 [0.03, 15.31]  |                                        |
| Triposkiadis 2014a                | 1                               | 28       | 1          | 50                   | 19.9%  | 1.79 [0.12, 27.46]  |                                        |
| Subtotal (95% CI)                 |                                 | 174      |            | 197                  | 100.0% | 0.44 [0.07, 2.75]   |                                        |
| Total events                      | 9                               |          | 42         |                      |        |                     |                                        |
| Heterogeneity: Tau <sup>2</sup> = | = 2.41; Chi <sup>2</sup> = 13.0 | 09, df=  | 3 (P = 0.0 | 004); I <sup>z</sup> | = 77%  |                     |                                        |
| Test for overall effect:          | Z = 0.87 (P = 0.3               | 8)       |            |                      |        |                     |                                        |
|                                   |                                 |          |            |                      |        |                     |                                        |
|                                   |                                 |          |            |                      |        |                     | 0.01 0.1 1 10 100                      |
|                                   |                                 |          |            |                      |        |                     | Favours dopamine Favours control       |
| Tast for subgroup diff            | foroncoc: Not on                | alieabla |            |                      |        |                     | · ···································· |

Test for subgroup differences: Not applicable

# *E-Figures 1.9.6-1.9.7: subgroup analysis 2 – trials subdivided by comparator intervention*

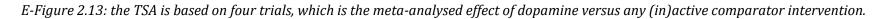
|                                                                   | Favours dopa     | mine             | Contr      | ol               |                         | Risk Ratio                               | Risk Ratio                                            |
|-------------------------------------------------------------------|------------------|------------------|------------|------------------|-------------------------|------------------------------------------|-------------------------------------------------------|
| Study or Subgroup                                                 | Events           | Total            | Events     | Total            | Weight                  | M-H, Random, 95% Cl                      | M-H, Random, 95% Cl                                   |
| 2.5.6 Subgroup 2: Ina                                             | active control   |                  |            |                  |                         |                                          |                                                       |
| Costa 1990                                                        | 0                | 18               | 0          | 12               |                         | Not estimable                            |                                                       |
| Triposkiadis 2014<br>Subtotal (95% CI)                            | 0                | 28<br><b>46</b>  | 1          | 55<br>67         | 100.0%<br><b>100.0%</b> | 0.64 [0.03, 15.31]<br>0.64 [0.03, 15.31] |                                                       |
| Total events<br>Heterogeneity: Not ap<br>Test for overall effect: | •                | 79)              | 1          |                  |                         |                                          |                                                       |
| 2.5.7 Subgroup 2: Po                                              | tentially active | control          |            |                  |                         |                                          |                                                       |
| Bove 2005                                                         | 4                | 40               | 4          | 40               | 36.2%                   | 1.00 [0.27, 3.72]                        | <b>+</b>                                              |
| Sirivella 2000                                                    | 4                | 60               | 36         | 40               | 38.7%                   | 0.07 [0.03, 0.19]                        | <b>_</b>                                              |
| Triposkiadis 2014a<br><b>Subtotal (95% CI)</b>                    | 1                | 28<br><b>128</b> | 1          | 50<br><b>130</b> | 25.1%<br><b>100.0%</b>  | 1.79 [0.12, 27.46]<br>0.42 [0.05, 3.67]  |                                                       |
| Total events                                                      | 9                |                  | 41         |                  |                         |                                          |                                                       |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:     | •                |                  | 2 (P = 0.1 | 002); I²         | = 84%                   |                                          |                                                       |
| Test for subaroun diff                                            | foroncas: Chiž - | 0.05 df          | – 1 (P – 1 | 183) 19          | °- 0%                   |                                          | 0.01 0.1 1 10 100<br>Favours dopamine Favours control |

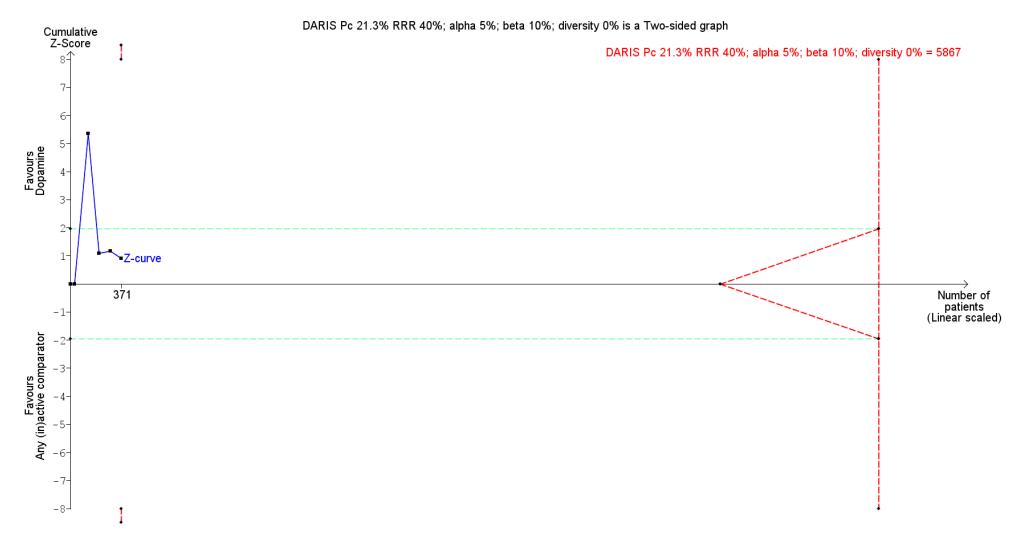

Test for subgroup differences:  $Chi^2 = 0.05$ , df = 1 (P = 0.83),  $l^2 = 0\%$ 

# E-Figures 1.9.8-1.9.10: subgroup analysis 3 – trials subdivided by dose

|                                   | Favours dopa                 | mine      | Contr       | ol                 |        | Risk Ratio          | Risk Ratio                             |
|-----------------------------------|------------------------------|-----------|-------------|--------------------|--------|---------------------|----------------------------------------|
| Study or Subgroup                 | Events                       | Total     | Events      | Total              | Weight | M-H, Random, 95% Cl | M-H, Random, 95% CI                    |
| 2.5.8 Subgroup 3: Lov             | wdose                        |           |             |                    |        |                     |                                        |
| Bove 2005                         | 4                            | 40        | 4           | 40                 | 100.0% | 1.00 [0.27, 3.72]   |                                        |
| Costa 1990                        | 0                            | 18        | 0           | 12                 |        | Not estimable       | T                                      |
| Sirivella 2000                    | 0                            | 0         | 0           | 0                  |        | Not estimable       |                                        |
| Subtotal (95% CI)                 |                              | 58        |             | 52                 | 100.0% | 1.00 [0.27, 3.72]   |                                        |
| Total events                      | 4                            |           | 4           |                    |        |                     |                                        |
| Heterogeneity: Not ap             | plicable                     |           |             |                    |        |                     |                                        |
| Test for overall effect:          | Z = 0.00 (P = 1.             | 00)       |             |                    |        |                     |                                        |
| 2.5.9 Subgroup 3: Mo              | derate dose                  |           |             |                    |        |                     |                                        |
| Triposkiadis 2014                 | 0                            | 28        | 1           | 55                 | 42.7%  | 0.64 [0.03, 15.31]  |                                        |
| Triposkiadis 2014a                | 1                            | 28        | 1           | 50                 | 57.3%  | 1.79 [0.12, 27.46]  |                                        |
| Subtotal (95% CI)                 |                              | 56        |             | 105                | 100.0% | 1.16 [0.15, 9.15]   |                                        |
| Total events                      | 1                            |           | 2           |                    |        |                     |                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi <sup>2</sup> = 0.2 | 3, df = 1 | (P = 0.6    | 3); I <b>2</b> = ( | )%     |                     |                                        |
| Test for overall effect:          | Z = 0.14 (P = 0.             | 89)       |             |                    |        |                     |                                        |
| 2.5.10 Subgroup 3: Hi             | igh dose                     |           |             |                    |        |                     |                                        |
| Subtotal (95% CI)                 | •                            | 0         |             | 0                  |        | Not estimable       |                                        |
| Total events                      | 0                            |           | 0           |                    |        |                     |                                        |
| Heterogeneity: Not ap             | -                            |           | ÷           |                    |        |                     |                                        |
| Test for overall effect:          |                              |           |             |                    |        |                     |                                        |
|                                   |                              |           |             |                    |        |                     |                                        |
|                                   |                              |           |             |                    |        |                     |                                        |
|                                   |                              |           |             |                    |        |                     | Favours dopamine Favours control       |
| Test for subaroun diff            | orondos: Chiž –              | 0.01 df   | = 1 (P = 1) | 0 Q1) P            | - 0%   |                     | r avouro dopartinto i r avouro control |

Test for subgroup differences:  $Chi^2 = 0.01$ , df = 1 (P = 0.91),  $l^2 = 0\%$ 


#### E-Figures 1.9.11-1.9.12: subgroup analysis 4 – trials subdivided by clinical setting




E-Figure 1.9.13: sensitivity analysis - trials including only patients with cardiac dysfunction

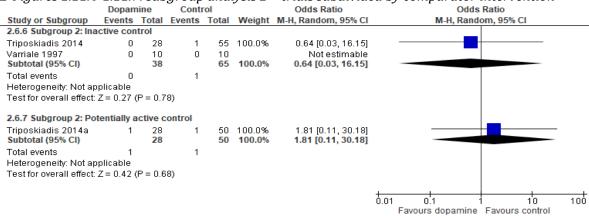
There was no data for this outcome in trials including only patients with cardiac dysfunction.

# 1.12. Trial sequential analysis of renal replacement therapy





# 1.13. Forest plots of atrial tachyarrhythmias


*E*-Figures 1.11.1-1.11.3: all trials with worst-best and best-worst case analyses

|                                   | Dopan       |                 | Cont        |         |                               | Odds Ratio          | Odds Ratio                       |
|-----------------------------------|-------------|-----------------|-------------|---------|-------------------------------|---------------------|----------------------------------|
| Study or Subgroup                 |             | Total           | Events      | Total   | Weight                        | M-H, Random, 95% CI | M-H, Random, 95% Cl              |
| 2.6.1 All included stu            | idies       |                 |             |         |                               |                     |                                  |
| Triposkiadis 2014                 | 0           | 28              | 1           | 55      | 43.1%                         | 0.64 [0.03, 16.15]  |                                  |
| Triposkiadis 2014a                | 1           | 28              | 1           | 50      | 56.9%                         | 1.81 [0.11, 30.18]  |                                  |
| Varriale 1997                     | 0           | 10              | 0           | 10      |                               | Not estimable       |                                  |
| Subtotal (95% CI)                 |             | 66              |             | 115     | 100.0%                        | 1.16 [0.14, 9.65]   |                                  |
| Total events                      | 1           |                 | 2           |         |                               |                     |                                  |
| Heterogeneity: Tau² =             |             |                 |             | P = 0.6 | 3); I² = 0%                   | 6                   |                                  |
| Test for overall effect:          | Z = 0.13 (  | (P = 0.8        | 9)          |         |                               |                     |                                  |
| 2.6.2 Worst-best cas              | se analysi  | s               |             |         |                               |                     |                                  |
| Triposkiadis 2014                 | 0           | 28              | 1           | 55      | 43.1%                         | 0.64 [0.03, 16.15]  |                                  |
| Triposkiadis 2014a                | 1           | 28              | 1           | 50      | 56.9%                         | 1.81 [0.11, 30.18]  |                                  |
| Varriale 1997                     | 0           | 10              | 0           | 10      |                               | Not estimable       |                                  |
| Subtotal (95% CI)                 |             | 66              |             | 115     | 100.0%                        | 1.16 [0.14, 9.65]   |                                  |
| Total events                      | 1           |                 | 2           |         |                               |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi | <b>r</b> = 0.23 | 3, df = 1 ( | P = 0.6 | 3); I <sup>z</sup> = 0%       | b                   |                                  |
| Test for overall effect:          | Z = 0.13 (  | (P = 0.8        | 9)          |         |                               |                     |                                  |
| 2.6.3 Best-worst cas              | se analysi  | s               |             |         |                               |                     |                                  |
| Triposkiadis 2014                 | 0           | 28              | 1           | 55      | 43.1%                         | 0.64 [0.03, 16.15]  |                                  |
| Triposkiadis 2014a                | 1           | 28              | 1           | 50      | 56.9%                         | 1.81 [0.11, 30.18]  |                                  |
| Varriale 1997                     | 0           | 10              | 0           | 10      |                               | Not estimable       |                                  |
| Subtotal (95% CI)                 |             | 66              |             | 115     | 100.0%                        | 1.16 [0.14, 9.65]   |                                  |
| Total events                      | 1           |                 | 2           |         |                               |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi | <b>r</b> = 0.23 | 3, df = 1 ( | P = 0.6 | 3); <b>I<sup>2</sup> = 0%</b> | b .                 |                                  |
| Test for overall effect:          | Z = 0.13 (  | (P = 0.8        | 9)          |         |                               |                     |                                  |
|                                   |             |                 |             |         |                               |                     |                                  |
|                                   |             |                 |             |         |                               |                     | 0.01 0.1 1 10 10                 |
|                                   |             |                 |             |         |                               |                     | Favours dopamine Favours control |

#### E-Figures 1.11.4-1.11.5: subgroup analysis 1 - trials subdivided by risk of bias

|                                   | Dopam       | ine             | Contr       | rol     |                         | Odds Ratio          |      | Odds Rat                 | io            |     |
|-----------------------------------|-------------|-----------------|-------------|---------|-------------------------|---------------------|------|--------------------------|---------------|-----|
| Study or Subgroup                 | Events      | Total           | Events      | Total   | Weight                  | M-H, Random, 95% CI |      | M-H, Random,             | 95% CI        |     |
| 2.6.4 Subgroup 1: Lo              | w risk of   | bias            |             |         |                         |                     |      |                          |               |     |
| Subtotal (95% CI)                 |             | 0               |             | 0       |                         | Not estimable       |      |                          |               |     |
| Total events                      | 0           |                 | 0           |         |                         |                     |      |                          |               |     |
| Heterogeneity: Not ap             | oplicable   |                 |             |         |                         |                     |      |                          |               |     |
| Test for overall effect:          | Not appli   | cable           |             |         |                         |                     |      |                          |               |     |
| 2.6.5 Subgroup 1: Un              | clear or h  | igh ris         | k of bias   |         |                         |                     |      |                          |               |     |
| Triposkiadis 2014                 | 0           | 28              | 1           | 55      | 43.1%                   | 0.64 [0.03, 16.15]  |      |                          |               |     |
| Triposkiadis 2014a                | 1           | 28              | 1           | 50      | 56.9%                   | 1.81 [0.11, 30.18]  |      |                          | l             |     |
| Varriale 1997                     | 0           | 10              | 0           | 10      |                         | Not estimable       |      |                          |               |     |
| Subtotal (95% CI)                 |             | 66              |             | 115     | 100.0%                  | 1.16 [0.14, 9.65]   |      |                          |               |     |
| Total events                      | 1           |                 | 2           |         |                         |                     |      |                          |               |     |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi | <b>z</b> = 0.23 | 3, df = 1 ( | P = 0.6 | 3); I <sup>z</sup> = 0% | ,<br>0              |      |                          |               |     |
| Test for overall effect:          | Z=0.13 (    | P = 0.8         | 9)          |         |                         |                     |      |                          |               |     |
|                                   |             |                 |             |         |                         |                     | +    |                          |               | +   |
|                                   |             |                 |             |         |                         |                     | Ó.01 | 0.1 İ                    | 1'0           | 100 |
|                                   |             |                 |             |         |                         |                     |      | Favours dopamine Favours | vours control |     |

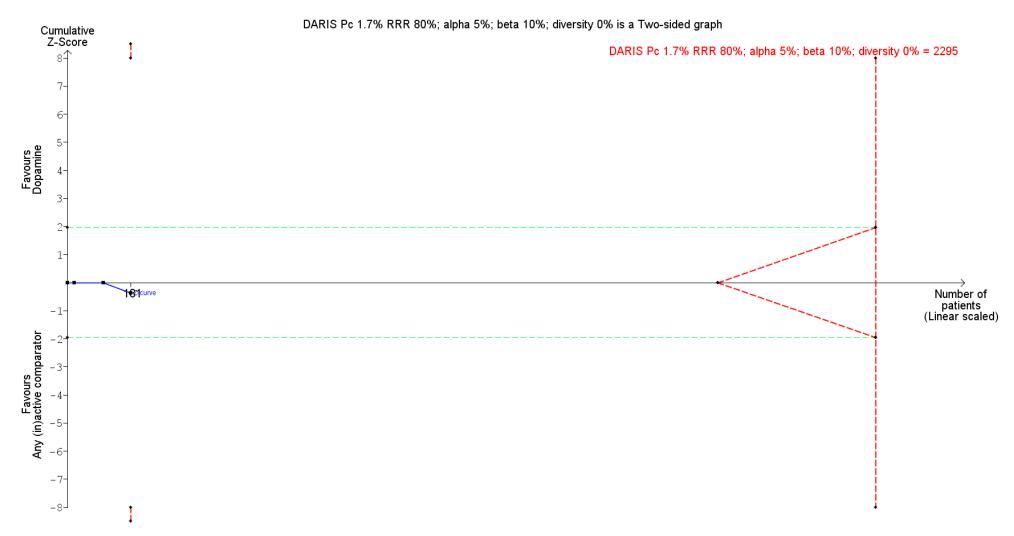
E-Figures 1.11.6-1.11.7: subgroup analysis 2 – trials subdivided by comparator intervention Odds Ratio



#### E-Figures 1.11.8-1.11.10: subgroup analysis 3 – trials subdivided by dose

|                                                                 | Dopam         | nine            | Contr  | rol             |                        | Odds Ratio                              |      | Odds Ratio                       |
|-----------------------------------------------------------------|---------------|-----------------|--------|-----------------|------------------------|-----------------------------------------|------|----------------------------------|
| Study or Subgroup                                               | Events        | Total           | Events | Total           | Weight                 | M-H, Random, 95% Cl                     |      | M-H, Random, 95% Cl              |
| 2.6.8 Subgroup 3: Lov                                           | w dose        |                 |        |                 |                        |                                         |      |                                  |
| Varriale 1997<br>Subtotal (95% CI)                              | 0             | 10<br><b>10</b> | 0      | 10<br><b>10</b> |                        | Not estimable<br>Not estimable          |      |                                  |
| Total events                                                    | 0             |                 | 0      |                 |                        |                                         |      |                                  |
| Heterogeneity: Not ap                                           | plicable      |                 |        |                 |                        |                                         |      |                                  |
| Test for overall effect:                                        | Not appli     | cable           |        |                 |                        |                                         |      |                                  |
| 2.6.9 Subgroup 3: Mo                                            | derate do     | ose             |        |                 |                        |                                         |      |                                  |
| Triposkiadis 2014                                               | 0             | 28              | 1      | 55              | 43.1%                  | 0.64 [0.03, 16.15]                      |      |                                  |
| Triposkiadis 2014a<br>Subtotal (95% CI)                         | 1             | 28<br>56        | 1      | 50<br>105       | 56.9%<br><b>100.0%</b> | 1.81 [0.11, 30.18]<br>1.16 [0.14, 9.65] |      |                                  |
| Total events                                                    | 1             |                 | 2      |                 |                        |                                         |      |                                  |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: . |               |                 |        | P = 0.6         | 3); I² = 0%            | 6                                       |      |                                  |
| 2.6.10 Subgroup 3: Hi                                           | gh dose       |                 |        |                 |                        |                                         |      |                                  |
| Subtotal (95% CI)                                               |               | 0               |        | 0               |                        | Not estimable                           |      |                                  |
| Total events<br>Heterogeneity: Not ap                           | 0<br>plicable |                 | 0      |                 |                        |                                         |      |                                  |
| Test for overall effect:                                        | Not appli     | cable           |        |                 |                        |                                         |      |                                  |
|                                                                 |               |                 |        |                 |                        |                                         | +    |                                  |
|                                                                 |               |                 |        |                 |                        |                                         | Ó.01 |                                  |
|                                                                 |               |                 |        |                 |                        |                                         |      | Favours dopamine Favours control |

*E-Figures 1.11.11-1.11.12: subgroup analysis 4 – trials subdivided by clinical setting* 

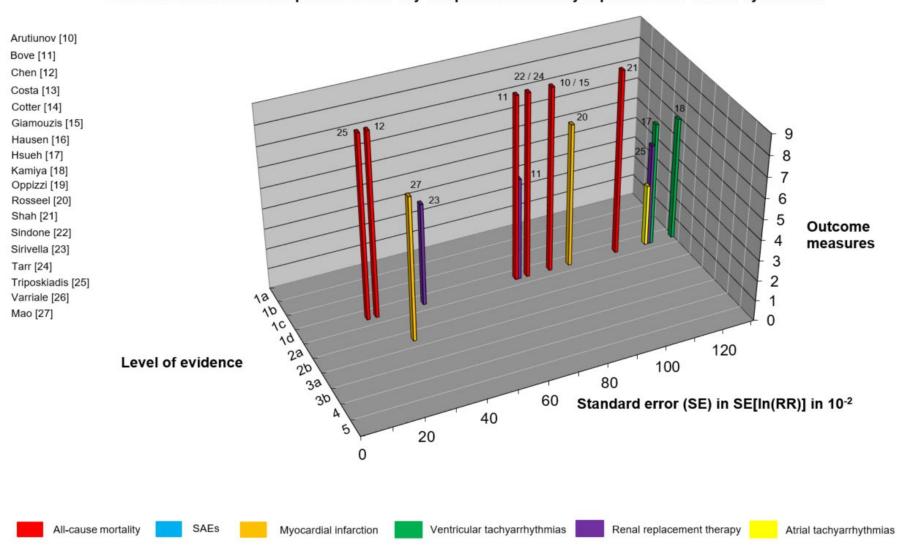

|                                   | Dopam      | ine                 | Contr        | ol      |                               | Odds Ratio          | Odds Ratio                       |
|-----------------------------------|------------|---------------------|--------------|---------|-------------------------------|---------------------|----------------------------------|
| Study or Subgroup                 | Events     | Total               | Events       | Total   | Weight                        | M-H, Random, 95% CI | M-H, Random, 95% Cl              |
| 2.6.11 Subgroup 4: Ca             | ardiac su  | rgery               |              |         |                               |                     |                                  |
| Subtotal (95% CI)                 |            | 0                   |              | 0       |                               | Not estimable       |                                  |
| Total events                      | 0          |                     | 0            |         |                               |                     |                                  |
| Heterogeneity: Not ap             | plicable   |                     |              |         |                               |                     |                                  |
| Test for overall effect:          | Not appli  | able                |              |         |                               |                     |                                  |
| 2.6.12 Subgroup 4: No             | ot having  | cardia              | c surger     | у       |                               |                     |                                  |
| Triposkiadis 2014                 | 0          | 28                  | 1            | 55      | 43.1%                         | 0.64 [0.03, 16.15]  |                                  |
| Triposkiadis 2014a                | 1          | 28                  | 1            | 50      | 56.9%                         | 1.81 [0.11, 30.18]  |                                  |
| Varriale 1997                     | 0          | 10                  | 0            | 10      |                               | Not estimable       |                                  |
| Subtotal (95% CI)                 |            | 66                  |              | 115     | 100.0%                        | 1.16 [0.14, 9.65]   |                                  |
| Total events                      | 1          |                     | 2            |         |                               |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi  | <sup>2</sup> = 0.20 | 3, df = 1 (l | P = 0.6 | 3); <b>I<sup>2</sup> = 0%</b> | 6                   |                                  |
| Test for overall effect: J        | Z = 0.13 ( | P = 0.8             | 9)           |         |                               |                     |                                  |
|                                   |            |                     |              |         |                               |                     |                                  |
|                                   |            |                     |              |         |                               |                     |                                  |
|                                   |            |                     |              |         |                               |                     | Favours dopamine Favours control |

E-Figure 1.11.13: sensitivity analysis – trials including only patients with cardiac dysfunction

There was no data for this outcome in trials including only patients with cardiac dysfunction.

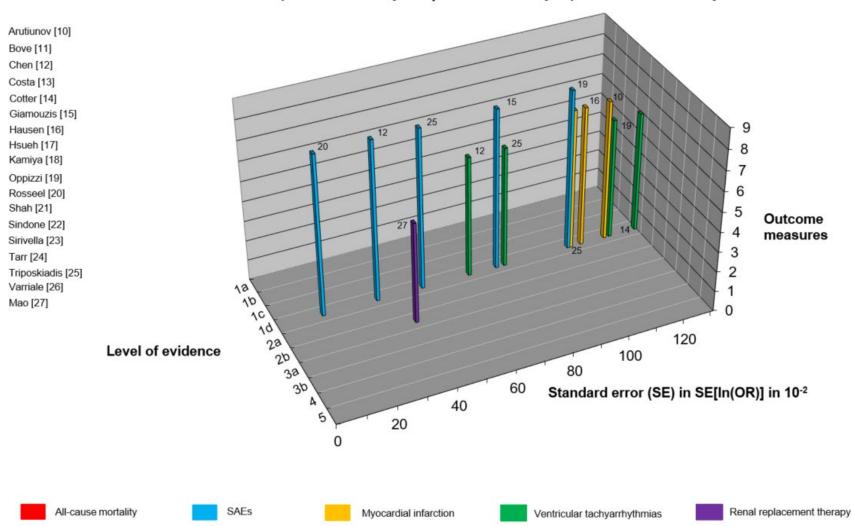
# 1.14. Trial sequential analysis of atrial tachyarrhythmias

*E*-Figure 1.12: the TSA is based on two trials, which is the meta-analysed effect of dopamine versus any (in)active comparator intervention.



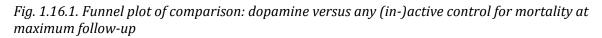

|                              | Studies | Patients | Events | Odds ratio | 95% CI       |
|------------------------------|---------|----------|--------|------------|--------------|
| Serious adverse events       | 1       | 30       | 7      | 1.33       | 0.36 to 4.97 |
| Myocardial infarction        | 1       | 1758     | 42     | 0.67       | 0.36 to 1.26 |
| Ventricular tachyarrhythmias | 1       | 30       | 7      | 3.25       | 0.52 to 20.4 |
| Renal replacement therapy    | 1       | 1758     | 24     | 2.02       | 0.86 to 4.74 |
| Atrial tachyarrhythmias      | 0       | -        | -      | -          | -            |

# 1.15. E-Table 2. Reported harmfull outcomes in observational studies


Abbreviations: CI, confidence interval.

## 1.16. Manhattan matrix plot with beneficial outcomes




Outcomes with benefit of dopamine versus any comparator in critically ill patients with cardiac dysfunction

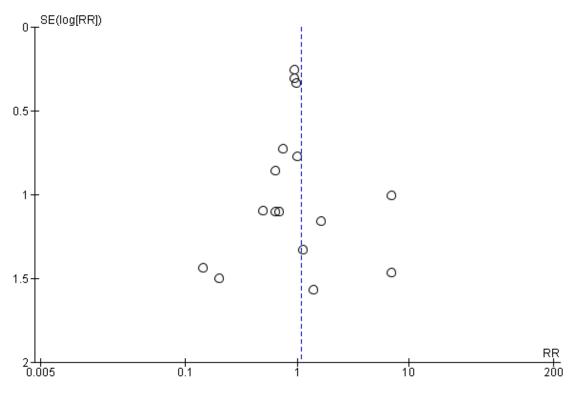
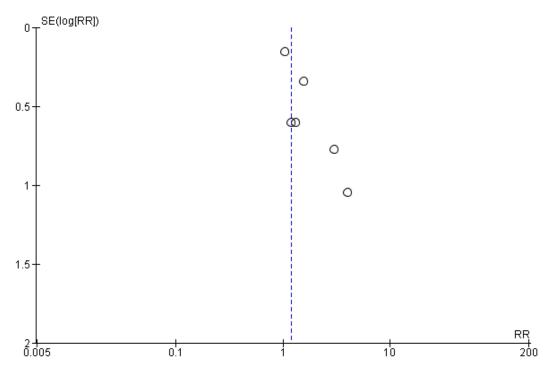
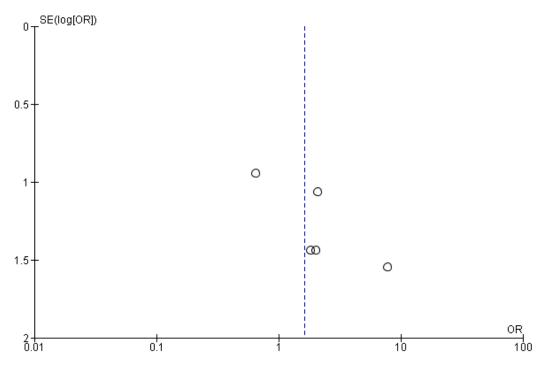
## 1.17. Manhattan matrix plot with harmful outcomes

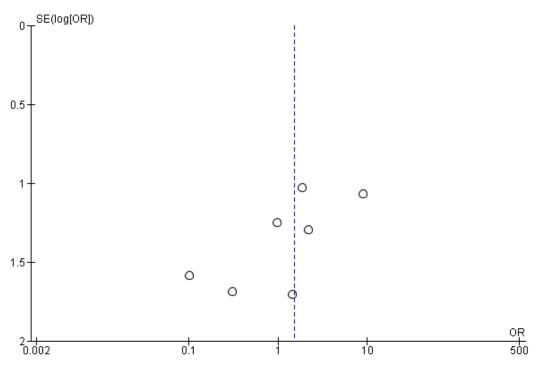


Outcomes with harm of of dopamine versus any comparator in critically ill patients with cardiac dysfunction

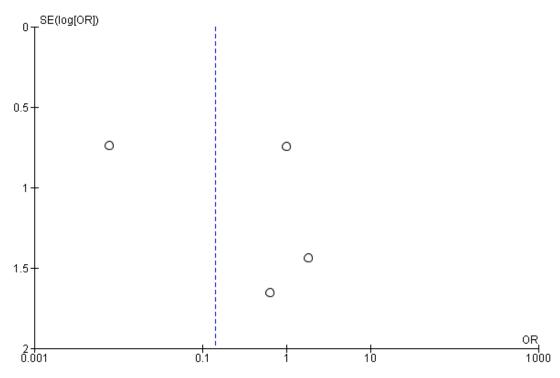
# 1.18. Funnel plots for small trial bias including publication bias



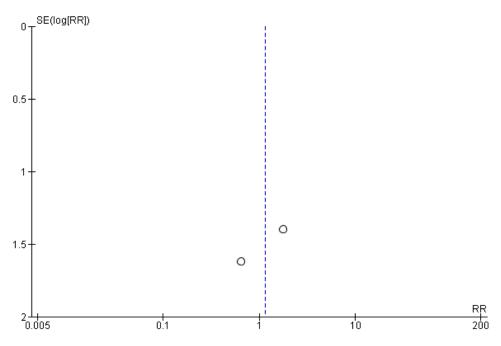






Fig 1.16.2. Funnel plot of comparison: dopamine versus any (in-)active control for SAEs






*Fig 1.16.3. Funnel plot of comparison: dopamine versus any (in-)active control for myocardial infarction* 


Fig 1.16.4. Funnel plot of comparison: dopamine versus any (in-)active control for ventricular tachyarrhythmias



*Fig. 1.16.5. Funnel plot of comparison: dopamine versus any (in-)active control for renal replacement therapy* 



*Fig. 1.16.6. Funnel plot of comparison: dopamine versus any (in-)active control for atrial tachyarrhythmias* 



# 2. Post-hoc analysis

In this post-hoc selection strategy, we also included trials in which a considerable proportion of patients (in most cases: more than 25%) had cardiac dysfunction or were expected to have cardiac dysfunction based on observational studies. We based this post-hoc strategy on observational studies that show cardiac dysfunction measured by LVEF may be operator dependent and may have considerable inter-observer variability [18-20]. Therefore, excluding trials that only have a small proportion of patients with normal cardiac function might introduce selection bias.

With this selection criterion, we also added trials that did not report on degree of cardiac dysfunction, however, in which a considerable proportion of patients were expected to have cardiac dysfunction based on observational studies. This post-hoc selection strategy included patients undergoing all-cause cardiac [21-24] and vascular surgery [25,26], patients with septic shock [27,28], or patients with liver cirrhosis [29-31], unless these trials specifically excluded patients with cardiac dysfunction.

Data (i.e. RRs or ORs, 95% CIs) is reported in this appendix if substantially different from the main comparison or if demonstrating statistically significant differences.

#### 2.1. E-Table 3: Characteristics of included trials

The post-hoc analysis included an additional 23 trials and 3629 patients [1-5,8,12-14,17,32-53], resulting in 40 trials and 4182 patients (e-Table 2.7). We added ten trials randomising patients with septic shock (9 trials; n = 444) or circulatory shock (1 trial; n = 1679) and all but one administered high-dose dopamine (supplements e-Table 3.1). Only mortality proportions could be analysed with the TSA using our prespecified parameters.

All-cause mortality was reported in 37 of the 40 trials (3971 patients; 1254 events), the occurrence of SAEs in 11 trials (861 patients; 169 events); 11 trials on myocardial infarction (2302 patients; 62 events), 16 trials on ventricular tachyarrhythmias (2416 patients; 68 events), 15 trials on renal replacement therapy (2723 patients; 193 events), and seven trials on atrial tachyarrhythmias (2009 patients; 311 events).

| Author                             | Year | Ν   | Clinical setting   | Dopamine infusion rate                                                                                                                                       | Comparator                                                             | Patient relevant outcomes                                                                                           |
|------------------------------------|------|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Soliman <i>et</i><br>al. [54]      | 2017 | 150 | Cardiac<br>surgery | 3.0 μg/kg/min                                                                                                                                                | Dexmedetomidine 0.4 μg/kg/min                                          | Primary: none<br>Secondary: adverse events, i.e. 30-day mortality,<br>renal replacement therapy                     |
| Kanchi <i>et</i><br>al. [53]       | 2017 | 60  | Cardiac<br>surgery | 2.0 μg/kg/min                                                                                                                                                | Placebo                                                                | Primary: none<br>Other: mortality (in-hospital), renal replacement<br>therapy                                       |
| Gatot <i>et</i><br><i>al.</i> [36] | 2004 | 89  | Cardiac<br>surgery | 5.0 μg/kg/min<br>(none needed inotropic support)                                                                                                             | Placebo<br>(5% received adrenaline or<br>noradrenaline)                | Primary: cardiac and hemodynamic status (of which:<br>arrhythmias, MI)                                              |
| Carcoana<br><i>et al.</i> [33]     | 2003 | 135 | Cardiac<br>surgery | <ul> <li>2.0 μg/kg/min (1)</li> <li>2.0 μg/kg/min + mannitol 1 g/kg (2)</li> <li>("use of vasoactive drugs did not differ among the four groups")</li> </ul> | Placebo <b>(1)</b><br>Mannitol 1 g/kg added to CPB<br>prime <b>(2)</b> | Primary: none<br>Secondary: significant clinical events, i.e. mortality<br>(in-hospital), renal replacement therapy |
| Woo <i>et al.</i><br>[50]          | 2002 | 50  | Cardiac<br>surgery | 3.0 μg/kg/min                                                                                                                                                | Placebo                                                                | Primary: none<br>Other: mortality (in-hospital), neurologic<br>complications                                        |
| Sumeray<br><i>et al.</i> [49]      | 2001 | 48  | Cardiac<br>surgery | 2.5 μg/kg/min                                                                                                                                                | Placebo                                                                | Primary: none                                                                                                       |

#### *E-Table 2.1: Characteristics of the included trials*

| Author                                | Year | Ν   | Clinical setting         | Dopamine infusion rate                                                                                                                                                            | Comparator                                                                                                                                                           | Patient relevant outcomes                                                                                           |
|---------------------------------------|------|-----|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                       |      |     |                          |                                                                                                                                                                                   |                                                                                                                                                                      | Secondary: significant clinical events, i.e. mortality<br>(in-hospital), arrhythmias, renal replacement<br>therapy  |
| Lassnigg <i>et</i><br><i>al.</i> [39] | 2000 | 126 | Cardiac<br>surgery       | 2.0 μg/kg/min<br>(adrenaline for inotropic support;<br>proportion not mentioned)                                                                                                  | Placebo <b>(1)</b><br>Furosemide 0.5 μg/kg/min <b>(2)</b><br>(adrenaline for inotropic support;<br>proportion not mentioned)                                         | Primary: none<br>Secondary: mortality (in-hospital), renal replacement<br>therapy                                   |
| Schneider<br><i>et al.</i> [46]       | 1999 | 100 | Cardiac<br>surgery       | 2.0 μg/kg/min + CPB low flow (1.5<br>L/min/m <sup>2</sup> ) <b>(1)</b><br>2.0 μg/kg/min + CPB high flow (2.4<br>L/min/m <sup>2</sup> ) <b>(2)</b><br>(22% received noradrenaline) | Placebo + CPB low flow (1.5<br>L/min/m <sup>2</sup> ) <b>(1)</b><br>Placebo + CPB high flow (2.4<br>L/min/m <sup>2</sup> ) <b>(2)</b><br>(2% received noradrenaline) | Primary: none<br>Other: complications including mortality (in-hospital)                                             |
| Sharpe <i>et</i><br><i>al.</i> [47]   | 1999 | 30  | Cardiac<br>surgery       | 4.0 μg/kg/min<br>(10% received dobutamine)                                                                                                                                        | Placebo <b>(1)</b><br>(20% received adrenaline; 10%<br>received dobutamine)<br>Dopexamine 1-2 μg/kg/min <b>(2)</b><br>(10% received dobutamine)                      | Primary: none<br>Other: mortality (in-ICU), MI, arrhythmias                                                         |
| Sinclair <i>et</i><br><i>al.</i> [48] | 1997 | 30  | Cardiac<br>surgery       | 2.5 μg/kg/min                                                                                                                                                                     | Dopexamine 2 μg/kg/min                                                                                                                                               | Primary: none<br>Other: mortality (in-hospital), SAE's                                                              |
| Myles <i>et</i><br>al. [44]           | 1993 | 52  | Cardiac<br>surgery       | 3.0 μg/kg/min<br>(36% received adrenaline or<br>noradrenaline)                                                                                                                    | Placebo<br>(42% received adrenaline or<br>noradrenaline)                                                                                                             | Primary: none<br>Other: mortality (7 days), renal replacement therapy                                               |
| Hausen <i>et</i><br><i>al.</i> [17]   | 1992 | 41  | Cardiac<br>surgery       | 5-7 μg/kg/min + glyceroltrinitrate 1<br>μg/kg/min<br>(57% received adrenaline)                                                                                                    | Enoximone 5-20 μg/kg/min <b>(1)</b><br>(62% received adrenalin)<br>Piroximone 3-6 μg/kg/min <b>(2)</b><br>(43% received adrenaline)                                  | Primary: none<br>Other: mortality (mean 6 ± 3 months), MI,<br>arrhythmias                                           |
| Birnbaum<br><i>et al.</i> [32]        | 1990 | 20  | Cardiac<br>surgery       | 3-4 μg/kg/min                                                                                                                                                                     | Enoximone bolus 2x 0.5 mg/kg,<br>followed by 5 μg/kg/min                                                                                                             | Primary: none<br>Other: mortality (peri-operative), MI, arrhythmias,<br>renal replacement therapy                   |
| Hua <i>et al.</i><br>[28]             | 2013 | 32  | Septic<br>shock          | Up to 20 $\mu$ g/kg/min + dobutamine                                                                                                                                              | Terlipressin 1.3 µg/kg/min +                                                                                                                                         | Primary: mortality (28 days)                                                                                        |
| [38]<br>Chen <i>et al.</i><br>[34]    | 2012 | 80  | Shock<br>Septic<br>shock | up to 20 μg/kg/min<br>Up to 20 μg/kg/min<br>(cointerventions not specified)                                                                                                       | dobutamine up to 20 μg/kg/min<br>Noradrenaline up to 2 μg/kg/min<br>(cointerventions not specified)                                                                  | Secondary: none<br>Primary: none<br>Other: mortality (In-hospital), cardiogenic adverse<br>events (MI, arrhythmias) |

| Author                              | Year | Ν    | Clinical setting      | Dopamine infusion rate                                                                                  | Comparator                                                                                                                                       | Patient relevant outcomes                                                                                                                                                                                                                         |
|-------------------------------------|------|------|-----------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zhuangyu<br><i>et al.</i> [51]      | 2011 | 90   | Septic<br>shock       | 1-15 μg/kg/min<br>(cointerventions not specified)                                                       | Noradrenaline 0.05-0.5<br>µg/kg/min<br>(cointerventions not specified)                                                                           | Primary: none<br>Other: mortality (In-hospital)                                                                                                                                                                                                   |
| De Backer<br><i>et al.</i> [35]     | 2010 | 1679 | Circulato<br>ry shock | Up to 20 μg/kg/min<br>(18% received open-label<br>noradrenaline;<br>1.5% adrenaline;<br>15% dobutamine) | Noradrenaline up to 0.19<br>µg/kg/min<br>(13% received open-label<br>noradrenaline; 1.1% adrenaline;<br>19% dobutamine)                          | Primary: mortality (28 days)<br>Secondary: mortality (in-ICU, in-hospital, 28 days, 6<br>months, 12 months).<br>Other: adverse events, i.e. arrhythmia, MI, skin<br>necrosis, ischemia in limbs or distal extremities, or<br>secondary infections |
| Liu <i>et al.</i><br>[40]           | 2010 | 50   | Septic<br>shock       | 1.0-45 μg/kg/min<br>(cointerventions not specified)                                                     | Noradrenaline 0.05-0.5<br>μg/kg/min<br>(cointerventions not specified)                                                                           | Primary: none<br>Other: mortality (28 days)                                                                                                                                                                                                       |
| Gao <i>et al.</i><br>[37]           | 2008 | 44   | Septic<br>shock       | ≥2 µg/kg/min<br>(cointerventions not specified)                                                         | Noradrenaline ≥0.1 µg/kg/min<br>(cointerventions not specified)                                                                                  | Primary: none<br>Other: mortality (in-hospital)                                                                                                                                                                                                   |
| Mathur <i>et</i><br><i>al.</i> [43] | 2007 | 50   | Septic<br>shock       | 10-25 µg/kg/min                                                                                         | Noradrenaline 0.5-2.5 μg/kg/min                                                                                                                  | Primary: none<br>Other: mortality (in-hospital)                                                                                                                                                                                                   |
| Schmoelz<br><i>et al.</i> [45]      | 2006 | 64   | Septic<br>shock       | 3 µg/kg/min + noradrenalin at least<br>0.05 µg/kg/5.18min                                               | Placebo + noradrenaline at least<br>0.05 μg/kg/min <b>(1)</b><br>Dopexamine 2 μg/kg/min +<br>noradrenaline at least 0.05<br>μg/kg/min <b>(2)</b> | Primary: none<br>Other: mortality (28 days), renal replacement<br>therapy                                                                                                                                                                         |
| Marik <i>et</i><br><i>al.</i> [41]  | 1994 | 20   | Septic<br>shock       | 26 ± 3.8 μg/kg/min                                                                                      | Noradrenaline 0.18 ± 0.06<br>μg/kg/min                                                                                                           | Primary: none<br>Other: mortality (in-hospital)                                                                                                                                                                                                   |
| Martin <i>et</i><br><i>al.</i> [42] | 1993 | 32   | Septic<br>shock       | 2.5-25 μg/kg/min<br>(69% crossed over; 6% received<br>adrenaline)                                       | Noradrenaline 0.5-5.0 µg/kg/min<br>(6% crossed over and received<br>adrenaline)                                                                  | Primary: none<br>Other: mortality (in-hospital)                                                                                                                                                                                                   |

\* The timing of starting the experimental administration differed between these two treatment arms. Abbreviations: AHF, acute heart failure; CHF, chronic heart failure; kg, kilograms; mg, milligrams; µg, micrograms; h, hours; min, minute; dd, die de/daily dose; SAEs, serious adverse events; MI, myocardial infarction; ICU, intensive care unit.

#### 2.2. Risk of bias

#### Risk of bias description of the included trials

All but one of the 40 trials were at overall high risk of bias (appendix e-Figure 3.2). Random sequence generation was at high risk of bias in 21 of the trials (53%). Allocation concealment was at high risk of bias in 31 of the trials (78%). Twenty-four trials (60%) did not blind their participants and/or personnel, and 26 trials (68%) used unblinded outcome assessors. Eight trials (20%) provided incomplete outcome data. Thirty-six trials (90%) were at high risk of bias for selective outcome reporting. High risk of other bias was present in 28 trials (70%), either because they did not provide a statement on conflicts of interest or financial disclosures (n = 22), had a cross-over design with possible carry-over effect (n = 3), or had vested interests (n = 3).

|                         | Random sequence generation (selection bias) | Allocation concealment (selection bias) | Blinding of participants and personnel (performance bias) | Blinding of outcome assessment (detection bias) | Incomplete outcome data (attrition bias) | Selective reporting (reporting bias) | Other bias |                      | Random sequence generation (selection bias) | Allocation concealment (selection bias) | Blinding of participants and personnel (performance bias) | Blinding of outcome assessment (detection bias) | Incomplete outcome data (attrition bias) | Selective reporting (reporting bias) | Other bias |
|-------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------|------------|----------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------|------------|
| Arutiunov 2010 (ma)     | •                                           | ?                                       | ?                                                         | ?                                               | •                                        | ?                                    | ?          | De Backer 2010 (ph2) | •                                           | •                                       | •                                                         | •                                               | •                                        | •                                    | •          |
| Cotter 1997 (ma)        | •                                           | ?                                       | •                                                         | ?                                               |                                          | ?                                    | ?          | Gatot 2004 (ph2)     | ?                                           | ?                                       | •                                                         | •                                               | •                                        | •                                    | ?          |
| Hsueh 1998 (ma)         | ?                                           | ?                                       | ?                                                         | •                                               | +                                        | ?                                    | ?          | High 2008 (ph2)      | ?                                           | ?                                       | •                                                         | •                                               | •                                        | ?                                    | ?          |
| Oppizzi 1997 (ma)       | ?                                           | ?                                       | •                                                         |                                                 | +                                        | ?                                    | •          | Hua 2013 (ph2)       | •                                           | ?                                       | •                                                         | •                                               | •                                        | ?                                    | ?          |
| Rosseel 1997 (ma)       | +                                           | •                                       | •                                                         | •                                               | +                                        | ?                                    | •          | Kanchi 2017 (ph2)    | ?                                           | ?                                       | ?                                                         | ?                                               | •                                        | ?                                    | •          |
| Tarr 1993 (ma)          | ?                                           | ?                                       | •                                                         | +                                               |                                          | ?                                    | •          | Lassnigg 2000 (ph2)  | •                                           | •                                       | •                                                         | •                                               | •                                        | ?                                    | •          |
| Varriale 1997 (ma)      | ?                                           | ?                                       |                                                           | ?                                               | +                                        | ?                                    | ?          | Liu 2010 (ph2)       | ?                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Bove 2005 (ph1)         | +                                           | •                                       | •                                                         | ?                                               | +                                        | •                                    | ?          | Marik 1994 (ph2)     | •                                           | •                                       | •                                                         | •                                               | •                                        | ?                                    | •          |
| Chen 2013 (ph1)         | •                                           | •                                       | •                                                         | +                                               | +                                        | +                                    | •          | Martin 1993 (ph2)    | ?                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | •          |
| . Costa 1990 (ph1)      | ?                                           | ?                                       | ?                                                         | ?                                               | •                                        | •                                    | ?          | Mathur 2007 (ph2)    | •                                           | ?                                       | •                                                         | •                                               | •                                        | ?                                    | •          |
| Giamouzis 2010 (ph1)    | •                                           | ?                                       | •                                                         | +                                               | +                                        | •                                    | ?          | Myles 1993 (ph2)     | •                                           | •                                       | •                                                         | •                                               | •                                        | ?                                    | •          |
| Hausen 1992 (ph1)       | •                                           | •                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          | Schmoelz 2006 (ph2)  | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Kamiya 2015 (ph1)       | ?                                           | ?                                       | •                                                         | •                                               | +                                        | ?                                    | •          | Schneider 1999 (ph2) | ?                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | •          |
| Shah 2014 (ph1)         | •                                           | ?                                       | •                                                         | •                                               | +                                        | ?                                    | •          | Sharpe 1999 (ph2)    | ?                                           | ?                                       | •                                                         | •                                               | ?                                        | ?                                    | ?          |
| Sindone 1998 (ph1)      | ?                                           | ?                                       | ?                                                         | ?                                               | ?                                        | •                                    | ?          | Sinclair 1997 (ph2)  | ?                                           | ?                                       | •                                                         | •                                               | •                                        | ?                                    |            |
| Sirivella 2000 (ph1)    | ?                                           | ?                                       | •                                                         | •                                               | ?                                        | •                                    | ?          | Soliman 2017 (ph2)   | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | •          |
| Triposkiadis 2014 (ph1) | •                                           | ?                                       | •                                                         | •                                               | +                                        | +                                    | •          | Sumeray 2001 (ph2)   | •                                           | •                                       | •                                                         | ?                                               | •                                        | ?                                    | •          |
| Birnbaum 1990 (ph2)     | ?                                           | ?                                       | •                                                         | ?                                               | +                                        | ?                                    | ?          | Woo 2002 (ph2)       | ?                                           | ?                                       | •                                                         | •                                               | •                                        | ?                                    | ?          |
| Carcoana 2003 (ph2)     | +                                           | •                                       | •                                                         | +                                               | •                                        | ?                                    | ?          | Wu 2011 (ph2)        | ?                                           | ?                                       | •                                                         | •                                               | •                                        | ?                                    | ?          |
| Chen 2012 (ph2)         | ?                                           | ?                                       | •                                                         | ?                                               | ?                                        | ?                                    | ?          | Zhuangyu 2011 (ph2)  | ?                                           | ?                                       | •                                                         | -                                               | •                                        | ?                                    | ?          |

#### 2.3. All-cause mortality

When compared with any control, dopamine was not significantly associated with mortality (e-Table 2). Dopamine seemed inferior on mortality proportion when compared with a potentially active control intervention (e-Figure 4). This effect did not seem to depend on dose or clinical setting, as the tests for interactions were not statistically significant (supplements 3.4). TSA on all 37 trials showed that it is unlikely to reach a beneficial effect of dopamine with further trials, because the cumulative Z-curve would have to cross the futility area (e-Figure 5). The excess mortality was largely attribue-Table to the trials that administered high-dose dopamine; these ten trials accounted for 87% of weight in the entire analysis (supplements e-Figure 3.4.1). All but one of these trials compared dopamine with noradrenaline and two trials allowed other cardioactive co-interventions with dobutamine or open-label noradrenaline (1743 patients; weight 80%; supplements e-Table 3.1). There was a discrepancy between the meta-analysed RR and RD: we observed an RD of 0.0 for dopamine versus a potentially active, inactive or any control intervention (supplements 3.4), whereas the RR's showed a potential harmful effect of dopamine (e-Table 2).

#### 2.4. Other outcomes

When compared with any control intervention, dopamine was associated with an increased proportion of SAEs and ventricular or atrial tachyarrhythmias (e-Table 2). The increased occurrence of atrial tachyarrhythmias were only confined to trials that compared dopamine with any potentially active control, as the tests of interaction was significant (p = 0.001) when compared to placebo or no intervention (e-Table 2). Again, these increased event proportions were largely attribue-Table to trials that administered high-dose dopamine, which accounted for 64% of the weight for all ventricular, and 44% of the weight for all atrial tachyarrhythmias occurrences (supplements 3.9 and 3.11).

# 2.5. Forest plots of mortality

# E-Figures 2.5.1a: all trials with relative risk

| Study of Subgroup                                                 | Dopan |       | Contr  |          | Moight        | Risk Ratio          | Risk Ratio          |
|-------------------------------------------------------------------|-------|-------|--------|----------|---------------|---------------------|---------------------|
| Study or Subgroup<br>4.1.1 All included stu                       |       | Total | Events | Total    | weight        | M-H, Random, 95% CI | M-H, Random, 95% Cl |
|                                                                   |       | 24    | 2      | 20       | 0.20          | 0 60 60 40 0 441    |                     |
| Arutiunov 2010                                                    | 2     | 21    | 3      | 20       | 0.2%          | 0.63 [0.12, 3.41]   | -                   |
| Birnbaum 1990                                                     | 0     | 10    | 0      | 10       | 0.00          | Not estimable       |                     |
| Bove 2005                                                         | 3     | 40    | 4      | 40       | 0.3%          | 0.75 [0.18, 3.14]   |                     |
| Carcoana 2003                                                     | 0     | 25    | 0      | 24       |               | Not estimable       |                     |
| Carcoana 2003a                                                    | 0     | 25    | 0      | 26       |               | Not estimable       |                     |
| Chen 2012                                                         | 12    | 40    | 9      | 40       | 1.1%          | 1.33 [0.63, 2.81]   |                     |
| Chen 2013                                                         | 24    | 122   | 25     | 119      | 2.5%          | 0.94 [0.57, 1.54]   |                     |
| Cotter 1997                                                       | 1     | 14    | 0      | 6        | 0.1%          | 1.40 [0.06, 30.23]  |                     |
| De Backer 2010                                                    | 472   | 858   | 427    | 821      | 78.3%         | 1.06 [0.97, 1.16]   |                     |
| Эао 2008                                                          | 9     | 21    | 9      | 23       | 1.2%          | 1.10 [0.54, 2.23]   |                     |
| Giamouzis 2010                                                    | 3     | 30    | 3      | 30       | 0.3%          | 1.00 [0.22, 4.56]   |                     |
| Hausen 1992                                                       | 0     | 14    | 0      | 27       |               | Not estimable       |                     |
| Hsueh 1998                                                        | 0     | 10    | 0      | 10       |               | Not estimable       |                     |
| lua 2013                                                          | 8     | 16    | 7      | 16       | 1.1%          | 1.14 [0.54, 2.40]   | <del></del>         |
| Kamiya 2015                                                       | 0     | 12    | 2      | 12       | 0.1%          | 0.20 [0.01, 3.77]   |                     |
| (anchi 2017                                                       | 0     | 30    | 0      | 30       |               | Not estimable       |                     |
| assnigg 2000.                                                     | 0     | 21    | 1      | 40       | 0.1%          | 0.62 [0.03, 14.62]  |                     |
| assnigg 2000a                                                     | 0     | 21    | 4      | 41       | 0.1%          | 0.21 [0.01, 3.76]   |                     |
| _iu 2010                                                          | 12    | 25    | 8      | 25       | 1.3%          | 1.50 [0.74, 3.03]   |                     |
| Aarik 1994                                                        | 6     | 10    | 5      | 10       | 1.0%          | 1.20 [0.54, 2.67]   |                     |
| Aartin 1993                                                       | 10    | 16    | 7      | 16       | 1.4%          | 1.43 [0.73, 2.80]   |                     |
| Aathur 2007                                                       | 19    | 25    | 14     | 25       | 3.7%          | 1.36 [0.90, 2.05]   | + <b>-</b> -        |
| Ayles 1993                                                        | 0     | 25    | 0      | 24       | 0.1.70        | Not estimable       |                     |
|                                                                   | 3     | 13    | Ő      | 13       | 0.1%          | 7.00 [0.40, 123.35] |                     |
| Rosseel 1997                                                      | Ŭ     | 35    | Ő      | 35       | 0.170         | Not estimable       |                     |
| Schmoelz 2006                                                     | 2     | 10    | 7      | 20       | 0.3%          | 0.57 [0.14, 2.26]   |                     |
| Schmoelz 2006a                                                    | 2     | 11    | 5      | 20       | 0.3%          | 0.73 [0.17, 3.15]   |                     |
| Schneider 1999                                                    | 0     | 50    | 0      | 49       | 0.5 /0        | Not estimable       |                     |
| Shah 2014                                                         | 1     | 31    | 4      | 49<br>61 | 0.1%          | 0.49 [0.06, 4.22]   |                     |
|                                                                   | 0     | 5     | 4<br>0 | 10       | 0.1%          |                     |                     |
| Sharpe 1999<br>Sharpa 1999                                        |       | 5     | 0      |          |               | Not estimable       |                     |
| Sharpe 1999a                                                      | 0     |       |        | 10       |               | Not estimable       |                     |
| Sinclair 1997                                                     | 0     | 16    | 0      | 14       | 0.400         | Not estimable       |                     |
| Sindone 1998                                                      | 0     | 8     | 3      | 8        | 0.1%          | 0.14 [0.01, 2.39]   | •                   |
| Sindone 1998a                                                     | 1     | 8     | 2      | 26       | 0.1%          | 1.63 [0.17, 15.66]  |                     |
| Bindone 1998b                                                     | 1     | 8     | 1      | 9        | 0.1%          | 1.13 [0.08, 15.19]  |                     |
| Soliman 2017                                                      | 3     | 75    | 1      | 75       | 0.1%          | 3.00 [0.32, 28.19]  |                     |
| Sumeray 2001                                                      | 0     | 19    | 0      | 19       |               | Not estimable       |                     |
| Farr 1993a                                                        | 1     | 12    | 3      | 25       | 0.1%          | 0.69 [0.08, 6.00]   |                     |
| arr 1993b                                                         | 1     | 13    | 3      | 25       | 0.1%          | 0.64 [0.07, 5.57]   |                     |
| riposkiadis 2014                                                  | 9     | 28    | 18     | 55       | 1.4%          | 0.98 [0.51, 1.90]   | -+-                 |
| Triposkiadis 2014a                                                | 10    | 28    | 19     | 50       | 1.7%          | 0.94 [0.51, 1.73]   | -+-                 |
| /arriale 1997                                                     | 0     | 10    | 0      | 10       |               | Not estimable       |                     |
| Voo 2002                                                          | 2     | 25    | 0      | 25       | 0.1%          | 5.00 [0.25, 99.16]  |                     |
| Vu 2011                                                           | 9     | 23    | 7      | 23       | 1.0%          | 1.29 [0.58, 2.86]   | -+                  |
| Zhuangyu 2011                                                     | 14    | 45    | 13     | 45       | 1.6%          | 1.08 [0.57, 2.03]   | <del></del>         |
| Subtotal (95% CI)                                                 |       | 1909  |        | 2062     | 100.0%        | 1.07 [0.99, 1.16]   | •                   |
| Fotal events<br>Heterogeneity: Tau² =<br>Fest for overall effect: |       |       |        | ) (P = ( | ).99); I² = ( | 0%                  |                     |
|                                                                   |       |       |        |          |               |                     |                     |
|                                                                   |       |       |        |          |               |                     |                     |
|                                                                   |       |       |        |          |               |                     |                     |

47

# E-Figures 2.5.1b: all trials with risk differences

| Study or Subgroup                 | Dopan   |           | Contr  |          | Woight        | Risk Difference<br>M-H, Random, 95% CI | Risk Difference<br>M-H, Random, 95% Cl |
|-----------------------------------|---------|-----------|--------|----------|---------------|----------------------------------------|----------------------------------------|
| 4.1.1 All included stu            |         | Total     | Events | TUtai    | weight        | m-n, Kanuoin, 95% Ci                   | m-n, Kandolii, 55% Ci                  |
| Arutiunov 2010                    | 2       | 21        | 3      | 20       | 0.6%          | 0.0510.26.0.151                        |                                        |
|                                   | 0       | 10        | 0      | 10       | 0.8%          | -0.05 [-0.26, 0.15]                    |                                        |
| Birnbaum 1990                     | 3       | 40        | 4      | 40       | 0.8%          | 0.00 [-0.17, 0.17]                     |                                        |
| Bove 2005                         | 0       | 40<br>25  | 4      |          | 4.3%          | -0.03 [-0.15, 0.10]                    |                                        |
| Carcoana 2003                     |         |           |        | 24       |               | 0.00 [-0.08, 0.08]                     |                                        |
| Carcoana 2003a                    | 0       | 25        | 0      | 26       | 4.7%          | 0.00 [-0.07, 0.07]                     |                                        |
| Chen 2012                         | 12      | 40        | 9      | 40       | 0.7%          | 0.07 [-0.12, 0.27]                     |                                        |
| Chen 2013                         | 24      | 122       | 25     | 119      | 2.4%          | -0.01 [-0.12, 0.09]                    |                                        |
| Cotter 1997                       | 1       | 14        | 0      | 6        | 0.4%          | 0.07 [-0.17, 0.32]                     |                                        |
| De Backer 2010                    | 472     | 858       | 427    | 821      | 11.0%         | 0.03 [-0.02, 0.08]                     |                                        |
| Gao 2008                          | 9       | 21        | 9      | 23       | 0.3%          | 0.04 [-0.25, 0.33]                     |                                        |
| Giamouzis 2010                    | 3       | 30        | 3      | 30       | 1.1%          | 0.00 [-0.15, 0.15]                     |                                        |
| Hausen 1992                       | 0       | 14        | 0      | 27       | 2.4%          | 0.00 [-0.10, 0.10]                     |                                        |
| Hsueh 1998                        | 0       | 10        | 0      | 10       | 0.8%          | 0.00 [-0.17, 0.17]                     |                                        |
| Hua 2013                          | 8       | 16        | 7      | 16       | 0.2%          | 0.06 [-0.28, 0.41]                     |                                        |
| Kamiya 2015                       | 0       | 12        | 2      | 12       | 0.4%          | -0.17 [-0.41, 0.07]                    |                                        |
| Kanchi 2017                       | 0       | 30        | 0      | 30       | 6.4%          | 0.00 [-0.06, 0.06]                     | +                                      |
| Lassnigg 2000                     | 0       | 21        | 1      | 40       | 3.5%          | -0.03 [-0.11, 0.06]                    |                                        |
| Lassnigg 2000a                    | 0       | 21        | 4      | 41       | 2.0%          | -0.10 [-0.21, 0.01]                    |                                        |
| Liu 2010                          | 12      | 25        | 8      | 25       | 0.3%          | 0.16 [-0.11, 0.43]                     |                                        |
| Marik 1994                        | 6       | 10        | 5      | 10       | 0.1%          | 0.10 [-0.33, 0.53]                     |                                        |
| Martin 1993                       | 10      | 16        | 7      | 16       | 0.2%          | 0.19 [-0.15, 0.53]                     |                                        |
| Mathur 2007                       | 19      | 25        | 14     | 25       | 0.4%          | 0.20 [-0.06, 0.46]                     |                                        |
| Myles 1993                        | 0       | 25        | 0      | 24       | 4.3%          | 0.00 [-0.08, 0.08]                     | +                                      |
| Oppizzi 1997                      | 3       | 13        | 0      | 13       | 0.4%          | 0.23 [-0.02, 0.48]                     |                                        |
| Rosseel 1997                      | 0       | 35        | 0      | 35       | 8.6%          | 0.00 [-0.05, 0.05]                     | +                                      |
| Schmoelz 2006                     | 2       | 10        | 7      | 20       | 0.2%          | -0.15 [-0.47, 0.17]                    |                                        |
| Schmoelz 2006a                    | 2       | 11        | 5      | 20       | 0.3%          | -0.07 [-0.36, 0.23]                    |                                        |
| Schneider 1999                    | 0       | 50        | 0      | 49       | 16.8%         | 0.00 [-0.04, 0.04]                     | +                                      |
| Shah 2014                         | 1       | 31        | 4      | 61       | 3.2%          | -0.03 [-0.12, 0.05]                    |                                        |
| Sharpe 1999                       | 0       | 5         | 0      | 10       | 0.4%          | 0.00 [-0.25, 0.25]                     |                                        |
| Sharpe 1999a                      | 0       | 5         | 0      | 10       | 0.4%          | 0.00 [-0.25, 0.25]                     |                                        |
| Sinclair 1997                     | 0       | 16        | 0      | 14       | 1.7%          | 0.00 [-0.12, 0.12]                     |                                        |
| Sindone 1998                      | 0       | 8         | 3      | 8        | 0.2%          | -0.38 [-0.73, -0.02]                   |                                        |
| Sindone 1998a                     | 1       | 8         | 2      | 26       | 0.4%          | 0.05 [-0.20, 0.30]                     |                                        |
| Sindone 1998b                     | 1       | 8         | 1      | 9        | 0.3%          | 0.01 [-0.29, 0.32]                     |                                        |
| Soliman 2017                      | 3       | 75        | 1      | 75       | 9.5%          | 0.03 [-0.02, 0.08]                     |                                        |
| Sumeray 2001                      | Ō       | 19        | 0      | 19       | 2.7%          | 0.00 [-0.10, 0.10]                     |                                        |
| Tarr 1993a                        | 1       | 12        | 3      | 25       | 0.6%          | -0.04 [-0.24, 0.17]                    |                                        |
| Tarr 1993b                        | 1       | 13        | 3      | 25       | 0.7%          | -0.04 [-0.24, 0.15]                    |                                        |
| Triposkiadis 2014                 | . 9     | 28        | 18     | 55       | 0.6%          | -0.01 [-0.22, 0.21]                    |                                        |
| Triposkiadis 2014a                | 10      | 28        | 19     | 50       | 0.5%          | -0.02 [-0.25, 0.20]                    |                                        |
| Varriale 1997                     | 0       | 10        | 0      | 10       | 0.8%          | 0.00 [-0.17, 0.17]                     |                                        |
| Woo 2002                          | 2       | 25        | 0      | 25       | 1.6%          | 0.08 [-0.05, 0.21]                     | <u> </u>                               |
| Wu 2011                           | 9       | 23        | 7      | 23       | 0.3%          | 0.09 [-0.19, 0.36]                     |                                        |
| Zhuangyu 2011                     | 9<br>14 | 45        | 13     | 23<br>45 | 0.3%          | 0.02 [-0.17, 0.21]                     |                                        |
| Subtotal (95% CI)                 | 14      | 40        | 13     |          | 100.0%        | 0.00 [-0.01, 0.02]                     |                                        |
| Total events                      | 640     |           | 614    |          |               |                                        | ſ                                      |
| Heterogeneity: Tau <sup>2</sup> = |         | j² = 29 0 |        | 4 (P = 1 | ),96); I² = ∩ | 1%                                     |                                        |
| Test for overall effect:          |         |           |        |          |               |                                        |                                        |
|                                   |         | . 0.0     | -/     |          |               |                                        |                                        |
|                                   |         |           |        |          |               |                                        |                                        |
|                                   |         |           |        |          |               |                                        | -1 -0.5 0 0.5                          |

Test for subgroup differences: Not applicable

Favours dopamine Favours control

# E-Figure 2.5.2: worst-best case analysis

| Study or Subgroup                  | Dopam<br>Events |                     | Contr<br>Events |                   | Weight                          | Risk Ratio<br>M-H, Random, 95% Cl             | Risk Ratio<br>M-H, Random, 95% Cl                 |
|------------------------------------|-----------------|---------------------|-----------------|-------------------|---------------------------------|-----------------------------------------------|---------------------------------------------------|
| 4.1.2 Worst-best cas               |                 |                     |                 |                   |                                 | , , ,                                         |                                                   |
| Arutiunov 2010                     | 2               | 21                  | 3               | 20                | 0.2%                            | 0.63 [0.12, 3.41]                             |                                                   |
| Birnbaum 1990                      | 0               | 10                  | 0               | 10                |                                 | Not estimable                                 |                                                   |
| Bove 2005                          | 3               | 40                  | 4               | 40                | 0.3%                            | 0.75 [0.18, 3.14]                             |                                                   |
| Carcoana 2003                      | 9               | 34                  | Ó               | 33                | 0.1%                            | 18.46 [1.12, 304.85]                          |                                                   |
| Carcoana 2003a                     | 9               | 34                  | 0               | 34                | 0.1%                            | 19.00 [1.15, 314.00]                          |                                                   |
| Chen 2012                          | 12              | 40                  | 9               | 40                | 1.1%                            | 1.33 [0.63, 2.81]                             |                                                   |
| Chen 2013                          | 24              | 122                 | 25              | 119               | 2.5%                            | 0.94 [0.57, 1.54]                             | _ <b>_</b> _                                      |
| Cotter 1997                        | 1               | 14                  | 0               | 6                 | 0.1%                            | 1.40 [0.06, 30.23]                            |                                                   |
| De Backer 2010                     | 472             | 858                 | 427             | 821               | 78.0%                           | 1.06 [0.97, 1.16]                             |                                                   |
| Gao 2008                           | 2               | 21                  |                 | 23                | 1.2%                            | 1.10 [0.54, 2.23]                             | _ <del>_</del>                                    |
| Giamouzis 2010                     | 3               | 30                  | 3               | 30                | 0.3%                            | 1.00 [0.22, 4.56]                             |                                                   |
| Hausen 1992                        | Ŭ               | 14                  | Ő               | 27                | 0.070                           | Not estimable                                 |                                                   |
| Hsueh 1998                         | 0               | 10                  | 0               | 10                |                                 | Not estimable                                 |                                                   |
| Hua 2013                           | 8               | 16                  | 7               | 16                | 1.1%                            | 1.14 [0.54, 2.40]                             |                                                   |
| Kamiya 2015                        | 0               | 12                  | 2               | 12                | 0.1%                            | 0.20 [0.01, 3.77]                             |                                                   |
| Kanchi 2017                        | 0               | 0                   | 0               | 0                 | 0.170                           | Not estimable                                 |                                                   |
| Lassnigg 2000                      | 0               | 21                  | 1               | 42                | 0.1%                            | 0.65 [0.03, 15.34]                            |                                                   |
| Lassnigg 2000<br>Lassnigg 2000a    | 0               | 21                  | 4               | 42                | 0.1%                            | 0.22 [0.01, 3.85]                             |                                                   |
|                                    | 12              | 25                  | 8               | 42<br>25          |                                 | • • •                                         |                                                   |
| Liu 2010<br>Morik 1994             | 6               | 25<br>10            | 5               | 10                | 1.3%                            | 1.50 [0.74, 3.03]                             |                                                   |
| Marik 1994<br>Martin 1992          |                 |                     | 5               |                   | 1.0%                            | 1.20 [0.54, 2.67]                             |                                                   |
| Martin 1993<br>Mathur 2007         | 10              | 16                  |                 | 16                | 1.4%                            | 1.43 [0.73, 2.80]                             |                                                   |
| Mathur 2007                        | 19              | 25                  | 14              | 25                | 3.7%                            | 1.36 [0.90, 2.05]                             |                                                   |
| Myles 1993                         | 1               | 26                  | 0               | 26                | 0.1%                            | 3.00 [0.13, 70.42]                            |                                                   |
| Oppizzi 1997<br>Decesel 1997       | 3               | 13                  | 0               | 13                | 0.1%                            | 7.00 [0.40, 123.35]                           |                                                   |
| Rosseel 1997                       | 0               | 35                  | 0               | 35                | 0.50                            | Not estimable                                 |                                                   |
| Schmoelz 2006                      | 3               | 11                  | 7               | 21                | 0.5%                            | 0.82 [0.26, 2.56]                             |                                                   |
| Schmoelz 2006a                     | 2               | 11                  | 5               | 21                | 0.3%                            | 0.76 [0.18, 3.32]                             |                                                   |
| Schneider 1999                     | 0               | 50                  | 0               | 50                |                                 | Not estimable                                 |                                                   |
| Shah 2014                          | 1               | 31                  | 4               | 62                | 0.1%                            | 0.50 [0.06, 4.29]                             | · · · ·                                           |
| Sharpe 1999                        | 0               | 5                   | 0               | 10                |                                 | Not estimable                                 |                                                   |
| Sharpe 1999a                       | 0               | 5                   | 0               | 10                |                                 | Not estimable                                 |                                                   |
| Sinclair 1997                      | 0               | 16                  | 0               | 14                |                                 | Not estimable                                 |                                                   |
| Sindone 1998                       | 0               | 8                   | 3               | 8                 | 0.1%                            | 0.14 [0.01, 2.39]                             | •                                                 |
| Sindone 1998a                      | 1               | 8                   | 2               | 26                | 0.1%                            | 1.63 [0.17, 15.66]                            |                                                   |
| Sindone 1998b                      | 1               | 8                   | 1               | 9                 | 0.1%                            | 1.13 [0.08, 15.19]                            |                                                   |
| Soliman 2017                       | 3               | 75                  | 1               | 75                | 0.1%                            | 3.00 [0.32, 28.19]                            |                                                   |
| Sumeray 2001                       | 5               | 24                  | 0               | 24                | 0.1%                            | 11.00 [0.64, 188.55]                          |                                                   |
| Tarr 1993a                         | 1               | 12                  | 3               | 25                | 0.1%                            | 0.69 [0.08, 6.00]                             |                                                   |
| Tarr 1993b                         | 1               | 13                  | 3               | 25                | 0.1%                            | 0.64 [0.07, 5.57]                             |                                                   |
| Triposkiadis 2014                  | 9               | 28                  | 18              | 55                | 1.4%                            | 0.98 [0.51, 1.90]                             |                                                   |
| Triposkiadis 2014a                 | 10              | 28                  | 19              | 50                | 1.7%                            | 0.94 [0.51, 1.73]                             | -+-                                               |
| Varriale 1997                      | 0               | 10                  | 0               | 10                |                                 | Not estimable                                 |                                                   |
| Woo 2002                           | 2               | 25                  | 0               | 25                | 0.1%                            | 5.00 [0.25, 99.16]                            |                                                   |
| Wu 2011                            | 9               | 23                  | 7               | 23                | 1.0%                            | 1.29 [0.58, 2.86]                             | - <del> -</del>                                   |
| Zhuangyu 2011<br>Subtotal (95% CI) | 14              | 45<br><b>1904</b>   | 13              | 45<br><b>2063</b> | 1.6%<br><b>100.0%</b>           | 1.08 [0.57, 2.03]<br><b>1.08 [1.00, 1.17]</b> |                                                   |
| Total events                       | 665             |                     | 614             |                   |                                 |                                               |                                                   |
| Heterogeneity: Tau <sup>2</sup> =  | 0.00; Chi       | <sup>2</sup> = 25.3 | 3, df = 34      | 4 (P = 0          | 0.86); <b>I<sup>z</sup> =</b> ( | 0%                                            |                                                   |
| Test for overall effect:           | •               |                     | •               | ,                 |                                 |                                               |                                                   |
|                                    |                 |                     | -               |                   |                                 |                                               |                                                   |
|                                    |                 |                     |                 |                   |                                 |                                               |                                                   |
|                                    |                 |                     |                 |                   |                                 |                                               | 0.01 0.1 1 10<br>Eavours donamine Eavours control |

Test for subgroup differences: Not applicable

Favours dopamine Favours control

# E-Figure 2.5.3: best-worst case analysis

| Study or Subgroup                                                   | Dopam<br>Events |          | Contr  |          | Weight      | Risk Ratio<br>M-H, Random, 95% Cl | Risk Ratio<br>M-H, Random, 95% Cl       |
|---------------------------------------------------------------------|-----------------|----------|--------|----------|-------------|-----------------------------------|-----------------------------------------|
| 4.1.3 Best-worst case                                               |                 |          | Lycina | Total    | Weight      | m-n, Kandom, 55% Cr               | wi-n, Kandoin, 55% Ci                   |
| Arutiunov 2010                                                      | 2               | 21       | 3      | 20       | 0.2%        | 0.63 [0.12, 3.41]                 |                                         |
| Birnbaum 1990                                                       | 0               | 10       | 0      | 10       | 0.2 %       | Not estimable                     |                                         |
| Bove 2005                                                           | 3               | 40       | 4      | 40       | 0.3%        | 0.75 [0.18, 3.14]                 |                                         |
| Carcoana 2003                                                       | 0               | 34       | 0      | 33       | 0.570       | Not estimable                     |                                         |
| Carcoana 2003<br>Carcoana 2003a                                     | 0               | 34       | 0      | 26       |             | Not estimable                     |                                         |
| Carcoaria 2003a<br>Chen 2012                                        | 12              | 34<br>40 | 9      | 40       | 1.1%        |                                   |                                         |
|                                                                     | 24              | 40       |        |          |             | 1.33 [0.63, 2.81]                 |                                         |
| Chen 2013                                                           |                 |          | 25     | 119      | 2.5%        | 0.94 [0.57, 1.54]                 |                                         |
| Cotter 1997                                                         | 1               | 14       | 0      | 6        | 0.1%        | 1.40 [0.06, 30.23]                |                                         |
| De Backer 2010                                                      | 472             | 858      | 427    | 821      | 78.2%       | 1.06 [0.97, 1.16]                 |                                         |
| Gao 2008<br>Giana autria 2040                                       | 9               | 21       | 9      | 23       | 1.2%        | 1.10 [0.54, 2.23]                 |                                         |
| Giamouzis 2010                                                      | 3               | 30       | 3      | 30       | 0.3%        | 1.00 [0.22, 4.56]                 |                                         |
| Hausen 1992<br>Hause 4999                                           | 0               | 14       | 0      | 27       |             | Not estimable                     |                                         |
| Hsueh 1998                                                          | 0               | 10       | 0      | 10       |             | Not estimable                     |                                         |
| Hua 2013                                                            | 8               | 16       | 7      | 16       | 1.1%        | 1.14 [0.54, 2.40]                 |                                         |
| Kamiya 2015<br>Kamabi 2017                                          | 0               | 12       | 2      | 12       | 0.1%        | 0.20 [0.01, 3.77]                 |                                         |
| Kanchi 2017                                                         | 0               | 30       | 0      | 30       | o           | Not estimable                     |                                         |
| Lassnigg 2000                                                       | 0               | 21       | 3      | 42       | 0.1%        | 0.28 [0.02, 5.17]                 |                                         |
| Lassnigg 2000a                                                      | 0               | 21       | 5      | 42       | 0.1%        | 0.18 [0.01, 3.07]                 |                                         |
| Liu 2010                                                            | 12              | 25       | 8      | 25       | 1.3%        | 1.50 [0.74, 3.03]                 |                                         |
| Marik 1994                                                          | 6               | 10       | 5      | 10       | 1.0%        | 1.20 [0.54, 2.67]                 |                                         |
| Martin 1993                                                         | 10              | 16       | 7      | 16       | 1.4%        | 1.43 [0.73, 2.80]                 |                                         |
| Mathur 2007                                                         | 19              | 25       | 14     | 25       | 3.7%        | 1.36 [0.90, 2.05]                 | <b>+-</b>                               |
| Myles 1993                                                          | 0               | 26       | 2      | 26       | 0.1%        | 0.20 [0.01, 3.97]                 |                                         |
| Oppizzi 1997                                                        | 3               | 13       | 0      | 13       | 0.1%        | 7.00 [0.40, 123.35]               |                                         |
| Rosseel 1997                                                        | 0               | 35       | 0      | 35       |             | Not estimable                     |                                         |
| Schmoelz 2006                                                       | 2               | 11       | 8      | 21       | 0.3%        | 0.48 [0.12, 1.87]                 |                                         |
| Schmoelz 2006a                                                      | 2               | 11       | 6      | 21       | 0.3%        | 0.64 [0.15, 2.64]                 |                                         |
| Schneider 1999                                                      | 0               | 50       | 1      | 50       | 0.1%        | 0.33 [0.01, 7.99]                 |                                         |
| Shah 2014                                                           | 1               | 31       | 5      | 62       | 0.1%        | 0.40 [0.05, 3.28]                 |                                         |
| Sharpe 1999                                                         | 0               | 5        | 0      | 10       |             | Not estimable                     |                                         |
| Sharpe 1999a                                                        | 0               | 5        | 0      | 10       |             | Not estimable                     |                                         |
| Sinclair 1997                                                       | 0               | 16       | 0      | 14       |             | Not estimable                     |                                         |
| Sindone 1998                                                        | 0               | 8        | 3      | 8        | 0.1%        | 0.14 [0.01, 2.39]                 | • · · · · · · · · · · · · · · · · · · · |
| Sindone 1998a                                                       | 1               | 8        | 2      | 26       | 0.1%        | 1.63 [0.17, 15.66]                |                                         |
| Sindone 1998b                                                       | 1               | 8        | 1      | 9        | 0.1%        | 1.13 [0.08, 15.19]                |                                         |
| Soliman 2017                                                        | 3               | 75       | 1      | 75       | 0.1%        | 3.00 [0.32, 28.19]                |                                         |
| Sumeray 2001                                                        | 0               | 24       | 5      | 24       | 0.1%        | 0.09 [0.01, 1.56]                 | <                                       |
| Tarr 1993a                                                          | 1               | 12       | 3      | 25       | 0.1%        | 0.69 [0.08, 6.00]                 |                                         |
| Tarr 1993b                                                          | 1               | 13       | 3      | 25       | 0.1%        | 0.64 [0.07, 5.57]                 |                                         |
| Triposkiadis 2014                                                   | 9               | 28       | 18     | 55       | 1.4%        | 0.98 [0.51, 1.90]                 | _ <del></del>                           |
| Triposkiadis 2014a                                                  | 10              | 28       | 19     | 50       | 1.7%        | 0.94 [0.51, 1.73]                 | _ <del></del>                           |
| Varriale 1997                                                       | 0               | 10       | 0      | 10       |             | Not estimable                     |                                         |
| Woo 2002                                                            | 2               | 25       | 0      | 25       | 0.1%        | 5.00 [0.25, 99.16]                |                                         |
| Wu 2011                                                             | 9               | 23       | 7      | 23       | 1.0%        | 1.29 [0.58, 2.86]                 | _ <del></del>                           |
| Zhuangyu 2011                                                       | 14              | 45       | 13     | 45       | 1.6%        | 1.08 [0.57, 2.03]                 | _ <del></del>                           |
| Subtotal (95% CI)                                                   |                 | 1934     |        | 2085     | 100.0%      | 1.06 [0.98, 1.15]                 | *                                       |
| Total events<br>Heterogeneity: Tau² =<br>Test for overall effect: . |                 |          |        | 3 (P = 0 | ).93); I² = | 0%                                |                                         |
|                                                                     |                 |          |        |          |             |                                   |                                         |
|                                                                     |                 |          |        |          |             |                                   |                                         |
|                                                                     |                 |          |        |          |             |                                   | Favours dopamine Favours control        |

Test for subgroup differences: Not applicable

# E-Figures 2.5.4-2.5.5: subgroup analysis 1 - trials subdivided by risk of bias

| Study or Subgroup                      | Dopan<br>Events |          | Contr     |          | Weight                    | Risk Ratio<br>M-H, Random, 95% CI      | Risk Ratio<br>M-H, Random, 95% Cl |
|----------------------------------------|-----------------|----------|-----------|----------|---------------------------|----------------------------------------|-----------------------------------|
| 4.1.4 Subgroup 1: Lo                   |                 |          | LYCIILS   | Total    | Weight                    | m-n, Random, 55% Cr                    | m-n, Kandoin, 55% Ci              |
| De Backer 2010                         | 472             | 858      | 427       | 821      | 100.0%                    | 1.06 [0.97, 1.16]                      | <b></b>                           |
| Subtotal (95% CI)                      | 472             | 858      | 427       | 821      | 100.0%                    | 1.06 [0.97, 1.16]                      | <b>T</b>                          |
| Total events                           | 472             | 000      | 427       | 021      | 1001070                   | 100 [001, 110]                         |                                   |
| Heterogeneity: Not ag                  |                 |          | 427       |          |                           |                                        |                                   |
| Test for overall effect:               | •               | P-02     | 2)        |          |                           |                                        |                                   |
| restion overall ellect.                | Z = 1.23 (      | ,r = 0.2 | 2)        |          |                           |                                        |                                   |
| 4.1.5 Subgroup 1: Un                   | clear or h      | iah risl | k of bias |          |                           |                                        |                                   |
| Arutiunov 2010                         | 2               | 21       | 3         | 20       | 1.0%                      | 0.63 [0.12, 3.41]                      |                                   |
| Birnbaum 1990                          | 0               | 10       | 0         | 10       |                           | Not estimable                          |                                   |
| Bove 2005                              | 3               | 40       | 4         | 40       | 1.4%                      | 0.75 [0.18, 3.14]                      |                                   |
| Carcoana 2003                          | Ō               | 25       | 0<br>0    | 24       |                           | Not estimable                          |                                   |
| Carcoana 2003a                         | Ō               | 25       | Ō         | 26       |                           | Not estimable                          |                                   |
| Chen 2012                              | 12              | 40       | 9         | 40       | 5.2%                      | 1.33 [0.63, 2.81]                      | _ <b>_</b>                        |
| Chen 2013                              | 24              | 122      | 25        | 119      | 11.6%                     | 0.94 [0.57, 1.54]                      |                                   |
| Cotter 1997                            | 1               | 14       | 0         | 6        | 0.3%                      | 1.40 [0.06, 30.23]                     |                                   |
| Gao 2008                               | 9               | 21       | 9         | 23       | 5.7%                      | 1.10 [0.54, 2.23]                      | _ <b>_</b>                        |
| Giamouzis 2010                         | 3               | 30       | 3         | 30       | 1.3%                      | 1.00 [0.22, 4.56]                      |                                   |
| Hausen 1992                            | 0               | 14       | 0         | 27       | 1.570                     | Not estimable                          |                                   |
| Hsueh 1998                             | 0               | 10       | 0         | 10       |                           | Not estimable                          |                                   |
| Hua 2013                               | 8               | 16       | 7         | 16       | 5.3%                      | 1.14 [0.54, 2.40]                      | <b>_</b>                          |
| Kamiya 2015                            | 0               | 12       | 2         | 12       | 0.3%                      | 0.20 [0.01, 3.77]                      |                                   |
| Kanchi 2017                            | 0               | 30       | 2<br>0    | 30       | 0.5 /0                    | Not estimable                          |                                   |
| Lassnigg 2000                          | 0               | 21       | 1         | 40       | 0.3%                      | 0.62 [0.03, 14.62]                     |                                   |
| Lassnigg 2000<br>Lassnigg 2000a        | 0               | 21       | 4         | 40       | 0.3%                      | 0.21 [0.01, 3.76]                      |                                   |
| Liu 2010                               | 12              | 25       | 4         | 25       | 0.3%<br>5.9%              |                                        |                                   |
|                                        | 6               | 10       | 5         | 10       | 0.9%<br>4.5%              | 1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67] |                                   |
| Marik 1994<br>Martin 1993              | 10              | 16       | 7         | 16       | 4.0%<br>6.4%              |                                        |                                   |
| Mathur 2007                            | 10              | 25       | 14        | 25       | 17.1%                     |                                        |                                   |
|                                        | 19              | 25       | 14        | 20       | 17.170                    | 1.36 [0.90, 2.05]                      | -                                 |
| Myles 1993<br>Oppi <del>ssi</del> 1997 | 3               | 13       | 0         | 13       | 0.4%                      | Not estimable                          |                                   |
| Oppizzi 1997<br>Recessel 1997          | 0               | 35       | 0         | 35       | 0.4 %                     | 7.00 [0.40, 123.35]<br>Not estimable   |                                   |
| Rosseel 1997                           | 2               | 30<br>10 | 7         | 20       | 1.5%                      |                                        |                                   |
| Schmoelz 2006                          | 2               | 11       | 5         | 20       |                           | 0.57 [0.14, 2.26]                      |                                   |
| Schmoelz 2006a                         | 0               | 50       | 5<br>0    |          | 1.3%                      | 0.73 [0.17, 3.15]                      |                                   |
| Schneider 1999<br>Chob 2014            | 1               |          | 4         | 49       | 0.60                      | Not estimable                          |                                   |
| Shah 2014<br>Shama 4999                |                 | 31       |           | 61       | 0.6%                      | 0.49 [0.06, 4.22]                      |                                   |
| Sharpe 1999<br>Sharpe 1999             | 0               | 5        | 0         | 10       |                           | Not estimable                          |                                   |
| Sharpe 1999a<br>Sinalain 1997          | 0               | 5        | 0         | 10       |                           | Not estimable                          |                                   |
| Sinclair 1997<br>Sindana 4999          | 0               | 16       | 0         | 14       | 0.400                     | Not estimable                          |                                   |
| Sindone 1998                           | 0               | 8        | 3         | 8        | 0.4%                      | 0.14 [0.01, 2.39]                      | •                                 |
| Sindone 1998a                          | 1               | 8        | 2         | 26       | 0.6%                      | 1.63 [0.17, 15.66]                     |                                   |
| Sindone 1998b                          | 1               | 8        | 1         | 9        | 0.4%                      | 1.13 [0.08, 15.19]                     |                                   |
| Soliman 2017                           | 3               | 75       | 1         | 75       | 0.6%                      | 3.00 [0.32, 28.19]                     |                                   |
| Sumeray 2001                           | 0               | 19       | 0         | 19       |                           | Not estimable                          |                                   |
| Tarr 1993a                             | 1               | 12       | 3         | 25       | 0.6%                      | 0.69 [0.08, 6.00]                      |                                   |
| Tarr 1993b                             | 1               | 13       | 3         | 25       | 0.6%                      | 0.64 [0.07, 5.57]                      |                                   |
| Triposkiadis 2014                      | 9               | 28       | 18        | 55       | 6.7%                      | 0.98 [0.51, 1.90]                      |                                   |
| Triposkiadis 2014a                     | 10              | 28       | 19        | 50       | 7.8%                      | 0.94 [0.51, 1.73]                      | _ <b>_</b>                        |
| Varriale 1997                          | 0               | 10       | 0         | 10       |                           | Not estimable                          |                                   |
| Woo 2002                               | 2               | 25       | 0         | 25       | 0.3%                      | 5.00 [0.25, 99.16]                     |                                   |
| Wu 2011                                | 9               | 23       | 7         | 23       | 4.5%                      | 1.29 [0.58, 2.86]                      |                                   |
| Zhuangyu 2011                          | 14              | 45       | 13        | 45       | 7.2%                      | 1.08 [0.57, 2.03]                      |                                   |
| Subtotal (95% CI)                      |                 | 1051     |           | 1241     | 100.0%                    | 1.12 [0.94, 1.32]                      | T                                 |
| Total events                           | 168             |          | 187       |          |                           |                                        |                                   |
| Heterogeneity: Tau <sup>2</sup> =      |                 |          |           | 9 (P = 0 | 0.99); I <sup>z</sup> = 0 | 1%                                     |                                   |
| Test for overall effect:               | Z=1.26 (        | (P = 0.2 | 1)        |          |                           |                                        |                                   |
|                                        |                 |          |           |          |                           |                                        |                                   |
|                                        |                 |          |           |          |                           |                                        |                                   |
|                                        |                 |          |           |          |                           |                                        | Favours dopamine Favours control  |
| est for subaroup diff                  | ferences:       | Chi² = ( | ).30, df= | 1 (P =   | 0.59), l² = l             | 0%                                     |                                   |

## E-Figures 2.5.4-2.5.5: risk differences

| Study or Subgroup<br>4.1.4 Subgroup 1: Lo                       |            | Total             | Contr<br>Events |                   | Weight                  | Risk Difference<br>M-H, Random, 95% CI          | Risk Difference<br>M-H, Random, 95% Cl |
|-----------------------------------------------------------------|------------|-------------------|-----------------|-------------------|-------------------------|-------------------------------------------------|----------------------------------------|
| 2010 De Backer 2010<br>Subtotal (95% CI)                        | 472        | 858<br>858        | 427             | 821<br><b>821</b> | 100.0%<br><b>100.0%</b> | 0.03 [-0.02, 0.08]<br><b>0.03 [-0.02, 0.08]</b> | -                                      |
| Fotal events                                                    | 472        |                   | 427             |                   |                         |                                                 | Ť                                      |
| Heterogeneity: Not ap                                           |            |                   |                 |                   |                         |                                                 |                                        |
| Fest for overall effect:                                        | •          | P = 0.2           | 2)              |                   |                         |                                                 |                                        |
| 4.1.5 Subgroup 1: Un                                            | clear or h | igh ris           | k of bias       |                   |                         |                                                 |                                        |
| Arutiunov 2010                                                  | 2          | 21                | 3               | 20                | 0.7%                    | -0.05 [-0.26, 0.15]                             |                                        |
| 3irnbaum 1990                                                   | 0          | 10                | 0               | 10                | 0.9%                    | 0.00 [-0.17, 0.17]                              |                                        |
| 3ove 2005                                                       | 3          | 40                | 4               | 40                | 1.8%                    | -0.03 [-0.15, 0.10]                             |                                        |
| Carcoana 2003                                                   | 0          | 25                | 0               | 24                | 4.9%                    | 0.00 [-0.08, 0.08]                              | -+-                                    |
| Carcoana 2003a                                                  | 0          | 25                | 0               | 26                | 5.2%                    | 0.00 [-0.07, 0.07]                              | - <b>+</b> -                           |
| Chen 2012                                                       | 12         | 40                | 9               | 40                | 0.8%                    | 0.07 [-0.12, 0.27]                              |                                        |
| Chen 2013                                                       | 24         | 122               | 25              | 119               | 2.7%                    | -0.01 [-0.12, 0.09]                             |                                        |
| otter 1997                                                      | 1          | 14                | 0               | 6                 | 0.5%                    | 0.07 [-0.17, 0.32]                              |                                        |
| )ao 2008                                                        | 9          | 21                | 9               | 23                | 0.3%                    | 0.04 [-0.25, 0.33]                              |                                        |
| ∂iamouzis 2010                                                  | 3          | 30                | 3               | 30                | 1.2%                    | 0.00 [-0.15, 0.15]                              |                                        |
| lausen 1992                                                     | 0          | 14                | 0               | 27                | 2.6%                    | 0.00 [-0.10, 0.10]                              |                                        |
| Isueh 1998                                                      | 0          | 10                | 0               | 10                | 0.9%                    | 0.00 [-0.17, 0.17]                              |                                        |
| lua 2013                                                        | 8          | 16                | 7               | 16                | 0.2%                    | 0.06 [-0.28, 0.41]                              |                                        |
| (amiya 2015                                                     | 0          | 12                | 2               | 12                | 0.5%                    | -0.17 [-0.41, 0.07]                             |                                        |
| (anchi 2017                                                     | 0          | 30                | 0               | 30                | 7.2%                    | 0.00 [-0.06, 0.06]                              | +                                      |
| assnigg 2000.                                                   | 0          | 21                | 1               | 40                | 3.9%                    | -0.03 [-0.11, 0.06]                             | -+                                     |
| assnigg 2000a.                                                  | 0          | 21                | 4               | 41                | 2.2%                    | -0.10 [-0.21, 0.01]                             |                                        |
| .iu 2010                                                        | 12         | 25                | 8               | 25                | 0.4%                    | 0.16 [-0.11, 0.43]                              |                                        |
| Aarik 1994                                                      | 6          | 10                | 5               | 10                | 0.1%                    | 0.10 [-0.33, 0.53]                              |                                        |
| /lartin 1993                                                    | 10         | 16                | 7               | 16                | 0.2%                    | 0.19 [-0.15, 0.53]                              |                                        |
| Aathur 2007                                                     | 19         | 25                | 14              | 25                | 0.4%                    | 0.20 [-0.06, 0.46]                              |                                        |
| vlyles 1993                                                     | 0          | 25                | 0               | 24                | 4.9%                    | 0.00 [-0.08, 0.08]                              |                                        |
| Oppizzi 1997                                                    | 3          | 13                | 0               | 13                | 0.5%                    | 0.23 [-0.02, 0.48]                              |                                        |
| Rosseel 1997                                                    | 0          | 35                | 0               | 35                | 9.6%                    | 0.00 [-0.05, 0.05]                              | <b>T</b>                               |
| Schmoelz 2006                                                   | 2          | 10                | 7               | 20                | 0.3%                    | -0.15 [-0.47, 0.17]                             |                                        |
| Schmoelz 2006a                                                  | 2          | 11                | 5               | 20                | 0.3%                    | -0.07 [-0.36, 0.23]                             |                                        |
| Schneider 1999                                                  | 0          | 50                | 0               | 49                | 18.9%                   | 0.00 [-0.04, 0.04]                              | _ <u> </u>                             |
| Shah 2014<br>Shama 4888                                         | 1          | 31                | 4               | 61                | 3.6%                    | -0.03 [-0.12, 0.05]                             |                                        |
| Sharpe 1999<br>Sharpa 1999                                      | 0<br>0     | 5<br>5            | 0<br>0          | 10<br>10          | 0.4%<br>0.4%            | 0.00 [-0.25, 0.25]                              |                                        |
| Sharpe 1999a<br>Sinclair 1997                                   | 0          | 16                | 0               | 14                | 1.9%                    | 0.00 [-0.25, 0.25]                              |                                        |
| Sindone 1998                                                    | 0          | 8                 | 3               | 8                 | 0.2%                    | 0.00 [-0.12, 0.12]<br>-0.38 [-0.73, -0.02]      |                                        |
| Sindone 1998a                                                   | 1          | 8                 | 2               | 26                | 0.2%                    | 0.05 [-0.20, 0.30]                              |                                        |
| Sindone 1998b                                                   | 1          | 8                 | 1               | 20                | 0.3%                    | 0.01 [-0.29, 0.32]                              |                                        |
| Boliman 2017                                                    | 3          | 75                | 1               | 75                | 10.7%                   | 0.03 [-0.02, 0.08]                              | <b>↓</b>                               |
| Sumeray 2001                                                    | Ő          | 19                | ,<br>O          | 19                | 3.0%                    | 0.00 [-0.10, 0.10]                              |                                        |
| arr 1993a                                                       | 1          | 12                | 3               | 25                | 0.7%                    | -0.04 [-0.24, 0.17]                             |                                        |
| arr 1993b                                                       | 1          | 13                | 3               | 25                | 0.8%                    | -0.04 [-0.24, 0.15]                             |                                        |
| Triposkiadis 2014                                               | . 9        | 28                | 18              | 55                | 0.6%                    | -0.01 [-0.22, 0.21]                             |                                        |
| riposkiadis 2014a                                               | 10         | 28                | 19              | 50                | 0.6%                    | -0.02 [-0.25, 0.20]                             | ——— <del>—</del> ——                    |
| /arriale 1997                                                   | 0          | 10                | 0               | 10                | 0.9%                    | 0.00 [-0.17, 0.17]                              | -+                                     |
| Voo 2002                                                        | 2          | 25                | 0               | 25                | 1.8%                    | 0.08 [-0.05, 0.21]                              | +                                      |
| Vu 2011                                                         | 9          | 23                | 7               | 23                | 0.4%                    | 0.09 [-0.19, 0.36]                              | <del></del>                            |
| Zhuangyu 2011<br>Subtotal (95% CI)                              | 14         | 45<br><b>1051</b> | 13              | 45                | 0.8%<br><b>100.0%</b>   | 0.02 [-0.17, 0.21]<br>0.00 [-0.02, 0.02]        |                                        |
| otal events<br>leterogeneity: Tau² =<br>est for overall effect: |            |                   | •               | 3 (P = 0          | ).98); I² = (           | )%                                              |                                        |
|                                                                 |            |                   |                 |                   |                         |                                                 | -1 -0.5 0 0.5                          |

# *E-Figures 2.5.6-2.5.7: subgroup analysis 2 – trials subdivided by comparator intervention*

| tai         Events           25         0           25         0           22         25           30         0           21         1           25         0           21         1           25         0           31         4           5         0           31         4           5         0           31         4           5         0           31         4           5         0           31         4           5         0           34         58           3.79, df = 6 (P           0.53)         7           ve control         21           31         0           40         4           9         3           14         0           16         7           12         2           21         4 | 24<br>26<br>119<br>30<br>40<br>24<br>20<br>49<br>61<br>10<br>8<br>19<br>55<br>520<br>7<br>25<br>520<br>7<br>20<br>10<br>40<br>40<br>40<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12 | 54.1%<br>1.4%<br>7.1%<br>2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%                                                          | M-H, Random, 95% Cl<br>Not estimable<br>0.94 [0.57, 1.54]<br>Not estimable<br>0.62 [0.03, 14.62]<br>Not estimable<br>0.57 [0.14, 2.26]<br>Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>1.01 [0.54, 2.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>Not estimable<br>Not estimable    | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26<br>119<br>30<br>40<br>24<br>20<br>49<br>61<br>10<br>8<br>19<br>55<br>10<br>25<br>520<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*       | 1.4%<br>7.1%<br>2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%<br>); I <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.3%<br>1.2% | Not estimable<br>0.94 [0.57, 1.54]<br>Not estimable<br>0.62 [0.03, 14.62]<br>Not estimable<br>0.57 [0.14, 2.26]<br>Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40] |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26<br>119<br>30<br>40<br>24<br>20<br>49<br>61<br>10<br>8<br>19<br>55<br>10<br>25<br>520<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*       | 1.4%<br>7.1%<br>2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%<br>); I <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.3%<br>1.2% | Not estimable<br>0.94 [0.57, 1.54]<br>Not estimable<br>0.62 [0.03, 14.62]<br>Not estimable<br>0.57 [0.14, 2.26]<br>Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40] |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 119\\30\\40\\24\\20\\49\\61\\10\\8\\19\\55\\10\\25\\520\\\end{array} $                                                                                                    | 1.4%<br>7.1%<br>2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%<br>); I <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.3%<br>1.2% | 0.94 [0.57, 1.54]<br>Not estimable<br>0.62 [0.03, 14.62]<br>Not estimable<br>0.57 [0.14, 2.26]<br>Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable                  |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>40<br>24<br>20<br>49<br>61<br>10<br>8<br>19<br>55<br>10<br>25<br>520<br>7<br>20<br>10<br>40<br>40<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                | 1.4%<br>7.1%<br>2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%<br>); I <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.3%<br>1.2% | Not estimable<br>0.62 [0.03, 14.62]<br>Not estimable<br>0.57 [0.14, 2.26]<br>Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                        |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 40\\ 24\\ 20\\ 49\\ 61\\ 10\\ 8\\ 19\\ 55\\ 10\\ 25\\ 520\\ -\\ -\\ 20\\ 10\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 4$                                              | 7.1%<br>2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%<br>); I <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.3%<br>1.2%         | 0.62 [0.03, 14.62]<br>Not estimable<br>0.57 [0.14, 2.26]<br>Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                         |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 20 49 61 10 8 19 55 10 25 520                                                                                                                                                             | 7.1%<br>2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%<br>); I <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.3%<br>1.2%         | Not estimable<br>0.57 [0.14, 2.26]<br>Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>0.89 [0.63, 2.12]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                               |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{ccccccc} 10 & 7 \\ 50 & 0 \\ 31 & 4 \\ 5 & 0 \\ 8 & 3 \\ 19 & 0 \\ 28 & 18 \\ 10 & 0 \\ 28 & 18 \\ 10 & 0 \\ 34 \\ & 58 \\ 3.79, df = 6 (P \\ 0.53) \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $20 \\ 49 \\ 61 \\ 10 \\ 8 \\ 19 \\ 55 \\ 520 \\ 7 = 0.71)$ $20 \\ 10 \\ 40 \\ 40 \\ 6 \\ 821 \\ 23 \\ 30 \\ 27 \\ 10 \\ 16 \\ 12$                                                           | 2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%<br>);   <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.1%<br>1.3%<br>0.3%<br>1.2% | 0.57 [0.14, 2.26]<br>Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br><b>0.89 [0.62, 1.28]</b><br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>1.33 [0.63, 2.81]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                    |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49<br>61<br>10<br>8<br>19<br>55<br>520<br>25<br>520<br>25<br>520<br>25<br>520<br>20<br>10<br>40<br>40<br>40<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                            | 2.9%<br>1.7%<br>31.2%<br>1.5%<br>100.0%<br>);   <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.1%<br>1.3%<br>0.3%<br>1.2% | Not estimable<br>0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br><b>0.89 [0.62, 1.28]</b><br>0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                             |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61<br>10<br>8<br>19<br>55<br><b>520</b><br>25<br><b>520</b><br>20<br>10<br>40<br>40<br>40<br>40<br>40<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                             | 1.7%<br>31.2%<br>1.5%<br>100.0%<br>);  ² = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%<br>1.2%            | 0.49 [0.06, 4.22]<br>Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>1.33 [0.63, 2.81]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |
| 5 0<br>8 3<br>19 0<br>28 18<br>10 0<br>25 0<br>34<br>58<br>3.79, df = 6 (P<br>0.53)<br>7e control<br>21 3<br>10 0<br>40 4<br>40 9<br>14 0<br>58 427<br>21 9<br>30 3<br>14 0<br>14 0<br>14 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>8<br>19<br>55<br>10<br>25<br><b>520</b><br>20<br>10<br>40<br>40<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                  | 1.7%<br>31.2%<br>1.5%<br>100.0%<br>);  ² = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%<br>1.2%            | Not estimable<br>0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>1.33 [0.63, 2.81]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 8       3         19       0         28       18         10       0         25       0         34       58         3.79, df = 6 (P         0.53)       0         2e control       21         21       3         10       0         40       9         14       0         58       427         21       3         30       3         14       0         10       0         16       7         12       2                                                                                                                                                                                                                                                                                                                  | 8<br>19<br>55<br>10<br>25<br>520<br>20<br>10<br>40<br>40<br>40<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                         | 31.2%<br>1.5%<br>100.0%<br>); F = 0%<br>0.2%<br>0.3%<br>1.2%<br>82.1%<br>1.3%<br>0.3%<br>1.2%                             | 0.14 [0.01, 2.39]<br>Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br><b>0.89 [0.62, 1.28]</b><br>0.89 <b>[0.62, 1.28]</b><br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                              |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccc} 19 & 0 \\ 28 & 18 \\ 10 & 0 \\ 25 & 0 \\ 34 & 58 \\ 3.79, df = 6 (P \\ 0.53) \\ \hline \textbf{ve control} \\ 21 & 3 \\ 10 & 0 \\ 40 & 4 \\ 40 & 9 \\ 14 & 0 \\ 58 & 427 \\ 21 & 9 \\ 30 & 3 \\ 14 & 0 \\ 10 & 0 \\ 16 & 7 \\ 12 & 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} 19\\55\\10\\25\\520\\\end{array},\\ \begin{array}{c} 2\\520\\10\\40\\40\\6\\821\\23\\30\\27\\10\\16\\12\end{array} \end{array} $                                          | 31.2%<br>1.5%<br>100.0%<br>); F = 0%<br>0.2%<br>0.3%<br>1.2%<br>82.1%<br>1.3%<br>0.3%<br>1.2%                             | Not estimable<br>0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.89 [0.62, 1.28]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccc} 28 & 18 \\ 10 & 0 \\ 25 & 0 \\ 34 & 58 \\ 3.79, df = 6 (P \\ 0.53) & \\ \hline \ensuremath{\textit{ve control}} \\ 21 & 3 \\ 10 & 0 \\ 40 & 4 \\ 40 & 9 \\ 14 & 0 \\ 58 & 427 \\ 21 & 9 \\ 30 & 3 \\ 14 & 0 \\ 10 & 0 \\ 16 & 7 \\ 12 & 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55<br>10<br>25<br>520<br>0<br>20<br>10<br>40<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                           | 1.5%<br><b>100.0%</b><br>);  ₽ = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.3%<br>1.3%<br>0.3%                                       | 0.98 [0.51, 1.90]<br>Not estimable<br>5.00 [0.25, 99.16]<br><b>0.89 [0.62, 1.28]</b><br>0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccc} 10 & 0 \\ 25 & 0 \\ 34 \\ 58 \\ 3.79, df = 6 (P \\ 0.53) \\ \hline \mbox{ve control} \\ 21 & 3 \\ 10 & 0 \\ 40 & 4 \\ 40 & 9 \\ 14 & 0 \\ 58 & 427 \\ 21 & 9 \\ 30 & 3 \\ 14 & 0 \\ 10 & 0 \\ 16 & 7 \\ 12 & 2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 10\\ 25\\ 520\\ \end{array} $ $ \begin{array}{c} 20\\ 10\\ 40\\ 6\\ 821\\ 23\\ 30\\ 27\\ 10\\ 16\\ 12\\ \end{array} $                                                     | 1.5%<br><b>100.0%</b><br>);  ₽ = 0%<br>0.2%<br>0.3%<br>1.2%<br>0.3%<br>1.3%<br>0.3%                                       | Not estimable<br>5.00 [0.25, 99.16]<br><b>0.89 [0.62, 1.28]</b><br>0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                       |
| 25 0<br>34<br>58<br>3.79, df = 6 (P<br>0.53)<br>7e control<br>21 3<br>10 0<br>40 4<br>40 9<br>14 0<br>58 427<br>21 9<br>30 3<br>14 0<br>10 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25<br>520<br>20<br>10<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                  | 100.0%<br>);  = 0%<br>0.2%<br>0.3%<br>1.2%<br>82.1%<br>1.3%<br>0.3%<br>1.2%                                               | 5.00 [0.25, 99.16]<br>0.89 [0.62, 1.28]<br>0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |
| 34         58           3.79, df = 6 (P         0.53)           ve control         21         3           21         3         10         0           40         4         9         14         0           58         427         21         9         30         3           14         0         58         427         21         9         30         3           14         0         16         7         12         2         2                                                                                                                                                                                                                                                                                  | <b>520</b><br>P = 0.71)<br>20<br>10<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                    | 100.0%<br>);  = 0%<br>0.2%<br>0.3%<br>1.2%<br>82.1%<br>1.3%<br>0.3%<br>1.2%                                               | 0.89 [0.62, 1.28]<br>0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                       |
| 58<br>3.79, df = 6 (P<br>0.53)<br><b>e control</b><br>21 3<br>10 0<br>40 4<br>40 9<br>14 0<br>58 427<br>21 9<br>30 3<br>14 0<br>10 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P = 0.71) 20 10 40 6 821 23 30 27 10 16 12                                                                                                                                                   | );   <sup>2</sup> = 0%<br>0.2%<br>0.3%<br>1.2%<br>82.1%<br>1.3%<br>0.3%<br>1.2%                                           | 0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |
| 3.79, df = 6 (P<br>0.53)<br><b>e control</b><br>21 3<br>10 0<br>40 4<br>40 9<br>14 0<br>58 427<br>21 9<br>30 3<br>14 0<br>10 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>10<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                               | 0.2%<br>0.3%<br>1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%                                                                     | 0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |
| 0.53)<br><b>ve control</b><br>21 3<br>10 0<br>40 4<br>40 9<br>14 0<br>58 427<br>21 9<br>30 3<br>14 0<br>10 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20<br>10<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                               | 0.2%<br>0.3%<br>1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%                                                                     | 0.63 [0.12, 3.41]<br>Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |
| <b>ve control</b><br>21 3<br>10 0<br>40 4<br>40 9<br>14 0<br>58 427<br>21 9<br>30 3<br>14 0<br>10 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                                     | 0.3%<br>1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%                                                                             | Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 21     3       10     0       40     4       40     9       14     0       58     427       21     9       30     3       14     0       10     0       16     7       12     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                                     | 0.3%<br>1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%                                                                             | Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 21     3       10     0       40     4       40     9       14     0       58     427       21     9       30     3       14     0       10     0       16     7       12     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                                     | 0.3%<br>1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%                                                                             | Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 10     0       40     4       40     9       14     0       58     427       21     9       30     3       14     0       10     0       16     7       12     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                                     | 0.3%<br>1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%                                                                             | Not estimable<br>0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 40     4       40     9       14     0       58     427       21     9       30     3       14     0       10     0       16     7       12     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                                           | 1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%                                                                                     | 0.75 [0.18, 3.14]<br>1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |
| 40         9           14         0           58         427           21         9           30         3           14         0           10         0           16         7           12         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40<br>6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                                           | 1.2%<br>0.1%<br>82.1%<br>1.3%<br>0.3%                                                                                     | 1.33 [0.63, 2.81]<br>1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |
| 14     0       58     427       21     9       30     3       14     0       10     0       16     7       12     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6<br>821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                                                 | 0.1%<br>82.1%<br>1.3%<br>0.3%                                                                                             | 1.40 [0.06, 30.23]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |
| 58         427           21         9           30         3           14         0           10         0           16         7           12         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 821<br>23<br>30<br>27<br>10<br>16<br>12                                                                                                                                                      | 82.1%<br>1.3%<br>0.3%<br>1.2%                                                                                             | 1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |
| 21     9       30     3       14     0       10     0       16     7       12     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>30<br>27<br>10<br>16<br>12                                                                                                                                                             | 1.3%<br>0.3%<br>1.2%                                                                                                      | 1.10 [0.54, 2.23]<br>1.00 [0.22, 4.56]<br>Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |
| 30 3<br>14 0<br>10 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>27<br>10<br>16<br>12                                                                                                                                                                   | 0.3%<br>1.2%                                                                                                              | 1.00 (0.22, 4.56)<br>Not estimable<br>Not estimable<br>1.14 (0.54, 2.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |
| 14 0<br>10 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27<br>10<br>16<br>12                                                                                                                                                                         | 1.2%                                                                                                                      | Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 14 0<br>10 0<br>16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27<br>10<br>16<br>12                                                                                                                                                                         | 1.2%                                                                                                                      | Not estimable<br>Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16<br>12                                                                                                                                                                                     |                                                                                                                           | Not estimable<br>1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |
| 16 7<br>12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                           |                                                                                                                           | 1.14 [0.54, 2.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
| 12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                           | 0.2010.01.3.771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                           | 0.1%                                                                                                                      | 0.21 [0.01, 3.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
| 25 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                           | 1.3%                                                                                                                      | 1.50 [0.74, 3.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
| 10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                           | 1.0%                                                                                                                      | 1.20 [0.54, 2.67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
| 16 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16                                                                                                                                                                                           | 1.4%                                                                                                                      | 1.43 [0.73, 2.80]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
| 25 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                           | 3.9%                                                                                                                      | 1.36 [0.90, 2.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + <b>-</b> -                                                                                                                                                                                                                                                                          |
| 13 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                           | 0.1%                                                                                                                      | 7.00 [0.40, 123.35]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 35 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                           |                                                                                                                           | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |
| 11 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                           | 0.3%                                                                                                                      | 0.73 [0.17, 3.15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
| 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                           | 0.070                                                                                                                     | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |
| 16 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                           |                                                                                                                           | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |
| 8 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26                                                                                                                                                                                           | 0.1%                                                                                                                      | 1.63 [0.17, 15.66]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |
| 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                           | 0.1%                                                                                                                      | 1.13 [0.08, 15.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |
| 75 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                           | 0.1%                                                                                                                      | 3.00 [0.32, 28.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |
| 12 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                           | 0.1%                                                                                                                      | 0.69 [0.08, 6.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1042                                                                                                                                                                                         |                                                                                                                           | 100 [100, 117]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ľ                                                                                                                                                                                                                                                                                     |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 (P - 0 )                                                                                                                                                                                   | aa\- i <b>z</b> – c                                                                                                       | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v (r. – 0.)                                                                                                                                                                                  | .55/, F – C                                                                                                               | , ,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       |
| 10.07, df = 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
| 10.07, df = 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01 0.1 1 10 100                                                                                                                                                                                                                                                                     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                              | 28 19 50<br>23 7 23<br>45 13 45<br>75 1542<br>556<br>0.07, df = 23 (P = 0                                                 | 28 19 50 1.8%<br>23 7 23 1.0%<br>45 13 45 1.6%<br>75 <b>1542 100.0%</b><br>556<br>0.07, df = 23 (P = 0.99); I <sup>z</sup> = 0                                                                                                                                                                                                                                                                                                                                                                                            | 28         19         50         1.8%         0.94 [0.51, 1.73]           23         7         23         1.0%         1.29 [0.58, 2.86]           45         13         45         1.6%         1.08 [0.57, 2.03]           75         1542         100.0%         1.08 [1.00, 1.17] |

## E-Figures 2.5.6-2.5.7: risk differences

| Study or Subgroup                  | Dopam       |                     | Contr     |                   | Woight                        | Risk Difference<br>M-H, Random, 95% Cl   | Risk Difference<br>M-H, Random, 95% Cl |
|------------------------------------|-------------|---------------------|-----------|-------------------|-------------------------------|------------------------------------------|----------------------------------------|
| 1.1.6 Subgroup 2: Ina              |             |                     | Events    | TUtai             | weight                        | M-n, Kalluolli, 55% Cl                   | M-n, Kaluolii, 95% Ci                  |
| arcoana 2003                       | 0           | 25                  | 0         | 24                | 8.3%                          | 0.00 [-0.08, 0.08]                       | +                                      |
| Carcoana 2003a                     | 0           | 25                  | 0         | 26                | 8.9%                          | 0.00 [-0.07, 0.07]                       | +                                      |
| hen 2013                           | 24          | 122                 | 25        | 119               | 4.7%                          | -0.01 [-0.12, 0.09]                      |                                        |
| (anchi 2017                        | 0           | 30                  | 0         | 30                | 12.2%                         | 0.00 [-0.06, 0.06]                       | +                                      |
| assnigg 2000.                      | 0           | 21                  | 1         | 40                | 6.7%                          | -0.03 [-0.11, 0.06]                      | <b>_</b>                               |
| Ayles 1993                         | 0           | 25                  | 0         | 24                | 8.3%                          | 0.00 [-0.08, 0.08]                       | +                                      |
| Schmoelz 2006                      | 2           | 10                  | 7         | 20                | 0.5%                          | -0.15 [-0.47, 0.17]                      |                                        |
| Schneider 1999                     | 0           | 50                  | 0         | 49                | 32.2%                         | 0.00 [-0.04, 0.04]                       | +                                      |
| 3hah 2014                          | 1           | 31                  | 4         | 61                | 6.2%                          | -0.03 [-0.12, 0.05]                      |                                        |
| Sharpe 1999                        | 0           | 5                   | 0         | 10                | 0.8%                          | 0.00 [-0.25, 0.25]                       |                                        |
| Sindone 1998                       | 0           | 8                   | 3         | 8                 | 0.4%                          | -0.38 [-0.73, -0.02]                     |                                        |
| Sumeray 2001                       | 0           | 19                  | 0         | 19                | 5.1%                          | 0.00 [-0.10, 0.10]                       |                                        |
| riposkiadis 2014                   | 9           | 28                  | 18        | 55                | 1.1%                          | -0.01 [-0.22, 0.21]                      |                                        |
| ,<br>arriale 1997                  | 0           | 10                  | 0         | 10                | 1.6%                          | 0.00 [-0.17, 0.17]                       |                                        |
| Voo 2002                           | 2           | 25                  | 0         | 25                | 3.1%                          | 0.08 [-0.05, 0.21]                       |                                        |
| Subtotal (95% CI)                  |             | 434                 |           | 520               | 100.0%                        | -0.00 [-0.03, 0.02]                      | •                                      |
| otal events                        | 38          |                     | 58        |                   |                               |                                          |                                        |
| leterogeneity: Tau <sup>2</sup> =  | 0.00; Chi   | <sup>2</sup> = 8.51 | . df = 14 | (P = 0.)          | 86); <b>I<sup>2</sup> = 0</b> | %                                        |                                        |
| est for overall effect:            |             |                     |           |                   | .,,                           |                                          |                                        |
| .1.7 Subgroup 2: Po                | tentially a | ctive c             | ontrol    |                   |                               |                                          |                                        |
| rutiunov 2010                      | 2           | 21                  | 3         | 20                | 1.3%                          | -0.05 [-0.26, 0.15]                      | <del></del>                            |
| 3irnbaum 1990                      | 0           | 10                  | 0         | 10                | 1.7%                          | 0.00 [-0.17, 0.17]                       |                                        |
| 3ove 2005                          | 3           | 40                  | 4         | 40                | 3.4%                          | -0.03 [-0.15, 0.10]                      | <b>_</b>                               |
| Chen 2012                          | 12          | 40                  | 9         | 40                | 1.4%                          | 0.07 [-0.12, 0.27]                       |                                        |
| Cotter 1997                        | 1           | 14                  | Ō         | 6                 | 0.9%                          | 0.07 [-0.17, 0.32]                       |                                        |
| )e Backer 2010                     | 472         | 858                 | 427       | 821               | 23.0%                         | 0.03 [-0.02, 0.08]                       |                                        |
| € 2008<br>€ao 2008                 | 2           | 21                  | 9         | 23                | 0.6%                          | 0.04 [-0.25, 0.33]                       |                                        |
| Fiamouzis 2010                     | 3           | 30                  | 3         | 30                | 2.3%                          | 0.00 [-0.15, 0.15]                       |                                        |
| lausen 1992                        | Ŭ           | 14                  | Ő         | 27                | 4.9%                          | 0.00 [-0.10, 0.10]                       |                                        |
| Isueh 1998                         | Ő           | 10                  | Ŭ         | 10                | 1.7%                          | 0.00 [-0.17, 0.17]                       |                                        |
| lua 2013                           | 8           | 16                  | 7         | 16                | 0.4%                          | 0.06 [-0.28, 0.41]                       |                                        |
| (amiya 2015                        | 0           | 12                  | 2         | 12                | 0.9%                          | -0.17 [-0.41, 0.07]                      |                                        |
| assnigg 2000a                      | 0           | 21                  | 4         | 41                | 4.1%                          | -0.10 [-0.21, 0.01]                      |                                        |
| iu 2010                            | 12          | 25                  | 8         | 25                | 0.7%                          | 0.16 [-0.11, 0.43]                       |                                        |
| 1arik 1994                         | 6           | 10                  | 5         | 10                | 0.3%                          | 0.10 [-0.33, 0.53]                       |                                        |
| Aartin 1993                        | 10          | 16                  | 7         | 16                | 0.5%                          | 0.19 [-0.15, 0.53]                       |                                        |
| Aathur 2007                        | 19          | 25                  | 14        | 25                | 0.8%                          | 0.20 [-0.06, 0.46]                       |                                        |
| )ppizzi 1997                       | 3           | 13                  | 0         | 13                | 0.9%                          | 0.23 [-0.02, 0.48]                       |                                        |
| Rosseel 1997                       | 0           | 35                  | 0         | 35                |                               |                                          | <b>↓</b>                               |
|                                    | 2           |                     | 5         |                   | 17.9%                         |                                          |                                        |
| Schmoelz 2006a                     |             | 11                  |           | 20                | 0.6%                          | -0.07 [-0.36, 0.23]                      |                                        |
| Sharpe 1999a                       | 0           | 10                  | 0         | 10                | 0.8%                          | 0.00 [-0.25, 0.25]                       |                                        |
| Sinclair 1997                      | 0           | 16                  | 0         | 14                | 3.6%                          | 0.00 [-0.12, 0.12]                       |                                        |
| Sindone 1998a<br>Sindone 1998b     | 1           | 8                   | 2         | 26                | 0.8%                          | 0.05 [-0.20, 0.30]                       |                                        |
|                                    | 1           | 8                   | 1         | 9                 | 0.6%                          | 0.01 [-0.29, 0.32]                       |                                        |
| Soliman 2017                       | 3           | 75                  | 1         | 75                | 19.8%                         | 0.03 [-0.02, 0.08]                       |                                        |
| farr 1993a                         | 1           | 12                  | 3         | 25                | 1.3%                          | -0.04 [-0.24, 0.17]                      |                                        |
| arr 1993b                          | 1           | 13                  | 3         | 25                | 1.4%                          | -0.04 [-0.24, 0.15]                      |                                        |
| riposkiadis 2014a                  | 10          | 28                  | 19        | 50                | 1.1%                          | -0.02 [-0.25, 0.20]                      |                                        |
| Vu 2011                            | 9           | 23                  | 7         | 23                | 0.7%                          | 0.09 [-0.19, 0.36]                       |                                        |
| Ihuangyu 2011<br>Subtotal (95% CI) | 14          | 45<br>1475          | 13        | 45<br><b>1542</b> | 1.5%<br><b>100.0%</b>         | 0.02 [-0.17, 0.21]<br>0.01 [-0.01, 0.04] |                                        |
| otal events                        | 602         |                     | 556       |                   |                               |                                          | [                                      |
| leterogeneity: Tau² =              |             | ²= 19 0             |           | 9 (P = 1          | .92); <b>I</b> ² = I          | 0%                                       |                                        |
| est for overall effect:            |             |                     |           |                   | ,,.                           |                                          |                                        |
|                                    |             |                     |           |                   |                               |                                          |                                        |
|                                    |             |                     |           |                   |                               |                                          | -1 -0.5 0 0.5                          |

# E-Figures 2.5.8-2.5.10: subgroup analysis 3 – trials subdivided by dose

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Favours dopa                                                                                                                                                                |                                                                                                                                                                                                               | Contr                                                                                                                   |                                                                                                                                                                                                                                                                          | Moight                                                                                                                   | Risk Ratio                                                                                                                                                                                                                                                                                                                                                | Risk Ratio          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Study or Subgroup<br>4.1.8 Subgroup 3: Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Events                                                                                                                                                                      | rotar                                                                                                                                                                                                         | events                                                                                                                  | rotal                                                                                                                                                                                                                                                                    | weight                                                                                                                   | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                       | M-H, Random, 95% Cl |
| Arutiunov 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             | 24                                                                                                                                                                                                            | 2                                                                                                                       | 20                                                                                                                                                                                                                                                                       | 1.204                                                                                                                    | 0 6 3 70 4 3 3 4 4 1                                                                                                                                                                                                                                                                                                                                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                           | 21                                                                                                                                                                                                            | 3                                                                                                                       | 20                                                                                                                                                                                                                                                                       | 4.2%                                                                                                                     | 0.63 [0.12, 3.41]                                                                                                                                                                                                                                                                                                                                         | -                   |
| Birnbaum 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                           | 10                                                                                                                                                                                                            | 0                                                                                                                       | 10                                                                                                                                                                                                                                                                       | C 700                                                                                                                    | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| 3ove 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                           | 40                                                                                                                                                                                                            | 4                                                                                                                       | 40                                                                                                                                                                                                                                                                       | 5.7%                                                                                                                     | 0.75 [0.18, 3.14]                                                                                                                                                                                                                                                                                                                                         |                     |
| Carcoana 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                           | 25                                                                                                                                                                                                            | 0                                                                                                                       | 24                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Carcoana 2003a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                           | 25                                                                                                                                                                                                            | 0                                                                                                                       | 26                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Chen 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                          | 40                                                                                                                                                                                                            | 9                                                                                                                       | 40                                                                                                                                                                                                                                                                       | 21.2%                                                                                                                    | 1.33 [0.63, 2.81]                                                                                                                                                                                                                                                                                                                                         | <b>_</b>            |
| Chen 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                                                                                                                                                                          | 122                                                                                                                                                                                                           | 25                                                                                                                      | 119                                                                                                                                                                                                                                                                      | 47.0%                                                                                                                    | 0.94 [0.57, 1.54]                                                                                                                                                                                                                                                                                                                                         |                     |
| Kamiya 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                           | 12                                                                                                                                                                                                            | 2                                                                                                                       | 12                                                                                                                                                                                                                                                                       | 1.4%                                                                                                                     | 0.20 [0.01, 3.77]                                                                                                                                                                                                                                                                                                                                         |                     |
| Kanchi 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                           | 30                                                                                                                                                                                                            | 0                                                                                                                       | 30                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Lassnigg 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                           | 21                                                                                                                                                                                                            | 1                                                                                                                       | 40                                                                                                                                                                                                                                                                       | 1.2%                                                                                                                     | 0.62 [0.03, 14.62]                                                                                                                                                                                                                                                                                                                                        |                     |
| Lassnigg 2000a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                           | 21                                                                                                                                                                                                            | 4                                                                                                                       | 41                                                                                                                                                                                                                                                                       | 1.4%                                                                                                                     | 0.21 [0.01, 3.76]                                                                                                                                                                                                                                                                                                                                         |                     |
| Myles 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                           | 25                                                                                                                                                                                                            | Ó                                                                                                                       | 24                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Rosseel 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ů                                                                                                                                                                           | 35                                                                                                                                                                                                            | Ő                                                                                                                       | 35                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                           |                                                                                                                                                                                                               | 7                                                                                                                       |                                                                                                                                                                                                                                                                          | 6.204                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                           |                     |
| Schmoelz 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             | 10                                                                                                                                                                                                            |                                                                                                                         | 20                                                                                                                                                                                                                                                                       | 6.2%                                                                                                                     | 0.57 [0.14, 2.26]                                                                                                                                                                                                                                                                                                                                         |                     |
| Schmoelz 2006a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                           | 11                                                                                                                                                                                                            | 5                                                                                                                       | 20                                                                                                                                                                                                                                                                       | 5.5%                                                                                                                     | 0.73 [0.17, 3.15]                                                                                                                                                                                                                                                                                                                                         |                     |
| Schneider 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                           | 50                                                                                                                                                                                                            | 0                                                                                                                       | 49                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Shah 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                           | 31                                                                                                                                                                                                            | 4                                                                                                                       | 61                                                                                                                                                                                                                                                                       | 2.5%                                                                                                                     | 0.49 [0.06, 4.22]                                                                                                                                                                                                                                                                                                                                         |                     |
| Sinclair 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                           | 16                                                                                                                                                                                                            | 0                                                                                                                       | 14                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Soliman 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                           | 75                                                                                                                                                                                                            | 1                                                                                                                       | 75                                                                                                                                                                                                                                                                       | 2.3%                                                                                                                     | 3.00 [0.32, 28.19]                                                                                                                                                                                                                                                                                                                                        |                     |
| Sumeray 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                           | 19                                                                                                                                                                                                            | 0                                                                                                                       | 19                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Varriale 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                           | 10                                                                                                                                                                                                            | 0                                                                                                                       | 10                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Woo 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                           | 25                                                                                                                                                                                                            | 0                                                                                                                       | 25                                                                                                                                                                                                                                                                       | 1.3%                                                                                                                     | 5.00 [0.25, 99.16]                                                                                                                                                                                                                                                                                                                                        |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                           | 674                                                                                                                                                                                                           | ·                                                                                                                       |                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                   | 0.92 [0.66, 1.30]                                                                                                                                                                                                                                                                                                                                         | •                   |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51                                                                                                                                                                          |                                                                                                                                                                                                               | 65                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           | 1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             | 50 df_ 11                                                                                                                                                                                                     |                                                                                                                         | - 41 - 12 -                                                                                                                                                                                                                                                              | . 00                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |                     |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                               | (P = 0.)                                                                                                                | 34); 17 =                                                                                                                                                                                                                                                                | 0%0                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           |                     |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z = 0.45 (P = 0                                                                                                                                                             | .65)                                                                                                                                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           |                     |
| 4.4.0 Subaroup 2: Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dorato dono                                                                                                                                                                 |                                                                                                                                                                                                               |                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           |                     |
| 4.1.9 Subgroup 3: Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                                               | -                                                                                                                       | -                                                                                                                                                                                                                                                                        |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           |                     |
| Cotter 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                           | 14                                                                                                                                                                                                            | 0                                                                                                                       | 6                                                                                                                                                                                                                                                                        | 1.7%                                                                                                                     | 1.40 [0.06, 30.23]                                                                                                                                                                                                                                                                                                                                        |                     |
| Giamouzis 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                           | 30                                                                                                                                                                                                            | 3                                                                                                                       | 30                                                                                                                                                                                                                                                                       | 7.1%                                                                                                                     | 1.00 [0.22, 4.56]                                                                                                                                                                                                                                                                                                                                         |                     |
| Hausen 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                           | 14                                                                                                                                                                                                            | 0                                                                                                                       | 27                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Llough 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                           | 10                                                                                                                                                                                                            | 0                                                                                                                       | 10                                                                                                                                                                                                                                                                       |                                                                                                                          | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Hsueh 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                                                                                               |                                                                                                                         | 4.0                                                                                                                                                                                                                                                                      | 2.0%                                                                                                                     | 7.00 [0.40, 123.35]                                                                                                                                                                                                                                                                                                                                       |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                               | 0                                                                                                                       | 13                                                                                                                                                                                                                                                                       |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           |                     |
| Oppizzi 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                           | 13                                                                                                                                                                                                            | 0<br>0                                                                                                                  | 13<br>10                                                                                                                                                                                                                                                                 | 2.070                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                           |                     |
| Oppizzi 1997<br>Sharpe 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3<br>0                                                                                                                                                                      | 13<br>5                                                                                                                                                                                                       | 0                                                                                                                       | 10                                                                                                                                                                                                                                                                       | 2.070                                                                                                                    | Not estimable                                                                                                                                                                                                                                                                                                                                             |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3<br>0<br>0                                                                                                                                                                 | 13<br>5<br>5                                                                                                                                                                                                  | 0<br>0                                                                                                                  | 10<br>10                                                                                                                                                                                                                                                                 |                                                                                                                          | Not estimable<br>Not estimable                                                                                                                                                                                                                                                                                                                            |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>0<br>0<br>1                                                                                                                                                            | 13<br>5<br>5<br>12                                                                                                                                                                                            | 0<br>0<br>3                                                                                                             | 10<br>10<br>25                                                                                                                                                                                                                                                           | 3.5%                                                                                                                     | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)                                                                                                                                                                                                                                                                                                       |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3<br>0<br>1<br>1                                                                                                                                                            | 13<br>5<br>12<br>13                                                                                                                                                                                           | 0<br>0<br>3<br>3                                                                                                        | 10<br>10<br>25<br>25                                                                                                                                                                                                                                                     | 3.5%<br>3.5%                                                                                                             | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)                                                                                                                                                                                                                                                                                  |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>0<br>1<br>1<br>9                                                                                                                                                       | 13<br>5<br>12<br>13<br>28                                                                                                                                                                                     | 0<br>0<br>3<br>3<br>18                                                                                                  | 10<br>10<br>25<br>25<br>55                                                                                                                                                                                                                                               | 3.5%<br>3.5%<br>37.9%                                                                                                    | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)                                                                                                                                                                                                                                                                                                       |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>0<br>1<br>1                                                                                                                                                            | 13<br>5<br>12<br>13<br>28<br>28                                                                                                                                                                               | 0<br>0<br>3<br>3                                                                                                        | 10<br>10<br>25<br>25<br>55<br>50                                                                                                                                                                                                                                         | 3.5%<br>3.5%<br>37.9%<br>44.1%                                                                                           | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)                                                                                                                                                                                                                                        |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>0<br>1<br>1<br>9                                                                                                                                                       | 13<br>5<br>12<br>13<br>28                                                                                                                                                                                     | 0<br>0<br>3<br>3<br>18                                                                                                  | 10<br>10<br>25<br>25<br>55<br>50                                                                                                                                                                                                                                         | 3.5%<br>3.5%<br>37.9%                                                                                                    | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)                                                                                                                                                                                                                                                             |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>0<br>1<br>1<br>9                                                                                                                                                       | 13<br>5<br>12<br>13<br>28<br>28                                                                                                                                                                               | 0<br>0<br>3<br>3<br>18                                                                                                  | 10<br>10<br>25<br>25<br>55<br>50                                                                                                                                                                                                                                         | 3.5%<br>3.5%<br>37.9%<br>44.1%                                                                                           | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)                                                                                                                                                                                                                                        |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b>                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>0<br>1<br>1<br>9<br>10<br>28                                                                                                                                           | 13<br>5<br>12<br>13<br>28<br>28<br><b>172</b>                                                                                                                                                                 | 0<br>3<br>3<br>18<br>19<br>46                                                                                           | 10<br>25<br>25<br>55<br>50<br><b>261</b>                                                                                                                                                                                                                                 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br><b>100.0%</b>                                                                          | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)                                                                                                                                                                                                                                        |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 2.                                                                                                            | 13<br>5<br>12<br>13<br>28<br><b>28</b><br><b>172</b><br>17, df = 6                                                                                                                                            | 0<br>3<br>3<br>18<br>19<br>46                                                                                           | 10<br>25<br>25<br>55<br>50<br><b>261</b>                                                                                                                                                                                                                                 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br><b>100.0%</b>                                                                          | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)                                                                                                                                                                                                                                        |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                         | 3<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 2.                                                                                                            | 13<br>5<br>12<br>13<br>28<br><b>28</b><br><b>172</b><br>17, df = 6                                                                                                                                            | 0<br>3<br>3<br>18<br>19<br>46                                                                                           | 10<br>25<br>25<br>55<br>50<br><b>261</b>                                                                                                                                                                                                                                 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br><b>100.0%</b>                                                                          | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)                                                                                                                                                                                                                                        |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                         | 3<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2.<br>Z = 0.09 (P = 0                                                                                                     | 13<br>5<br>12<br>13<br>28<br><b>28</b><br><b>172</b><br>17, df = 6                                                                                                                                            | 0<br>3<br>3<br>18<br>19<br>46                                                                                           | 10<br>25<br>25<br>55<br>50<br><b>261</b>                                                                                                                                                                                                                                 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br><b>100.0%</b>                                                                          | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)                                                                                                                                                                                                                                        |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                                                                             | 3<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2.<br>Z = 0.09 (P = 0                                                                                                     | 13<br>5<br>12<br>13<br>28<br><b>28</b><br><b>172</b><br>17, df = 6                                                                                                                                            | 0<br>3<br>3<br>18<br>19<br>46                                                                                           | 10<br>25<br>25<br>55<br>50<br><b>261</b>                                                                                                                                                                                                                                 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br><b>100.0%</b>                                                                          | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)                                                                                                                                                                                                                                        |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012                                                                                                                                                                                                                                                                                                 | 3<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2:<br>Z = 0.09 (P = 0<br><b>igh dose</b><br>12                                                                            | 13<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)                                                                                                                                                 | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)                                                                              | 10<br>10<br>25<br>55<br>50<br><b>261</b><br>0); I <sup>2</sup> = (                                                                                                                                                                                                       | 3.5%<br>3.5%<br>37.9%<br>44.1%<br><b>100.0%</b>                                                                          | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)<br><b>0.98 (0.65, 1.47)</b>                                                                                                                                                                                                            |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010                                                                                                                                                                                                                                                                               | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2:<br>Z = 0.09 (P = 0<br>igh dose<br>12<br>472                                                                       | 13<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858                                                                                                                                    | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>(P = 0.9)<br>9<br>427                                                     | 10<br>10<br>25<br>55<br>50<br><b>261</b><br>0); I <sup>2</sup> = (<br>40<br>821                                                                                                                                                                                          | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>85.4%                                                          | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.33 [0.63, 2.81]<br>1.06 [0.97, 1.16]                                                                                                                                                                         |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008                                                                                                                                                                                                                                                                                         | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 2:<br>Z = 0.09 (P = 0<br><b>igh dose</b><br>12<br>472<br>9                                               | 13<br>5<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21                                                                                                                         | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>(P = 0.9)<br>427<br>9                                                     | 10<br>10<br>25<br>55<br><b>261</b><br>0);   <sup>2</sup> = 1<br>40<br>821<br>23                                                                                                                                                                                          | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>85.4%<br>1.4%                                                  | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.33 [0.63, 2.81]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]                                                                                                                                                    |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013                                                                                                                                                                                                                                                                             | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2:<br>Z = 0.09 (P = 0<br>igh dose<br>472<br>9<br>8                                                                   | 13<br>5<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16                                                                                                                   | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7                                                 | 10<br>10<br>25<br>55<br><b>50</b><br><b>261</b><br>0);   <sup>2</sup> = 1<br>40<br>821<br>23<br>16                                                                                                                                                                       | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>85.4%<br>1.4%<br>1.2%                                          | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.33 [0.63, 2.81]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]                                                                                                                               |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010                                                                                                                                                                                                                                                                 | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2:<br>Z = 0.09 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12                                                       | 13<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25                                                                                                                  | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8                                            | 10<br>10<br>25<br>55<br><b>261</b><br>0);   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25                                                                                                                                                                              | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>85.4%<br>1.4%<br>1.2%<br>1.4%                                  | Not estimable<br>Not estimable<br>0.69 (0.08, 6.00)<br>0.64 (0.07, 5.57)<br>0.98 (0.51, 1.90)<br>0.94 (0.51, 1.73)<br>0.98 (0.65, 1.47)<br>1.08 (0.65, 1.47)<br>1.06 (0.97, 1.16)<br>1.10 (0.54, 2.23)<br>1.14 (0.54, 2.40)<br>1.50 (0.74, 3.03)                                                                                                          |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994                                                                                                                                                                                                                                                   | 30011910280.00; Chi2 = 2.Z = 0.09 (P = 0igh dose1247298126                                                                                                                  | 13<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10                                                                                                            | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5                                       | 10<br>10<br>25<br>55<br>50<br><b>261</b><br>0);   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10                                                                                                                                                                  | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>85.4%<br>1.4%<br>1.2%<br>1.4%<br>1.1%                          | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]                                                                                                          |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993                                                                                                                                                                                                                                    | 30011910280.00; Chi2 = 2.Z = 0.09 (P = 0igh dose124729812610                                                                                                                | 13<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16                                                                                                      | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7                                  | 10<br>10<br>25<br>55<br>50<br><b>261</b><br>0);   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>16                                                                                                                                                            | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>85.4%<br>1.2%<br>1.4%<br>1.4%<br>1.4%<br>1.1%                  | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]                                                                                     |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994                                                                                                                                                                                                                                                   | 30011910280.00; Chi2 = 2.Z = 0.09 (P = 0igh dose1247298126                                                                                                                  | 13<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10                                                                                                            | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5                                       | 10<br>10<br>25<br>55<br>50<br><b>261</b><br>0);   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10                                                                                                                                                                  | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>85.4%<br>1.4%<br>1.2%<br>1.4%<br>1.1%                          | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]                                                                                                          |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993                                                                                                                                                                                                                                    | 30011910280.00; Chi2 = 2.Z = 0.09 (P = 0igh dose124729812610                                                                                                                | 13<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16                                                                                                      | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7                                  | 10<br>10<br>25<br>55<br>50<br><b>261</b><br>0);   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>16                                                                                                                                                            | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>85.4%<br>1.2%<br>1.4%<br>1.4%<br>1.4%<br>1.1%                  | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]                                                                                     |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007                                                                                                                                                                                               | 30011910280.00; Chi2 = 2:Z = 0.09 (P = 0124729812472981261019                                                                                                               | 13<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25                                                                                                | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7<br>14                            | 10<br>10<br>25<br>55<br><b>50</b><br><b>261</b><br>0);   <sup>2</sup> = (<br>0);   <sup>2</sup> = (<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25                                                                                                                     | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>1.4%<br>1.4%<br>1.4%<br>1.4%<br>1.4%<br>1.5%<br>4.0%           | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.33 [0.63, 2.81]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]<br>1.36 [0.90, 2.05]                                           |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Wu 2011                                                                                                                                                                                    | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2.<br>Z = 0.09 (P = 0<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>9                                        | 13<br>5<br>12<br>13<br>28<br><b>17</b><br><b>17</b> , df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>23                                                                                   | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>427<br>9<br>7<br>7<br>8<br>5<br>7<br>14<br>7      | 10<br>10<br>25<br>55<br>50<br><b>261</b><br>30);   <b>r</b> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>10<br>25<br>23<br>45                                                                                                                                             | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>3%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.1%<br>4.0%<br>1.1%                   | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]<br>1.36 [0.90, 2.05]<br>1.29 [0.58, 2.86]                                           |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Martin 1993<br>Mathur 2007<br>Wu 2011<br>Zhuangyu 2011<br><b>Subtotal (95% CI)</b>                                                                                                                                                                           | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 2:<br>Z = 0.09 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>14               | 13<br>5<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>23<br>45                                                             | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>427<br>8<br>5<br>7<br>8<br>5<br>7<br>4<br>7<br>13 | 10<br>10<br>25<br>55<br>50<br><b>261</b><br>30);   <b>r</b> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>10<br>25<br>23<br>45                                                                                                                                             | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>1.4%<br>1.4%<br>1.4%<br>1.1%<br>1.1%<br>4.0%<br>1.1%<br>1.7%   | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]<br>1.36 [0.90, 2.05]<br>1.29 [0.58, 2.86]<br>1.08 [0.57, 2.03]                      |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Wu 2011<br>Zhuangyu 2011<br><b>Subtotal (95% CI)</b><br>Total events                                                                                                                                             | 30011910280.00; Chi2 = 2:Z = 0.09 (P = 0igh dose12472981261019914571                                                                                                        | 13<br>5<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25 | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7<br>14<br>7<br>13<br>506          | 10<br>10<br>25<br>55<br>55<br>261<br>261<br>));   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>10<br>261<br>261<br>265<br>10<br>261<br>261<br>261<br>261<br>261<br>261<br>261<br>261 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>1.2%<br>1.4%<br>1.4%<br>1.1%<br>1.5%<br>4.0%<br>1.7%<br>100.0% | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]<br>1.36 [0.90, 2.05]<br>1.29 [0.58, 2.86]<br>1.08 [0.57, 2.03]                      |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Wu 2011<br>Zhuangyu 2011<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                        | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2:<br>Z = 0.09 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>14<br>571<br>0.00; Chi² = 3. | 13<br>5<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>46, df = 9                                   | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7<br>14<br>7<br>13<br>506          | 10<br>10<br>25<br>55<br>55<br>261<br>261<br>));   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>10<br>261<br>261<br>265<br>10<br>261<br>261<br>261<br>261<br>261<br>261<br>261<br>261 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>1.2%<br>1.4%<br>1.4%<br>1.1%<br>1.5%<br>4.0%<br>1.7%<br>100.0% | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]<br>1.36 [0.90, 2.05]<br>1.29 [0.58, 2.86]<br>1.08 [0.57, 2.03]                      |                     |
| Oppizzi 1997           Sharpe 1999           Sharpe 1999a           Farr 1993a           Farr 1993b           Triposkiadis 2014           Triposkiadis 2014a           Subtotal (95% CI)           Total events           Heterogeneity: Tau <sup>2</sup> =           Test for overall effect:           4.1.10 Subgroup 3: H           Chen 2012           De Backer 2010           Gao 2008           Hua 2013           Liu 2010           Martin 1993           Mathin 1993           Mathin 2007           X/u 2011           Subtotal (95% CI)           Total events | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2:<br>Z = 0.09 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>14<br>571<br>0.00; Chi² = 3. | 13<br>5<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>46, df = 9                                   | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7<br>14<br>7<br>13<br>506          | 10<br>10<br>25<br>55<br>55<br>261<br>261<br>));   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>10<br>261<br>261<br>265<br>10<br>261<br>261<br>261<br>261<br>261<br>261<br>261<br>261 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>1.2%<br>1.4%<br>1.4%<br>1.1%<br>1.5%<br>4.0%<br>1.7%<br>100.0% | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]<br>1.36 [0.90, 2.05]<br>1.29 [0.58, 2.86]<br>1.08 [0.57, 2.03]                      |                     |
| Oppizzi 1997           Sharpe 1999           Sharpe 1999a           Farr 1993a           Farr 1993b           Triposkiadis 2014           Triposkiadis 2014a           Subtotal (95% CI)           Total events           Heterogeneity: Tau <sup>2</sup> =           Test for overall effect:           4.1.10 Subgroup 3: H           Chen 2012           De Backer 2010           Gao 2008           Hua 2013           Liu 2010           Martin 1993           Mathin 1993           Mathin 2007           X/u 2011           Subtotal (95% CI)           Total events | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2:<br>Z = 0.09 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>14<br>571<br>0.00; Chi² = 3. | 13<br>5<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>46, df = 9                                   | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7<br>14<br>7<br>13<br>506          | 10<br>10<br>25<br>55<br>55<br>261<br>261<br>));   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>10<br>261<br>261<br>265<br>10<br>261<br>261<br>261<br>261<br>261<br>261<br>261<br>261 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>1.2%<br>1.4%<br>1.4%<br>1.1%<br>1.5%<br>4.0%<br>1.7%<br>100.0% | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]<br>1.36 [0.90, 2.05]<br>1.29 [0.58, 2.86]<br>1.08 [0.57, 2.03]<br>1.09 [1.00, 1.18] |                     |
| Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Wu 2011<br>Zhuangyu 2011<br><b>Subtotal (95% CI)</b><br>Total events                                                                                                                                             | 3<br>0<br>0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 2:<br>Z = 0.09 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>14<br>571<br>0.00; Chi² = 3. | 13<br>5<br>5<br>12<br>13<br>28<br><b>172</b><br>17, df = 6<br>.93)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>46, df = 9                                   | 0<br>0<br>3<br>18<br>19<br>46<br>(P = 0.9)<br>427<br>9<br>427<br>9<br>427<br>8<br>5<br>7<br>14<br>7<br>13<br>506        | 10<br>10<br>25<br>55<br>55<br>261<br>261<br>));   <sup>2</sup> = 1<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>10<br>261<br>261<br>265<br>10<br>261<br>261<br>261<br>261<br>261<br>261<br>261<br>261 | 3.5%<br>3.5%<br>37.9%<br>44.1%<br>100.0%<br>0%<br>1.2%<br>1.2%<br>1.4%<br>1.4%<br>1.1%<br>1.5%<br>4.0%<br>1.7%<br>100.0% | Not estimable<br>Not estimable<br>0.69 [0.08, 6.00]<br>0.64 [0.07, 5.57]<br>0.98 [0.51, 1.90]<br>0.94 [0.51, 1.73]<br>0.98 [0.65, 1.47]<br>1.06 [0.97, 1.16]<br>1.10 [0.54, 2.23]<br>1.14 [0.54, 2.40]<br>1.50 [0.74, 3.03]<br>1.20 [0.54, 2.67]<br>1.43 [0.73, 2.80]<br>1.36 [0.90, 2.05]<br>1.29 [0.58, 2.86]<br>1.08 [0.57, 2.03]<br>1.09 [1.00, 1.18] |                     |

## E-Figures 2.5.8-2.5.10: risk differences

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                     | Events                                                                                                                                                                                    | amine<br>Total                                                                                                                                     | Contre                                                                                                     |                                                                                                                                | Woight                                                                                                                          | Risk Difference                                                                                                                                                                                                                                                                               | Risk Difference     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 4.1.8 Subgroup 3: Lo                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           | TOTAL                                                                                                                                              | events                                                                                                     | rotal                                                                                                                          | weight                                                                                                                          | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                           | M-H, Random, 95% Cl |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           | 24                                                                                                                                                 | 2                                                                                                          | 20                                                                                                                             | 0.00                                                                                                                            | 0.05 ( 0.06 0.45)                                                                                                                                                                                                                                                                             |                     |
| Arutiunov 2010                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                         | 21                                                                                                                                                 | 3                                                                                                          | 20                                                                                                                             | 0.8%                                                                                                                            | -0.05 [-0.26, 0.15]                                                                                                                                                                                                                                                                           |                     |
| Birnbaum 1990                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                         | 10                                                                                                                                                 | 0                                                                                                          | 10                                                                                                                             | 1.1%                                                                                                                            | 0.00 [-0.17, 0.17]                                                                                                                                                                                                                                                                            |                     |
| Bove 2005                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                         | 40                                                                                                                                                 | 4                                                                                                          | 40                                                                                                                             | 2.1%                                                                                                                            | -0.03 [-0.15, 0.10]                                                                                                                                                                                                                                                                           |                     |
| Carcoana 2003                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                         | 25                                                                                                                                                 | 0                                                                                                          | 24                                                                                                                             | 5.6%                                                                                                                            | 0.00 [-0.08, 0.08]                                                                                                                                                                                                                                                                            |                     |
| Carcoana 2003a                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                         | 25                                                                                                                                                 | 0                                                                                                          | 26                                                                                                                             | 6.0%                                                                                                                            | 0.00 [-0.07, 0.07]                                                                                                                                                                                                                                                                            | Ť                   |
| Chen 2012                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                        | 40                                                                                                                                                 | 9                                                                                                          | 40                                                                                                                             | 0.9%                                                                                                                            | 0.07 [-0.12, 0.27]                                                                                                                                                                                                                                                                            |                     |
| Chen 2013                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                                                                                                                                                        | 122                                                                                                                                                | 25                                                                                                         | 119                                                                                                                            | 3.1%                                                                                                                            | -0.01 [-0.12, 0.09]                                                                                                                                                                                                                                                                           |                     |
| Kamiya 2015                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                         | 12                                                                                                                                                 | 2                                                                                                          | 12                                                                                                                             | 0.6%                                                                                                                            | -0.17 [-0.41, 0.07]                                                                                                                                                                                                                                                                           |                     |
| Kanchi 2017                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                         | 30                                                                                                                                                 | 0                                                                                                          | 30                                                                                                                             | 8.3%                                                                                                                            | 0.00 [-0.06, 0.06]                                                                                                                                                                                                                                                                            | +                   |
| Lassnigg 2000                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                         | 21                                                                                                                                                 | 1                                                                                                          | 40                                                                                                                             | 4.5%                                                                                                                            | -0.03 [-0.11, 0.06]                                                                                                                                                                                                                                                                           |                     |
| Lassnigg 2000a                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                         | 21                                                                                                                                                 | 4                                                                                                          | 41                                                                                                                             | 2.6%                                                                                                                            | -0.10 [-0.21, 0.01]                                                                                                                                                                                                                                                                           |                     |
| Myles 1993                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                         | 25                                                                                                                                                 | 0                                                                                                          | 24                                                                                                                             | 5.6%                                                                                                                            | 0.00 [-0.08, 0.08]                                                                                                                                                                                                                                                                            | +                   |
| Rosseel 1997                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                         | 35                                                                                                                                                 | 0                                                                                                          | 35                                                                                                                             | 11.1%                                                                                                                           | 0.00 [-0.05, 0.05]                                                                                                                                                                                                                                                                            | +                   |
| Schmoelz 2006                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                         | 10                                                                                                                                                 | 7                                                                                                          | 20                                                                                                                             | 0.3%                                                                                                                            | -0.15 [-0.47, 0.17]                                                                                                                                                                                                                                                                           |                     |
| Schmoelz 2006a                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                         | 11                                                                                                                                                 | 5                                                                                                          | 20                                                                                                                             | 0.4%                                                                                                                            | -0.07 [-0.36, 0.23]                                                                                                                                                                                                                                                                           |                     |
| Schneider 1999                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                         | 50                                                                                                                                                 | 0                                                                                                          | 49                                                                                                                             | 21.8%                                                                                                                           | 0.00 [-0.04, 0.04]                                                                                                                                                                                                                                                                            | +                   |
| Shah 2014                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                         | 31                                                                                                                                                 | 4                                                                                                          | 61                                                                                                                             | 4.2%                                                                                                                            | -0.03 [-0.12, 0.05]                                                                                                                                                                                                                                                                           |                     |
| Sinclair 1997                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                         | 16                                                                                                                                                 | 0                                                                                                          | 14                                                                                                                             | 2.2%                                                                                                                            | 0.00 [-0.12, 0.12]                                                                                                                                                                                                                                                                            | _ <del></del>       |
| Soliman 2017                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                         | 75                                                                                                                                                 | 1                                                                                                          | 75                                                                                                                             | 12.3%                                                                                                                           | 0.03 [-0.02, 0.08]                                                                                                                                                                                                                                                                            | <b>+-</b> -         |
| Sumeray 2001                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                         | 19                                                                                                                                                 | Ó                                                                                                          | 19                                                                                                                             | 3.5%                                                                                                                            | 0.00 [-0.10, 0.10]                                                                                                                                                                                                                                                                            | _ <b>+</b> _        |
| Varriale 1997                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                         | 10                                                                                                                                                 | 0                                                                                                          | 10                                                                                                                             | 1.1%                                                                                                                            | 0.00 [-0.17, 0.17]                                                                                                                                                                                                                                                                            |                     |
| Woo 2002                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                         | 25                                                                                                                                                 | ŏ                                                                                                          | 25                                                                                                                             | 2.1%                                                                                                                            | 0.08 [-0.05, 0.21]                                                                                                                                                                                                                                                                            | +                   |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                         | 674                                                                                                                                                | ·                                                                                                          |                                                                                                                                | 100.0%                                                                                                                          | -0.00 [-0.02, 0.02]                                                                                                                                                                                                                                                                           | 4                   |
| Total events<br>Heterogeneity: Tau² =<br>Test for overall effect:                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           | •                                                                                                                                                  | 65<br>21 (P = 0                                                                                            | .97); I²                                                                                                                       | = 0%                                                                                                                            |                                                                                                                                                                                                                                                                                               |                     |
| 4.1.9 Subgroup 3: Mo                                                                                                                                                                                                                                                                                                                                                                                                  | derate dose                                                                                                                                                                               |                                                                                                                                                    |                                                                                                            |                                                                                                                                |                                                                                                                                 |                                                                                                                                                                                                                                                                                               |                     |
| Cotter 1997                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                         | 14                                                                                                                                                 | 0                                                                                                          | 6                                                                                                                              | 5.1%                                                                                                                            | 0.07 [-0.17, 0.32]                                                                                                                                                                                                                                                                            | <del></del>         |
| Giamouzis 2010                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                         | 30                                                                                                                                                 | 3                                                                                                          | 30                                                                                                                             | 13.2%                                                                                                                           | 0.00 [-0.15, 0.15]                                                                                                                                                                                                                                                                            | <b>_</b>            |
| Hausen 1992                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                         | 14                                                                                                                                                 | 0                                                                                                          | 27                                                                                                                             | 28.6%                                                                                                                           | 0.00 [-0.10, 0.10]                                                                                                                                                                                                                                                                            | _ <b>+</b> _        |
| Hsueh 1998                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                         | 10                                                                                                                                                 | 0                                                                                                          | 10                                                                                                                             | 10.0%                                                                                                                           | 0.00 [-0.17, 0.17]                                                                                                                                                                                                                                                                            | <b>_</b>            |
| Oppizzi 1997                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                         | 13                                                                                                                                                 | 0                                                                                                          | 13                                                                                                                             | 5.0%                                                                                                                            | 0.23 [-0.02, 0.48]                                                                                                                                                                                                                                                                            |                     |
| Sharpe 1999                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                         | 5                                                                                                                                                  | 0                                                                                                          | 10                                                                                                                             | 4.8%                                                                                                                            | 0.00 [-0.25, 0.25]                                                                                                                                                                                                                                                                            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           | 5                                                                                                                                                  | 0                                                                                                          | 10                                                                                                                             | 4.8%                                                                                                                            | 0.00 [-0.25, 0.25]                                                                                                                                                                                                                                                                            |                     |
| Sharpe 1999a                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                    |                                                                                                            |                                                                                                                                | 7.5%                                                                                                                            |                                                                                                                                                                                                                                                                                               |                     |
| Sharpe 1999a<br>Tarr 1993a                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                         |                                                                                                                                                    | 3                                                                                                          |                                                                                                                                |                                                                                                                                 | -111141-1174 11171                                                                                                                                                                                                                                                                            |                     |
| Tarr 1993a                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>1                                                                                                                                                                                    | 12                                                                                                                                                 | 3                                                                                                          | 25<br>25                                                                                                                       |                                                                                                                                 | -0.04 [-0.24, 0.17]<br>-0.04 [-0.24, 0.15]                                                                                                                                                                                                                                                    |                     |
| Tarr 1993a<br>Tarr 1993b                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>1<br>1                                                                                                                                                                               | 12<br>13                                                                                                                                           | 3                                                                                                          | 25                                                                                                                             | 8.2%                                                                                                                            | -0.04 [-0.24, 0.15]                                                                                                                                                                                                                                                                           |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014                                                                                                                                                                                                                                                                                                                                                                         | 0<br>1<br>1<br>9                                                                                                                                                                          | 12<br>13<br>28                                                                                                                                     | 3<br>18                                                                                                    | 25<br>55                                                                                                                       | 8.2%<br>6.7%                                                                                                                    | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]                                                                                                                                                                                                                                                    |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a                                                                                                                                                                                                                                                                                                                                                   | 0<br>1<br>1                                                                                                                                                                               | 12<br>13<br>28<br>28                                                                                                                               | 3                                                                                                          | 25<br>55<br>50                                                                                                                 | 8.2%<br>6.7%<br>6.1%                                                                                                            | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]                                                                                                                                                                                                                             |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b>                                                                                                                                                                                                                                                                                                                       | 0<br>1<br>9<br>10                                                                                                                                                                         | 12<br>13<br>28                                                                                                                                     | 3<br>18<br>19                                                                                              | 25<br>55<br>50                                                                                                                 | 8.2%<br>6.7%                                                                                                                    | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]                                                                                                                                                                                                                                                    |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                      | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 3.<br>Z = 0.25 (P = 0                                                                                                                        | 12<br>13<br>28<br>28<br><b>172</b><br>99, df = 10                                                                                                  | 3<br>18<br>19<br>46                                                                                        | 25<br>55<br>50<br><b>261</b>                                                                                                   | 8.2%<br>6.7%<br>6.1%<br><b>100.0%</b>                                                                                           | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]                                                                                                                                                                                                                             |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b>                                                                                                                                                                                                       | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 3.<br>Z = 0.25 (P = 0<br><b>igh dose</b>                                                                                                     | 12<br>13<br>28<br>28<br><b>172</b><br>99, df = 10<br>.80)                                                                                          | 3<br>18<br>19<br>46<br>) (P = 0.9                                                                          | 25<br>55<br>50<br><b>261</b><br>95); I <sup>2</sup> =                                                                          | 8.2%<br>6.7%<br>6.1%<br><b>100.0%</b>                                                                                           | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.01 [-0.05, 0.06]                                                                                                                                                                                                       | •                   |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012                                                                                                                                                                                          | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 3.<br>Z = 0.25 (P = 0<br><b>igh dose</b><br>12                                                                                               | 12<br>13<br>28<br><b>28</b><br><b>172</b><br>99, df = 10<br>.80)<br>40                                                                             | 3<br>18<br>19<br>46<br>) (P = 0.9<br>9                                                                     | 25<br>55<br>50<br><b>261</b><br>35); I <sup>2</sup> =<br>40                                                                    | 8.2%<br>6.7%<br>6.1%<br><b>100.0%</b><br>:0%<br>4.7%                                                                            | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br><b>0.01 [-0.05, 0.06]</b><br>0.07 [-0.12, 0.27]                                                                                                                                                                          |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtoal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010                                                                                                                                                                                               | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br><b>igh dose</b><br>12<br>472                                                                            | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>.80)<br>40<br>858                                                                                   | 3<br>18<br>19<br>46<br>) (P = 0.9<br>9<br>427                                                              | 25<br>55<br><b>50</b><br><b>261</b><br>35); I <sup>2</sup> =<br>40<br>821                                                      | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>:0%<br>4.7%<br>77.0%                                                                          | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br><b>0.01 [-0.05, 0.06]</b><br>0.07 [-0.12, 0.27]<br>0.03 [-0.02, 0.08]                                                                                                                                                    |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008                                                                                                                                                                                  | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br>igh dose<br>12<br>472<br>9                                                                              | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>.80)<br>40<br>858<br>21                                                                             | 3<br>18<br>19<br>46<br>) (P = 0.9<br>427<br>9                                                              | 25<br>55<br><b>261</b><br>95); I <sup>2</sup> =<br>40<br>821<br>23                                                             | 8.2%<br>6.7%<br>6.1%<br><b>100.0%</b><br>:0%<br>4.7%<br>77.0%<br>2.1%                                                           | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br><b>0.01 [-0.05, 0.06]</b><br>0.07 [-0.12, 0.27]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]                                                                                                                              |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013                                                                                                                                                                      | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br><b>igh dose</b><br>12<br>472<br>9<br>8                                                                  | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>.80)<br>40<br>858<br>21<br>16                                                                       | 3<br>18<br>19<br>46<br>) (P = 0.9<br>427<br>9<br>7                                                         | 25<br>55<br>50<br><b>261</b><br>95); I <sup>2</sup> =<br>40<br>821<br>23<br>16                                                 | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>* 0%<br>4.7%<br>77.0%<br>2.1%<br>1.5%                                                         | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br><b>0.01 [-0.05, 0.06]</b><br>0.07 [-0.12, 0.27]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]                                                                                                        |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008                                                                                                                                                                                  | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12                                                                   | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>.80)<br>40<br>858<br>21                                                                             | 3<br>18<br>19<br>46<br>0 (P = 0.9<br>9<br>427<br>9<br>7<br>8                                               | 25<br>55<br><b>261</b><br>95); I <sup>2</sup> =<br>40<br>821<br>23                                                             | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>0%<br>4.7%<br>77.0%<br>2.1%<br>1.5%<br>2.4%                                                   | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br><b>0.01 [-0.05, 0.06]</b><br>0.07 [-0.12, 0.27]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]                                                                                                                              |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010                                                                                                                                    | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br><b>igh dose</b><br>12<br>472<br>9<br>8                                                                  | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>.80)<br>40<br>858<br>21<br>16                                                                       | 3<br>18<br>19<br>46<br>) (P = 0.9<br>427<br>9<br>7                                                         | 25<br>55<br>50<br><b>261</b><br>95); I <sup>2</sup> =<br>40<br>821<br>23<br>16                                                 | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>* 0%<br>4.7%<br>77.0%<br>2.1%<br>1.5%                                                         | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br><b>0.01 [-0.05, 0.06]</b><br>0.07 [-0.12, 0.27]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]                                                                                                        |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013                                                                                                                                                                      | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12                                                                   | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>.80)<br>40<br>858<br>21<br>16<br>25                                                                 | 3<br>18<br>19<br>46<br>0 (P = 0.9<br>9<br>427<br>9<br>7<br>8                                               | 25<br>55<br>50<br><b>261</b><br>95); I <sup>2</sup> =<br>40<br>821<br>23<br>16<br>25                                           | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>0%<br>4.7%<br>77.0%<br>2.1%<br>1.5%<br>2.4%                                                   | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br><b>0.01 [-0.05, 0.06]</b><br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]<br>0.16 [-0.11, 0.43]                                                                                                        |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994                                                                                                                                            | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br>12<br>472<br>9<br>8<br>12<br>6                                                                          | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>.80)<br>40<br>858<br>21<br>16<br>25<br>10                                                           | 3<br>18<br>19<br>46<br>) (P = 0.9<br>427<br>9<br>427<br>7<br>8<br>5                                        | 25<br>55<br><b>261</b><br>95); I <sup>2</sup> =<br>40<br>821<br>23<br>16<br>25<br>10                                           | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>0%<br>4.7%<br>77.0%<br>2.1%<br>1.5%<br>2.4%<br>0.9%                                           | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.01 [-0.05, 0.06]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]                                                                                         |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993                                                                                                                             | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 3.<br>Z = 0.25 (P = 0<br>12<br>472<br>9<br>8<br>12<br>6<br>10                                                                                | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>.80)<br>40<br>858<br>21<br>16<br>25<br>10<br>16                                                     | 3<br>18<br>19<br>46<br>0 (P = 0.9<br>427<br>9<br>427<br>7<br>8<br>5<br>7                                   | 25<br>55<br>2 <b>61</b><br>95); I <sup>2</sup> =<br>40<br>821<br>23<br>16<br>25<br>10<br>16                                    | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>0%<br>4.7%<br>77.0%<br>2.1%<br>1.5%<br>2.4%<br>0.9%<br>1.5%                                   | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.01 [-0.05, 0.06]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]                                                                   |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Wu 2011                                                                                                   | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 3.<br>Z = 0.25 (P = 0<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19                                                                          | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>80)<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25                                                | 3<br>18<br>19<br>46<br>0 (P = 0.9<br>427<br>9<br>427<br>9<br>7<br>7<br>8<br>5<br>7<br>14                   | 25<br>55<br>50<br><b>261</b><br>35); I <sup>2</sup> =<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25                         | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>* 0%<br>* 0%<br>* 4.7%<br>77.0%<br>2.1%<br>1.5%<br>2.4%<br>0.9%<br>1.5%<br>2.7%               | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.01 [-0.05, 0.06]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]                                             |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007                                                                                                              | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi² = 3.<br>Z = 0.25 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>9                                                    | 12<br>13<br>28<br><b>172</b><br>99, df = 10<br>80<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>23                                           | 3<br>18<br>19<br>46<br>) (P = 0.9<br>9<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7<br>14<br>5<br>7         | 25<br>55<br>50<br><b>261</b><br>35); I <sup>2</sup> =<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25<br>23<br>45             | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>* 0%<br>* 0%<br>* 2.1%<br>1.5%<br>2.4%<br>0.1.5%<br>2.7%<br>2.3%                              | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.01 [-0.05, 0.06]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>0.09 [-0.19, 0.36]                       |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtoal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Wu 2011<br>Zhuangyu 2011                                                                                   | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>14<br>571<br>0.00; Chi <sup>2</sup> = 3. | 12<br>13<br>28<br>28<br><b>172</b><br>99, df = 10<br>809<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>23<br>45<br><b>1079</b><br>48, df = 9 | 3<br>18<br>19<br>46<br>0 (P = 0.9<br>9<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7<br>14<br>7<br>13<br>506 | 25<br>55<br>50<br>261<br>35);   <sup>2</sup> =<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25<br>23<br>45<br>23<br>45<br>104 | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>* 0%<br>4.7%<br>77.0%<br>2.1%<br>1.5%<br>2.4%<br>0.9%<br>1.5%<br>2.7%<br>2.3%<br>4.9%<br>4.9% | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.01 [-0.05, 0.06]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>0.09 [-0.19, 0.36]<br>0.02 [-0.17, 0.21] |                     |
| Tarr 1993a<br>Tarr 1993b<br>Triposkiadis 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><b>4.1.10 Subgroup 3: H</b><br>Chen 2012<br>De Backer 2010<br>Gao 2008<br>Hua 2013<br>Liu 2010<br>Marik 1994<br>Mathur 1993<br>Mathur 2007<br>Wu 2011<br>Zhuangyu 2011<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = | 0<br>1<br>1<br>9<br>10<br>28<br>0.00; Chi <sup>2</sup> = 3.<br>Z = 0.25 (P = 0<br>igh dose<br>12<br>472<br>9<br>8<br>12<br>6<br>10<br>19<br>9<br>14<br>571<br>0.00; Chi <sup>2</sup> = 3. | 12<br>13<br>28<br>28<br><b>172</b><br>99, df = 10<br>809<br>40<br>858<br>21<br>16<br>25<br>10<br>16<br>25<br>23<br>45<br><b>1079</b><br>48, df = 9 | 3<br>18<br>19<br>46<br>0 (P = 0.9<br>9<br>427<br>9<br>427<br>9<br>7<br>8<br>5<br>7<br>14<br>7<br>13<br>506 | 25<br>55<br>50<br>261<br>35);   <sup>2</sup> =<br>40<br>821<br>23<br>16<br>25<br>10<br>16<br>25<br>23<br>45<br>23<br>45<br>104 | 8.2%<br>6.7%<br>6.1%<br>100.0%<br>* 0%<br>4.7%<br>77.0%<br>2.1%<br>1.5%<br>2.4%<br>0.9%<br>1.5%<br>2.7%<br>2.3%<br>4.9%<br>4.9% | -0.04 [-0.24, 0.15]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.01 [-0.05, 0.06]<br>0.03 [-0.02, 0.08]<br>0.04 [-0.25, 0.33]<br>0.06 [-0.28, 0.41]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>0.09 [-0.19, 0.36]<br>0.02 [-0.17, 0.21] |                     |

56

## *E-Figures 2.5.11-2.5.12: subgroup analysis 4 – trials subdivided by clinical setting*

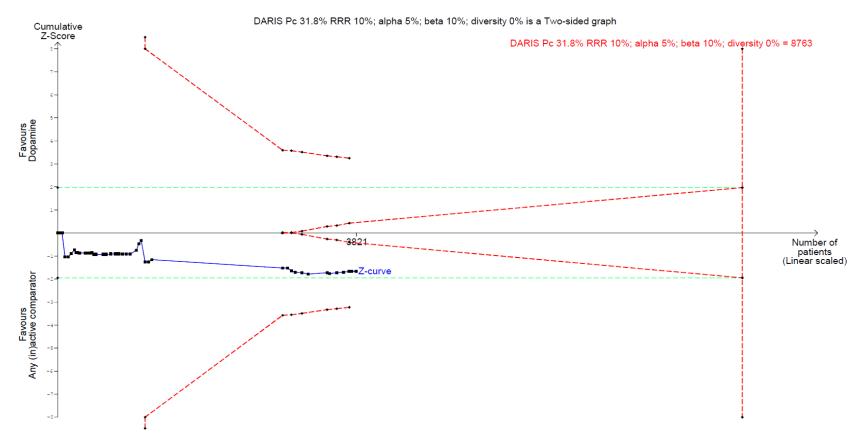
| Ctudu or Cubarrow                                | Favours dopar       |            | Contr      |            | Mainht                | Risk Ratio                             | Risk Ratio                              |
|--------------------------------------------------|---------------------|------------|------------|------------|-----------------------|----------------------------------------|-----------------------------------------|
| Study or Subgroup                                | Events              | lotal      | Events     | lotal      | weight                | M-H, Random, 95% Cl                    | M-H, Random, 95% Cl                     |
| 4.1.11 Subgroup 4: (                             |                     |            | _          |            |                       |                                        |                                         |
| Birnbaum 1990                                    | 0                   | 10         | 0          | 10         |                       | Not estimable                          |                                         |
| Bove 2005                                        | 3                   | 40         | 4          | 40         | 31.1%                 | 0.75 [0.18, 3.14]                      |                                         |
| Carcoana 2003                                    | 0                   | 25         | 0          | 24         |                       | Not estimable                          |                                         |
| Carcoana 2003a                                   | 0                   | 25         | 0          | 26         |                       | Not estimable                          |                                         |
| Hausen 1992                                      | 0                   | 14         | 0          | 27         |                       | Not estimable                          |                                         |
| Kanchi 2017                                      | 0                   | 30         | 0          | 30         |                       | Not estimable                          |                                         |
| Lassnigg 2000                                    | 0                   | 21         | 1          | 40         | 6.4%                  | 0.62 [0.03, 14.62]                     |                                         |
| Lassnigg 2000a                                   | 0                   | 21         | 4          | 41         | 7.7%                  | 0.21 [0.01, 3.76]                      |                                         |
| Myles 1993                                       | 0                   | 25         | 0          | 24         |                       | Not estimable                          |                                         |
| Oppizzi 1997                                     | 3                   | 13         | 0          | 13         | 7.7%                  | 7.00 [0.40, 123.35]                    |                                         |
| Rosseel 1997                                     | 0                   | 35         | 0          | 35         |                       | Not estimable                          |                                         |
| Schneider 1999                                   | 0                   | 50         | 0          | 49         |                       | Not estimable                          |                                         |
| Sharpe 1999                                      | 0                   | 5          | 0          | 10         |                       | Not estimable                          |                                         |
| Sharpe 1999a                                     | 0                   | 5          | 0          | 10         |                       | Not estimable                          |                                         |
| Sinclair 1997                                    | 0                   | 16         | 0          | 14         |                       | Not estimable                          |                                         |
| Soliman 2017                                     | 3                   | 75         | 1          | 75         | 12.7%                 | 3.00 [0.32, 28.19]                     |                                         |
| Sumeray 2001                                     | Ő                   | 19         | O          | 19         |                       | Not estimable                          |                                         |
| Tarr 1993a                                       | 1                   | 12         | 3          | 25         | 13.7%                 | 0.69 [0.08, 6.00]                      | <b>_</b>                                |
| Tarr 1993b                                       | 1                   | 13         | 3          | 25         | 13.6%                 | 0.64 [0.07, 5.57]                      | <b>_</b>                                |
| Woo 2002                                         | 2                   | 25         | 0          | 25         | 7.1%                  | 5.00 [0.25, 99.16]                     |                                         |
| Subtotal (95% CI)                                | -                   | 479        |            |            | 100.0%                | 1.06 [0.48, 2.35]                      |                                         |
| Total events                                     | 13                  |            | 16         |            |                       |                                        |                                         |
| 4.1.12 Subgroup 4: N                             | -                   | -          | -          |            |                       |                                        |                                         |
| Arutiunov 2010                                   | 2                   | 21         | 3          | 20         | 0.2%                  | 0.63 [0.12, 3.41]                      |                                         |
| Chen 2012                                        | 12                  | 40         | 9          | 40         | 1.2%                  | 1.33 [0.63, 2.81]                      |                                         |
| Chen 2013                                        | 24                  | 122        | 25         | 119        | 2.6%                  | 0.94 [0.57, 1.54]                      |                                         |
| Cotter 1997                                      | 1                   | 14         | 0          | 6          | 0.1%                  | 1.40 [0.06, 30.23]                     |                                         |
| De Backer 2010                                   | 349                 | 529        | 319        | 507        | 78.6%                 | 1.05 [0.96, 1.15]                      |                                         |
| Gao 2008                                         | 9                   | 21         | 9          | 23         | 1.3%                  | 1.10 [0.54, 2.23]                      |                                         |
| Giamouzis 2010                                   | 3                   | 30         | 3          | 30         | 0.3%                  | 1.00 [0.22, 4.56]                      |                                         |
| Hsueh 1998                                       | 0                   | 10         | 0          | 10         |                       | Not estimable                          |                                         |
| Hua 2013                                         | 8                   | 16         | 7          | 16         | 1.2%                  | 1.14 [0.54, 2.40]                      |                                         |
| Kamiya 2015                                      | 0                   | 12         | 2          | 12         | 0.1%                  | 0.20 [0.01, 3.77]                      |                                         |
| Liu 2010                                         | 12                  | 25         | 8          | 25         | 1.3%                  | 1.50 [0.74, 3.03]                      |                                         |
| Marik 1994                                       | 6                   | 10         | 5          | 10         | 1.0%                  | 1.20 [0.54, 2.67]                      | _ <del></del>                           |
| Martin 1993                                      | 10                  | 16         | 7          | 16         | 1.4%                  | 1.43 [0.73, 2.80]                      | +                                       |
| Mathur 2007                                      | 19                  | 25         | 14         | 25         | 3.8%                  | 1.36 [0.90, 2.05]                      | +                                       |
| Schmoelz 2006                                    | 2                   | 10         | 7          | 20         | 0.3%                  | 0.57 [0.14, 2.26]                      |                                         |
| Schmoelz 2006a                                   | 2                   | 11         | 5          | 20         | 0.3%                  | 0.73 [0.17, 3.15]                      |                                         |
| Shah 2014                                        | 1                   | 31         | 4          | 61         | 0.1%                  | 0.49 [0.06, 4.22]                      |                                         |
| Sindone 1998                                     | 0                   | 8          | 3          | 8          | 0.1%                  | 0.14 [0.01, 2.39]                      | • · · · · · · · · · · · · · · · · · · · |
| Sindone 1998a                                    | 1                   | 8          | 2          | 26         | 0.1%                  | 1.63 [0.17, 15.66]                     |                                         |
| Sindone 1998b                                    | 1                   | 8          | 1          | 9          | 0.1%                  | 1.13 [0.08, 15.19]                     |                                         |
| Triposkiadis 2014                                | 9                   | 28         | 18         | 55         | 1.5%                  | 0.98 [0.51, 1.90]                      | <del></del>                             |
| Triposkiadis 2014a                               | 10                  | 28         | 19         | 50         | 1.7%                  | 0.94 [0.51, 1.73]                      | -+-                                     |
| Varriale 1997                                    | 0                   | 10         | 0          | 10         |                       | Not estimable                          |                                         |
| Wu 2011                                          | 9                   | 23         | 7          | 23         | 1.0%                  | 1.29 [0.58, 2.86]                      | -+                                      |
| Zhuangyu 2011<br><b>Subtotal (95% CI)</b>        | 14                  | 45<br>1101 | 13         | 45<br>1186 | 1.6%<br><b>100.0%</b> | 1.08 [0.57, 2.03]<br>1.06 [0.98, 1.15] |                                         |
|                                                  | 504                 |            | 490        | 1100       | 100.070               | 1.00 [0.30, 1.13]                      | ľ                                       |
| Total events<br>Hotorogonoity: Tou?-             |                     | 1 df = 2   |            | 00\·IZ     | . 00%                 |                                        |                                         |
| Heterogeneity: Tau² =<br>Test for everall effect |                     |            | 2 (F = 0.) | aa), r=    | 070                   |                                        |                                         |
| Test for overall effect                          | . Z = 1.49 (P = 0.1 | 4)         |            |            |                       |                                        |                                         |
|                                                  |                     |            |            |            |                       |                                        |                                         |
|                                                  |                     |            |            |            |                       |                                        | 0.01 0.1 1 10 1                         |
|                                                  |                     |            |            |            |                       |                                        | Favours dopamine Favours control        |

0.01 0.1 1 10 Favours dopamine Favours control

Test for subgroup differences:  $Chi^2 = 0.00$ , df = 1 (P = 0.99),  $l^2 = 0\%$ 

# E-Figures 2.5.11-2.5.12: risk differences

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                | Favours dopa                                                                                                                                                     |                                                                                                                              | Contr                                                                                                          |                                                                                                                                  |                                                                                                                                      | Risk Difference                                                                                                                                                                                                                                                                                                                                                                                                | Risk Difference     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Events                                                                                                                                                           | Total                                                                                                                        | Events                                                                                                         | Total                                                                                                                            | Weight                                                                                                                               | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                            | M-H, Random, 95% Cl |
| 4.1.11 Subgroup 4: C                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                              | _                                                                                                              |                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Birnbaum 1990                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 10                                                                                                                           | 0                                                                                                              | 10                                                                                                                               | 1.1%                                                                                                                                 | 0.00 [-0.17, 0.17]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Bove 2005                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                | 40                                                                                                                           | 4                                                                                                              | 40                                                                                                                               | 2.2%                                                                                                                                 | -0.03 [-0.15, 0.10]                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Carcoana 2003                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 25                                                                                                                           | 0                                                                                                              | 24                                                                                                                               | 5.9%                                                                                                                                 | 0.00 [-0.08, 0.08]                                                                                                                                                                                                                                                                                                                                                                                             | +                   |
| Carcoana 2003a                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                | 25                                                                                                                           | 0                                                                                                              | 26                                                                                                                               | 6.4%                                                                                                                                 | 0.00 [-0.07, 0.07]                                                                                                                                                                                                                                                                                                                                                                                             | +                   |
| Hausen 1992                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                | 14                                                                                                                           | 0                                                                                                              | 27                                                                                                                               | 3.2%                                                                                                                                 | 0.00 [-0.10, 0.10]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Kanchi 2017                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                | 30                                                                                                                           | 0                                                                                                              | 30                                                                                                                               | 8.7%                                                                                                                                 | 0.00 [-0.06, 0.06]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Lassnigg 2000                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 21                                                                                                                           | 1                                                                                                              | 40                                                                                                                               | 4.8%                                                                                                                                 | -0.03 [-0.11, 0.06]                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Lassnigg 2000a                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                | 21                                                                                                                           | 4                                                                                                              | 41                                                                                                                               | 2.7%                                                                                                                                 | -0.10 [-0.21, 0.01]                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Myles 1993                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                | 25                                                                                                                           | 0                                                                                                              | 24                                                                                                                               | 5.9%                                                                                                                                 | 0.00 [-0.08, 0.08]                                                                                                                                                                                                                                                                                                                                                                                             | +                   |
| Oppizzi 1997                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                | 13                                                                                                                           | 0                                                                                                              | 13                                                                                                                               | 0.6%                                                                                                                                 | 0.23 [-0.02, 0.48]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Rosseel 1997                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                | 35                                                                                                                           | 0                                                                                                              | 35                                                                                                                               | 11.7%                                                                                                                                | 0.00 [-0.05, 0.05]                                                                                                                                                                                                                                                                                                                                                                                             | <b>T</b>            |
| Schneider 1999                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                | 50                                                                                                                           | 0                                                                                                              | 49                                                                                                                               | 22.9%                                                                                                                                | 0.00 [-0.04, 0.04]                                                                                                                                                                                                                                                                                                                                                                                             | <b>T</b>            |
| Sharpe 1999                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                | 5                                                                                                                            | 0                                                                                                              | 10                                                                                                                               | 0.5%                                                                                                                                 | 0.00 [-0.25, 0.25]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Sharpe 1999a                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                | 5                                                                                                                            | 0                                                                                                              | 10                                                                                                                               | 0.5%                                                                                                                                 | 0.00 [-0.25, 0.25]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Sinclair 1997                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 16                                                                                                                           | 0                                                                                                              | 14                                                                                                                               | 2.3%                                                                                                                                 | 0.00 [-0.12, 0.12]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Soliman 2017                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                | 75                                                                                                                           | 1                                                                                                              | 75                                                                                                                               | 12.9%                                                                                                                                | 0.03 [-0.02, 0.08]                                                                                                                                                                                                                                                                                                                                                                                             | <b>†</b> −          |
| Sumeray 2001                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                | 19                                                                                                                           | 0                                                                                                              | 19                                                                                                                               | 3.7%                                                                                                                                 | 0.00 [-0.10, 0.10]                                                                                                                                                                                                                                                                                                                                                                                             | +                   |
| Tarr 1993a                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                | 12                                                                                                                           | 3                                                                                                              | 25                                                                                                                               | 0.8%                                                                                                                                 | -0.04 [-0.24, 0.17]                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Tarr 1993b                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                | 13                                                                                                                           | 3                                                                                                              | 25                                                                                                                               | 0.9%                                                                                                                                 | -0.04 [-0.24, 0.15]                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Woo 2002                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                | 25                                                                                                                           | 0                                                                                                              | 25                                                                                                                               | 2.2%                                                                                                                                 | 0.08 [-0.05, 0.21]                                                                                                                                                                                                                                                                                                                                                                                             | 1                   |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  | 479                                                                                                                          |                                                                                                                | 562                                                                                                                              | 100.0%                                                                                                                               | 0.00 [-0.02, 0.02]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                               |                                                                                                                              | 16                                                                                                             |                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  | •                                                                                                                            | 3 (P = 0.9                                                                                                     | 96); I² =                                                                                                                        | :0%                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                         | Z = 0.15 (P = 0.                                                                                                                                                 | 88)                                                                                                                          |                                                                                                                |                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 4.1.12 Subgroup 4: N                                                                                                                                                                                                                                                                                                                                                                                                                             | lot having cardi                                                                                                                                                 |                                                                                                                              |                                                                                                                |                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                | -                                                                                                                            | -                                                                                                              | 0                                                                                                                                | 0.70                                                                                                                                 | 0.0510.00.045                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| Arutiunov 2010                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                | 21                                                                                                                           | 3                                                                                                              | 20                                                                                                                               | 2.7%                                                                                                                                 | -0.05 [-0.26, 0.15]                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Chen 2012                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                               | 40                                                                                                                           | 9                                                                                                              | 40                                                                                                                               | 2.9%                                                                                                                                 | 0.07 [-0.12, 0.27]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Chen 2013                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24                                                                                                                                                               | 122                                                                                                                          | 25                                                                                                             | 119                                                                                                                              | 10.5%                                                                                                                                | -0.01 [-0.12, 0.09]                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                | 14                                                                                                                           | 0                                                                                                              | 6                                                                                                                                | 1.8%<br>32.0%                                                                                                                        | 0.07 [-0.17, 0.32]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Cotter 1997                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  | 600                                                                                                                          | 24.0                                                                                                           |                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| De Backer 2010                                                                                                                                                                                                                                                                                                                                                                                                                                   | 349                                                                                                                                                              | 529                                                                                                                          | 319                                                                                                            | 507                                                                                                                              |                                                                                                                                      | 0.03 [-0.03, 0.09]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| De Backer 2010<br>Gao 2008                                                                                                                                                                                                                                                                                                                                                                                                                       | 349<br>9                                                                                                                                                         | 21                                                                                                                           | 9                                                                                                              | 23                                                                                                                               | 1.3%                                                                                                                                 | 0.04 [-0.25, 0.33]                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010                                                                                                                                                                                                                                                                                                                                                                                                     | 349<br>9<br>3                                                                                                                                                    | 21<br>30                                                                                                                     | 9<br>3                                                                                                         | 23<br>30                                                                                                                         | 1.3%<br>4.7%                                                                                                                         | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]                                                                                                                                                                                                                                                                                                                                                                       |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998                                                                                                                                                                                                                                                                                                                                                                                       | 349<br>9<br>3<br>0                                                                                                                                               | 21<br>30<br>10                                                                                                               | 9<br>3<br>0                                                                                                    | 23<br>30<br>10                                                                                                                   | 1.3%<br>4.7%<br>3.6%                                                                                                                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]                                                                                                                                                                                                                                                                                                                                                 |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013                                                                                                                                                                                                                                                                                                                                                                           | 349<br>9<br>3<br>0<br>8                                                                                                                                          | 21<br>30<br>10<br>16                                                                                                         | 9<br>3<br>0<br>7                                                                                               | 23<br>30<br>10<br>16                                                                                                             | 1.3%<br>4.7%<br>3.6%<br>0.9%                                                                                                         | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]                                                                                                                                                                                                                                                                                                                           |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015                                                                                                                                                                                                                                                                                                                                                            | 349<br>9<br>3<br>0<br>8<br>0                                                                                                                                     | 21<br>30<br>10<br>16<br>12                                                                                                   | 9<br>3<br>0<br>7<br>2                                                                                          | 23<br>30<br>10<br>16<br>12                                                                                                       | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%                                                                                                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]                                                                                                                                                                                                                                                                                                    |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010                                                                                                                                                                                                                                                                                                                                                | 349<br>9<br>3<br>0<br>8<br>0<br>12                                                                                                                               | 21<br>30<br>10<br>16<br>12<br>25                                                                                             | 9<br>3<br>0<br>7<br>2<br>8                                                                                     | 23<br>30<br>10<br>16<br>12<br>25                                                                                                 | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>1.5%                                                                                         | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]                                                                                                                                                                                                                                                                              |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994                                                                                                                                                                                                                                                                                                                                  | 349<br>9<br>3<br>0<br>8<br>0<br>12<br>6                                                                                                                          | 21<br>30<br>10<br>16<br>12<br>25<br>10                                                                                       | 9<br>3<br>7<br>2<br>8<br>5                                                                                     | 23<br>30<br>10<br>16<br>12<br>25<br>10                                                                                           | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>1.5%<br>0.6%                                                                                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]                                                                                                                                                                                                                                                        |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993                                                                                                                                                                                                                                                                                                                   | 349<br>9<br>3<br>0<br>8<br>0<br>12<br>6<br>10                                                                                                                    | 21<br>30<br>10<br>16<br>12<br>25<br>10<br>16                                                                                 | 9<br>3<br>7<br>2<br>8<br>5<br>7                                                                                | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16                                                                                     | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>1.5%<br>0.6%<br>0.9%                                                                         | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]                                                                                                                                                                                                                                  |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007                                                                                                                                                                                                                                                                                                    | 349<br>9<br>3<br>0<br>8<br>12<br>6<br>10<br>19                                                                                                                   | 21<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25                                                                           | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14                                                                          | 23<br>30<br>10<br>12<br>25<br>10<br>16<br>25                                                                                     | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>1.5%<br>0.6%<br>0.9%<br>1.7%                                                                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]                                                                                                                                                                                                            |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Maritin 1993<br>Mathur 2007<br>Schmoelz 2006                                                                                                                                                                                                                                                                                  | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2                                                                                                                   | 21<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>10                                                                     | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7                                                                     | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>20                                                                         | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>1.5%<br>0.6%<br>0.9%<br>1.7%<br>1.0%                                                         | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]                                                                                                                                                                                     |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006a                                                                                                                                                                                                                                                                 | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2                                                                                                              | 21<br>30<br>16<br>12<br>25<br>10<br>16<br>25<br>10<br>11                                                                     | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5                                                                | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>20<br>20                                                                   | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>0.6%<br>0.9%<br>1.7%<br>1.0%<br>1.2%                                                         | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]                                                                                                                                                              |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006a<br>Shah 2014                                                                                                                                                                                                                                                    | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1                                                                                                         | 21<br>30<br>10<br>16<br>25<br>10<br>16<br>25<br>10<br>11<br>31                                                               | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4                                                           | 23<br>30<br>10<br>16<br>25<br>10<br>16<br>25<br>20<br>20<br>61                                                                   | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>0.9%<br>1.7%<br>1.0%<br>1.2%<br>14.1%                                                | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.03 [-0.12, 0.05]                                                                                                                                       |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006a<br>Shah 2014<br>Sindone 1998                                                                                                                                                                                                                                    | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1<br>0                                                                                                    | 21<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>10<br>11<br>31<br>8                                                          | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3                                                      | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8                                                        | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>0.9%<br>1.7%<br>1.0%<br>1.2%<br>14.1%<br>0.9%                                        | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.38 [-0.73, -0.02]                                                                                                                                      |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006a<br>Shah 2014<br>Sindone 1998                                                                                                                                                                                                                                    | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1<br>0<br>1                                                                                               | 21<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8                                                     | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2                                                 | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8<br>26                                                  | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>1.5%<br>1.0%<br>1.2%<br>1.2%<br>14.1%<br>0.9%<br>1.7%                                | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.38, 0.23]<br>-0.03 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]                                                                                                                |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006a<br>Shah 2014<br>Sindone 1998<br>Sindone 1998a<br>Sindone 1998b                                                                                                                                                                                                  | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>2<br>1<br>0<br>1<br>1                                                                                     | 21<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>8                                                | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>4<br>7<br>4<br>3<br>2<br>1                                                  | 23<br>30<br>10<br>16<br>25<br>20<br>61<br>8<br>26<br>9                                                                           | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>1.0%<br>1.0%<br>1.2%<br>14.1%<br>0.9%<br>1.2%                                        | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.03 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.29, 0.32]                                                                                          |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006a<br>Shah 2014<br>Sindone 1998<br>Sindone 1998a<br>Sindone 1998b<br>Triposkiadis 2014                                                                                                                                                                             | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1<br>0<br>1<br>1<br>9                                                                                     | 21<br>30<br>10<br>12<br>25<br>10<br>11<br>31<br>31<br>8<br>8<br>8<br>8                                                       | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>8                                       | 23<br>30<br>10<br>16<br>25<br>20<br>61<br>8<br>26<br>9<br>55                                                                     | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>0.6%<br>0.9%<br>1.7%<br>1.2%<br>14.1%<br>0.9%<br>1.7%<br>1.2%<br>2.4%                        | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.03 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.29, 0.32]<br>-0.01 [-0.22, 0.21]                                                                                         |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoel 2006<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014                                                                                                                                      | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1<br>0<br>1<br>1<br>9<br>10                                                                               | 21<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>8<br>8<br>28<br>28                               | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>18<br>19                                | 23<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>20<br>61<br>8<br>26<br>9<br>55<br>50                                             | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>0.6%<br>0.9%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>2.4%<br>2.2%                         | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.03 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]                                                                                         |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Shah 2014<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Varriale 1997                                                                                                                       | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1<br>0<br>1<br>1<br>9<br>10<br>0                                                                          | 21<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>8<br>8<br>28<br>28<br>28<br>10                   | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>18<br>19<br>0                           | 23<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>20<br>61<br>8<br>26<br>9<br>55<br>50<br>10                                       | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>1.5%<br>0.6%<br>1.2%<br>1.0%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>2.2%<br>3.6%                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.38 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.29, 0.32]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.00 [-0.17, 0.17]                                            |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Marik 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Shah 2014<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Varriale 1997<br>Wu 2011                                                                                                             | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1<br>0<br>1<br>9<br>10<br>9<br>9                                                                          | 21<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>8<br>8<br>28<br>28<br>28<br>10<br>23             | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>18<br>19<br>0<br>7                      | 23<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8<br>26<br>9<br>55<br>50<br>10<br>23                           | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>1.5%<br>0.8%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>2.4%<br>2.2%<br>3.6%<br>1.4%                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.38 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.29, 0.32]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.00 [-0.17, 0.17]<br>0.09 [-0.19, 0.36]                      |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Shah 2014<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Varriale 1997                                                                                                                       | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1<br>0<br>1<br>1<br>9<br>10<br>0                                                                          | 21<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>8<br>8<br>28<br>28<br>28<br>10                   | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>18<br>19<br>0                           | 23<br>30<br>10<br>16<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8<br>26<br>9<br>9<br>55<br>50<br>10<br>23<br>45                | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.9%<br>1.5%<br>0.6%<br>1.2%<br>1.0%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>2.2%<br>3.6%                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.38 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.29, 0.32]<br>-0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.00 [-0.17, 0.17]                                            |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Varriale 1997<br>Wu 2011<br>Zhuangyu 2011                                                                                        | 349<br>9<br>3<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>1<br>0<br>1<br>9<br>10<br>0<br>9<br>14                                                                    | 21<br>30<br>10<br>12<br>25<br>10<br>16<br>25<br>10<br>11<br>31<br>31<br>8<br>8<br>8<br>8<br>28<br>28<br>28<br>10<br>23<br>45 | 9<br>3<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>18<br>19<br>0<br>7                      | 23<br>30<br>10<br>16<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8<br>26<br>9<br>9<br>55<br>50<br>10<br>23<br>45                | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>0.6%<br>1.7%<br>1.0%<br>1.2%<br>1.2%<br>2.4%<br>2.2%<br>2.2%<br>3.6%<br>1.4%<br>3.0% | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.38 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.00 [-0.17, 0.17]<br>0.09 [-0.19, 0.36]<br>0.02 [-0.17, 0.21] |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Shah 2014<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Toposkiadis 2014<br>Subtotal (95% CI)<br>Total events | 349<br>9<br>3<br>0<br>8<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>2<br>1<br>0<br>19<br>2<br>2<br>1<br>0<br>1<br>1<br>9<br>10<br>0<br>9<br>14<br>504<br>504<br>504 | 21<br>30<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>28<br>28<br>28<br>28<br>10<br>23<br>45<br><b>101</b><br>48, df = 2 | 9<br>3<br>0<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>1<br>8<br>9<br>0<br>7<br>13<br>490 | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8<br>26<br>9<br>55<br>50<br>10<br>23<br>45<br>51<br>1186 | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>0.9%<br>1.7%<br>1.2%<br>1.2%<br>2.4%<br>2.2%<br>3.6%<br>1.4%<br>3.0%                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.38 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.00 [-0.17, 0.17]<br>0.09 [-0.19, 0.36]<br>0.02 [-0.17, 0.21] |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Shah 2014<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Varriale 1997<br>Wu 2011<br>Zhuangyu 2011<br>Subtotal (95% CI)<br>Total events                 | 349<br>9<br>3<br>0<br>8<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>2<br>1<br>0<br>19<br>2<br>2<br>1<br>0<br>1<br>1<br>9<br>10<br>0<br>9<br>14<br>504<br>504<br>504 | 21<br>30<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>28<br>28<br>28<br>28<br>10<br>23<br>45<br><b>101</b><br>48, df = 2 | 9<br>3<br>0<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>1<br>8<br>9<br>0<br>7<br>13<br>490 | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8<br>26<br>9<br>55<br>50<br>10<br>23<br>45<br>51<br>1186 | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>0.9%<br>1.7%<br>1.2%<br>1.2%<br>2.4%<br>2.2%<br>3.6%<br>1.4%<br>3.0%                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.38 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.00 [-0.17, 0.17]<br>0.09 [-0.19, 0.36]<br>0.02 [-0.17, 0.21] |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Shah 2014<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Toposkiadis 2014<br>Subtotal (95% CI)<br>Total events | 349<br>9<br>3<br>0<br>8<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>2<br>1<br>0<br>19<br>2<br>2<br>1<br>0<br>1<br>1<br>9<br>10<br>0<br>9<br>14<br>504<br>504<br>504 | 21<br>30<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>28<br>28<br>28<br>28<br>10<br>23<br>45<br><b>101</b><br>48, df = 2 | 9<br>3<br>0<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>1<br>8<br>9<br>0<br>7<br>13<br>490 | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8<br>26<br>9<br>55<br>50<br>10<br>23<br>45<br>51<br>1186 | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>0.9%<br>1.7%<br>1.2%<br>1.2%<br>2.4%<br>2.2%<br>3.6%<br>1.4%<br>3.0%                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.03 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.00 [-0.17, 0.17]<br>0.09 [-0.19, 0.36]<br>0.02 [-0.17, 0.21]<br>0.01 [-0.02, 0.04] |                     |
| De Backer 2010<br>Gao 2008<br>Giamouzis 2010<br>Hsueh 1998<br>Hua 2013<br>Kamiya 2015<br>Liu 2010<br>Marik 1994<br>Martin 1993<br>Mathur 2007<br>Schmoelz 2006<br>Schmoelz 2006<br>Schmoelz 2006<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998<br>Sindone 1998b<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                  | 349<br>9<br>3<br>0<br>8<br>0<br>12<br>6<br>10<br>19<br>2<br>2<br>2<br>1<br>0<br>19<br>2<br>2<br>1<br>0<br>1<br>9<br>10<br>0<br>9<br>14<br>504<br>504<br>504      | 21<br>30<br>10<br>16<br>25<br>10<br>11<br>31<br>8<br>8<br>28<br>28<br>28<br>28<br>10<br>23<br>45<br><b>101</b><br>48, df = 2 | 9<br>3<br>0<br>7<br>2<br>8<br>5<br>7<br>14<br>7<br>5<br>4<br>3<br>2<br>1<br>1<br>8<br>9<br>0<br>7<br>13<br>490 | 23<br>30<br>10<br>16<br>12<br>25<br>10<br>16<br>25<br>20<br>20<br>61<br>8<br>26<br>9<br>55<br>50<br>10<br>23<br>45<br>51<br>1186 | 1.3%<br>4.7%<br>3.6%<br>0.9%<br>1.5%<br>0.6%<br>0.9%<br>1.7%<br>1.2%<br>1.2%<br>2.4%<br>2.2%<br>3.6%<br>1.4%<br>3.0%                 | 0.04 [-0.25, 0.33]<br>0.00 [-0.15, 0.15]<br>0.00 [-0.17, 0.17]<br>0.06 [-0.28, 0.41]<br>-0.17 [-0.41, 0.07]<br>0.16 [-0.11, 0.43]<br>0.10 [-0.33, 0.53]<br>0.19 [-0.15, 0.53]<br>0.20 [-0.06, 0.46]<br>-0.15 [-0.47, 0.17]<br>-0.07 [-0.36, 0.23]<br>-0.38 [-0.73, -0.02]<br>0.05 [-0.20, 0.30]<br>0.01 [-0.22, 0.21]<br>-0.02 [-0.25, 0.20]<br>0.00 [-0.17, 0.17]<br>0.09 [-0.19, 0.36]<br>0.02 [-0.17, 0.21] |                     |


58

# *E-Figures 2.5.13: sensitivity analysis – patients with cardiac dysfunction versus a majority/large proportion of patients with cardiac dysfunction*

| Chudu on Cubanau                                              | Favours dopa                 |       | Contr  |            | Mainh    | Risk Ratio          | Risk Ratio                       |
|---------------------------------------------------------------|------------------------------|-------|--------|------------|----------|---------------------|----------------------------------|
| Study or Subgroup<br>4.1.1 All included stu                   | Events                       | rotal | Events | rotal      | weight   | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
|                                                               |                              |       | -      |            |          |                     |                                  |
| Birnbaum 1990                                                 | 0                            | 10    | 0      | 10         |          | Not estimable       |                                  |
| Bove 2005                                                     | 3                            | 40    | 4      | 40         | 0.3%     | 0.75 [0.18, 3.14]   |                                  |
| Carcoana 2003                                                 | 0                            | 25    | 0      | 24         |          | Not estimable       |                                  |
| Carcoana 2003a                                                | 0                            | 25    | 0      | 26         |          | Not estimable       |                                  |
| Chen 2012                                                     | 12                           | 40    | 9      | 40         | 1.1%     | 1.33 [0.63, 2.81]   |                                  |
| Chen 2013                                                     | 24                           | 122   | 25     | 119        | 2.5%     | 0.94 [0.57, 1.54]   |                                  |
| De Backer 2010                                                | 472                          | 858   | 427    | 821        | 78.8%    | 1.06 [0.97, 1.16]   |                                  |
| ∋ao 2008                                                      | 9                            | 21    | 9      | 23         | 1.2%     | 1.10 [0.54, 2.23]   |                                  |
| ∂iamouzis 2010                                                | 3                            | 30    | 3      | 30         | 0.3%     | 1.00 [0.22, 4.56]   |                                  |
| Hausen 1992                                                   | 0                            | 14    | 0      | 27         |          | Not estimable       |                                  |
| Hua 2013                                                      | 8                            | 16    | 7      | 16         | 1.1%     | 1.14 [0.54, 2.40]   |                                  |
| Kamiya 2015                                                   | 0                            | 12    | 2      | 12         | 0.1%     | 0.20 [0.01, 3.77]   |                                  |
| Kanchi 2017                                                   | 0                            | 30    | 0      | 30         |          | Not estimable       |                                  |
| _assnigg 2000                                                 | 0                            | 21    | 1      | 40         | 0.1%     | 0.62 [0.03, 14.62]  |                                  |
| _assnigg 2000a                                                | 0                            | 21    | 4      | 41         | 0.1%     | 0.21 [0.01, 3.76]   |                                  |
| _iu 2010                                                      | 12                           | 25    | 8      | 25         | 1.3%     | 1.50 [0.74, 3.03]   | +                                |
| ⁄larik 1994                                                   | 6                            | 10    | 5      | 10         | 1.0%     | 1.20 [0.54, 2.67]   | <del></del>                      |
| Martin 1993                                                   | 10                           | 16    | 7      | 16         | 1.4%     | 1.43 [0.73, 2.80]   | +                                |
| Mathur 2007                                                   | 19                           | 25    | 14     | 25         | 3.7%     | 1.36 [0.90, 2.05]   | +                                |
| vlyles 1993                                                   | 0                            | 25    | 0      | 24         |          | Not estimable       |                                  |
| Schmoelz 2006                                                 | 2                            | 10    | 7      | 20         | 0.3%     | 0.57 [0.14, 2.26]   |                                  |
| Schmoelz 2006a                                                | 2                            | 11    | 5      | 20         | 0.3%     | 0.73 [0.17, 3.15]   |                                  |
| Schneider 1999                                                | 0                            | 50    | 0      | 49         |          | Not estimable       |                                  |
| Shah 2014                                                     | 1                            | 31    | 4      | 61         | 0.1%     | 0.49 [0.06, 4.22]   |                                  |
| Sharpe 1999                                                   | 0                            | 5     | 0      | 10         |          | Not estimable       |                                  |
| Sharpe 1999a                                                  | 0                            | 5     | 0      | 10         |          | Not estimable       |                                  |
| Sinclair 1997                                                 | 0                            | 16    | 0      | 14         |          | Not estimable       |                                  |
| Sindone 1998                                                  | 0                            | 8     | 3      | 8          | 0.1%     | 0.14 [0.01, 2.39]   | •                                |
| Sindone 1998a                                                 | 1                            | 8     | 2      | 26         | 0.1%     | 1.63 [0.17, 15.66]  |                                  |
| Sindone 1998b                                                 | 1                            | 8     | 1      | 9          | 0.1%     | 1.13 [0.08, 15.19]  |                                  |
| Soliman 2017                                                  | 3                            | 75    | 1      | 75         | 0.1%     | 3.00 [0.32, 28.19]  |                                  |
| Sumeray 2001                                                  | 0                            | 19    | Ó      | 19         |          | Not estimable       |                                  |
| Triposkiadis 2014                                             | 9                            | 28    | 18     | 55         | 1.5%     | 0.98 [0.51, 1.90]   |                                  |
| Triposkiadis 2014a                                            | 10                           | 28    | 19     | 50         | 1.7%     | 0.94 [0.51, 1.73]   |                                  |
| Woo 2002                                                      | 2                            | 25    | 0      | 25         | 0.1%     | 5.00 [0.25, 99.16]  | <u> </u>                         |
| Wu 2011                                                       | 9                            | 23    | 7      | 23         | 1.0%     | 1.29 [0.58, 2.86]   |                                  |
| Zhuangyu 2011                                                 | 14                           | 45    | 13     | 45         | 1.6%     | 1.08 [0.57, 2.03]   |                                  |
| Subtotal (95% CI)                                             | 14                           | 1781  | 10     |            | 100.0%   | 1.07 [0.99, 1.16]   |                                  |
| Total events                                                  | 632                          |       | 605    |            |          |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: | 0.00; Chi² = 12              |       |        | .98); I²   | = 0%     |                     |                                  |
| 4.1.13 Pure cardiac o                                         | dysfunction stu              | dies  |        |            |          |                     |                                  |
| Arutiunov 2010                                                | 2                            | 21    | 3      | 20         | 35.0%    | 0.63 [0.12, 3.41]   |                                  |
| Cotter 1997                                                   | 1                            | 14    | 0      | 20         | 10.5%    | 1.40 [0.06, 30.23]  |                                  |
| Hsueh 1998                                                    | ,<br>O                       | 10    | 0      | 10         | . 0.0 10 | Not estimable       |                                  |
| Oppizzi 1997                                                  | 3                            | 13    | 0      | 13         | 12.0%    | 7.00 [0.40, 123.35] |                                  |
| Rosseel 1997                                                  | 0                            | 35    | 0      | 35         | . 2.0 %  | Not estimable       |                                  |
| Tarr 1993a                                                    | 2                            | 25    | 6      | 50         | 42.5%    | 0.67 [0.14, 3.07]   |                                  |
| Varriale 1997                                                 | 2                            | 10    | 0      | 10         | 72.370   | Not estimable       | -                                |
| Subtotal (95% CI)                                             | 0                            | 128   | U      |            | 100.0%   | 0.94 [0.35, 2.54]   |                                  |
| Total events                                                  | 8                            | 120   | 9      |            | 1001070  | 010 1 [0100] 2104]  |                                  |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: | 0.00; Chi <sup>2</sup> = 2.4 |       | -      | 9); I² = ( | )%       |                     |                                  |
|                                                               |                              |       |        |            |          |                     |                                  |
|                                                               |                              |       |        |            |          |                     | 0.01 0.1 1 10 1                  |
|                                                               |                              |       |        |            | = 0%     |                     | Favours dopamine Favours control |

#### 2.6. Trial sequential analysis of mortality

*E*-Figure 2.6: the TSA is based on 11 trials, which is the meta-analysed effect of dopamine versus any (in)active comparator intervention.



E-Figure legend. A diversity-adjusted required information size (RIS) of 8,763 patients was calculated using the predefined  $\alpha = 0.05$  (two-sided),  $\beta = 0.10$  (power 90%), D<sup>2</sup> = 0%, an anticipated relative risk reduction of 10% and an event proportion of 31.8% in the control arm. The *blue cumulative z-curve* was constructed using a random effects model. The *horizontal green dotted lines* represent the conventional boundary's for benefit (positive) or harm (negative). The *horizontal red dotted lines* represent the trial sequential boundary's for benefit (positive), harm (negative) or futility (middle triangular area).

# 2.7. Forest plots of serious adverse events

# *E-Figures 2.7.1-2.7.3: all trials with worst-best and best-worst case analyses*

|                                                 | Favours dopa                  |             | Contr      |                       |         | Risk Ratio          | Risk Ratio                       |
|-------------------------------------------------|-------------------------------|-------------|------------|-----------------------|---------|---------------------|----------------------------------|
| Study or Subgroup                               | Events                        | Total       | Events     | Total                 | Weight  | M-H, Random, 95% Cl | M-H, Random, 95% Cl              |
| .2.1 All included studi                         | es                            |             |            |                       |         |                     |                                  |
| 3irnbaum 1990                                   | 0                             | 10          | 0          | 10                    |         | Not estimable       |                                  |
| Chen 2012                                       | 13                            | 40          | 4          | 40                    | 9.3%    | 3.25 [1.16, 9.12]   |                                  |
| Chen 2013                                       | 19                            | 122         | 12         | 119                   | 16.0%   | 1.54 [0.78, 3.04]   | +                                |
| Giamouzis 2010                                  | 6                             | 30          | 2          | 30                    | 5.0%    | 3.00 [0.66, 13.69]  |                                  |
| Kamiya 2015                                     | 0                             | 12          | 0          | 12                    |         | Not estimable       |                                  |
| Oppizzi 1997                                    | 4                             | 13          | 1          | 13                    | 2.9%    | 4.00 [0.51, 31.13]  |                                  |
| Rosseel 1997                                    | 25                            | 35          | 24         | 35                    | 28.1%   | 1.04 [0.77, 1.42]   | <b>+</b>                         |
| Schneider 1999                                  | 20                            | 50          | 10         | 49                    | 16.7%   | 1.96 [1.02, 3.75]   | _ <b>_</b> _                     |
| Binclair 1997                                   | 20                            | 16          | 0          | 14                    | 10.1.0  | Not estimable       |                                  |
| Triposkiadis 2014                               | 4                             | 28          | 6          | 55                    | 7.6%    | 1.31 [0.40, 4.26]   |                                  |
| •                                               | 4                             | 28          | 6          | 50                    |         | • • •               |                                  |
| Friposkiadis 2014a                              |                               |             |            |                       | 7.6%    | 1.19 [0.37, 3.86]   |                                  |
| Noo 2002<br>Subtotol (05%, CD                   | 3                             | 25          | 6          | 25                    | 6.7%    | 0.50 [0.14, 1.78]   |                                  |
| Subtotal (95% CI)                               |                               | 409         |            | 4 <b>3</b> Z          | 100.0%  | 1.47 [1.02, 2.12]   | -                                |
| Fotal events                                    | 98                            |             | 71         |                       |         |                     |                                  |
| Heterogeneity: Tau² = 0                         |                               |             | B (P = 0.1 | 12); l²=              | 37%     |                     |                                  |
| Fest for overall effect: Z                      | = 2.06 (P = 0                 | .04)        |            |                       |         |                     |                                  |
|                                                 |                               |             |            |                       |         |                     |                                  |
| 3.2.2 Worst-best case                           | -                             |             | _          |                       |         |                     |                                  |
| Birnbaum 1990                                   | 0                             | 10          | 0          | 10                    |         | Not estimable       |                                  |
| Chen 2012                                       | 13                            | 40          | 4          | 40                    | 9.4%    | 3.25 [1.16, 9.12]   |                                  |
| Chen 2013                                       | 19                            | 122         | 12         | 119                   | 16.0%   | 1.54 [0.78, 3.04]   | +                                |
| Giamouzis 2010                                  | 6                             | 30          | 2          | 30                    | 5.1%    | 3.00 [0.66, 13.69]  |                                  |
| Kamiya 2015                                     | 0                             | 12          | 0          | 12                    |         | Not estimable       |                                  |
| Oppizzi 1997                                    | 4                             | 13          | 1          | 13                    | 3.0%    | 4.00 [0.51, 31.13]  |                                  |
| Rosseel 1997                                    | 25                            | 35          | 24         | 35                    | 27.8%   | 1.04 [0.77, 1.42]   | +                                |
| Schneider 1999                                  | 20                            | 50          | 10         | 50                    | 16.7%   | 2.00 [1.04, 3.83]   |                                  |
| Sinclair 1997                                   | 0                             | 16          | 0          | 14                    |         | Not estimable       |                                  |
| Triposkiadis 2014                               | 4                             | 28          | 6          | 55                    | 7.7%    | 1.31 [0.40, 4.26]   | <b>.</b>                         |
| Triposkiadis 2014                               | 4                             | 28          | 6          | 50                    | 7.7%    | 1.19 [0.37, 3.86]   |                                  |
| Woo 2002                                        | 3                             | 20          | 6          | 25                    | 6.8%    | 0.50 [0.14, 1.78]   |                                  |
| Subtotal (95% CI)                               | 3                             | 409         | 0          |                       | 100.0%  | 1.48 [1.02, 2.14]   |                                  |
|                                                 | 00                            | 405         | 74         | 455                   | 100.0%  | 1.40 [1.02, 2.14]   | •                                |
| Total events                                    | 98<br>40: 05:2-40             | 07 46-0     | 71         | 0.01                  | 2000    |                     |                                  |
| Heterogeneity: Tau² = 0                         | •                             | •           | B(P = 0.1) | 12); 1*=              | 38%     |                     |                                  |
| Test for overall effect: Z                      | = 2.07 (P = 0                 | .04)        |            |                       |         |                     |                                  |
| 3.2.3 Best-worst case                           | analveie                      |             |            |                       |         |                     |                                  |
|                                                 |                               | 40          |            | 4.0                   |         |                     |                                  |
| Birnbaum 1990                                   | 0                             | 10          | 0          | 10                    |         | Not estimable       |                                  |
| Chen 2012                                       | 13                            | 40          | 4          | 40                    | 9.0%    | 3.25 [1.16, 9.12]   |                                  |
| Chen 2013                                       | 19                            | 122         | 12         | 119                   | 15.8%   | 1.54 [0.78, 3.04]   |                                  |
| Giamouzis 2010                                  | 6                             | 30          | 2          | 30                    | 4.8%    | 3.00 [0.66, 13.69]  |                                  |
| Kamiya 2015                                     | 0                             | 12          | 0          | 12                    |         | Not estimable       |                                  |
| Oppizzi 1997                                    | 4                             | 13          | 1          | 13                    | 2.8%    | 4.00 [0.51, 31.13]  |                                  |
| Rosseel 1997                                    | 25                            | 35          | 24         | 35                    | 29.2%   | 1.04 [0.77, 1.42]   | +                                |
| Schneider 1999                                  | 20                            | 50          | 11         | 50                    | 17.4%   | 1.82 [0.98, 3.39]   | <b>⊢</b> ∎—                      |
| Sinclair 1997                                   | 0                             | 16          | 0          | 14                    |         | Not estimable       |                                  |
| Triposkiadis 2014                               | 4                             | 28          | 6          | 55                    | 7.3%    | 1.31 [0.40, 4.26]   | <b>+-</b>                        |
| Triposkiadis 2014a                              | 4                             | 28          | 6          | 50                    | 7.3%    | 1.19 [0.37, 3.86]   | <b>_</b>                         |
| Noo 2002                                        | 3                             | 25          | 6          | 25                    | 6.5%    | 0.50 [0.14, 1.78]   |                                  |
| Subtotal (95% CI)                               | 5                             | 409         | 0          |                       | 100.0%  | 1.45 [1.01, 2.06]   |                                  |
|                                                 | 00                            | 405         | 72         | 455                   | 100.070 | 1.45 [1.01, 2.00]   | •                                |
| Total events<br>Hotorogonoity: Tou <b>3</b> – 0 | 98<br>100: Chi <b>z - 1</b> 2 | 17 -46- 4   |            | 1.41.12               | 2400    |                     |                                  |
| Heterogeneity: Tau² = 0                         |                               |             | 5 (H = 0.1 | 14), 11=              | 3470    |                     |                                  |
| Test for overall effect: Z                      | = 2.04 (P = 0                 | .04)        |            |                       |         |                     |                                  |
|                                                 |                               |             |            |                       |         |                     |                                  |
|                                                 |                               |             |            |                       |         |                     | 0.01 0.1 1 10 1                  |
|                                                 |                               |             |            |                       |         |                     | Favours dopamine Favours control |
| est for subgroup differ                         | ences: Chi <sup>z</sup> =     | = 0.01, df= | = 2 (P = 1 | 1.00), l <sup>a</sup> | = 0%    |                     | Favours dopamine Favours control |

## E-Figures 2.7.4-2.7.5: subgroup analysis 1 - trials subdivided by risk of bias

|                                   | Favours dopa                   |          | Contr      |                       |        | Risk Ratio          | Risk Ratio                       |
|-----------------------------------|--------------------------------|----------|------------|-----------------------|--------|---------------------|----------------------------------|
| Study or Subgroup                 | Events                         | Total    | Events     | Total                 | Weight | M-H, Random, 95% Cl | M-H, Random, 95% CI              |
| 3.2.4 Subgroup 1: Lo              | w risk of bias                 |          |            | _                     |        |                     |                                  |
| Subtotal (95% CI)                 |                                | 0        |            | 0                     |        | Not estimable       |                                  |
| Total events                      | 0                              |          | 0          |                       |        |                     |                                  |
| Heterogeneity: Not ap             |                                |          |            |                       |        |                     |                                  |
| Test for overall effect:          | Not applicable                 |          |            |                       |        |                     |                                  |
| 3.2.5 Subgroup 1: Un              | clear or high ris              | k of bia | s          |                       |        |                     |                                  |
| Birnbaum 1990                     | 0                              | 10       | 0          | 10                    |        | Not estimable       |                                  |
| Carcoana 2003                     | 0                              | 25       | 0          | 24                    |        | Not estimable       |                                  |
| Carcoana 2003a                    | 0                              | 25       | 0          | 26                    |        | Not estimable       |                                  |
| Chen 2012                         | 13                             | 40       | 4          | 40                    | 8.1%   | 3.25 [1.16, 9.12]   | <b>_</b>                         |
| Chen 2013                         | 30                             | 122      | 24         | 119                   | 21.7%  | 1.22 [0.76, 1.96]   |                                  |
| Giamouzis 2010                    | 6                              | 30       | 2          | 30                    | 4.2%   | 3.00 [0.66, 13.69]  |                                  |
| Kamiya 2015                       | 0                              | 12       | 0          | 12                    |        | Not estimable       |                                  |
| Myles 1993                        | 0                              | 25       | 0          | 24                    |        | Not estimable       |                                  |
| Oppizzi 1997                      | 4                              | 13       | 1          | 13                    | 2.4%   | 4.00 [0.51, 31.13]  |                                  |
| Rosseel 1997                      | 25                             | 35       | 24         | 35                    | 29.4%  | 1.04 [0.77, 1.42]   | +                                |
| Schneider 1999                    | 20                             | 50       | 10         | 49                    | 15.5%  | 1.96 [1.02, 3.75]   |                                  |
| Sinclair 1997                     | 0                              | 16       | 0          | 14                    |        | Not estimable       |                                  |
| Triposkiadis 2014                 | 4                              | 28       | 6          | 55                    | 6.5%   | 1.31 [0.40, 4.26]   | <b>-</b>                         |
| Triposkiadis 2014a                | 4                              | 28       | 6          | 50                    | 6.5%   | 1.19 [0.37, 3.86]   |                                  |
| Woo 2002                          | 3                              | 25       | 6          | 25                    | 5.7%   | 0.50 [0.14, 1.78]   |                                  |
| Subtotal (95% CI)                 |                                | 484      |            | 526                   | 100.0% | 1.38 [0.99, 1.92]   | ◆                                |
| Total events                      | 109                            |          | 83         |                       |        |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | : 0.07; Chi <sup>2</sup> = 11. | 94, df=  | 8 (P = 0.1 | 15); I <sup>z</sup> = | : 33%  |                     |                                  |
| Test for overall effect:          | Z = 1.93 (P = 0.0              | 05)      |            |                       |        |                     |                                  |
|                                   |                                |          |            |                       |        |                     |                                  |
|                                   |                                |          |            |                       |        |                     |                                  |
|                                   |                                |          |            |                       |        |                     | Favours dopamine Favours control |

Test for subgroup differences: Not applicable

## *E-Figures 2.7.6-2.7.7: subgroup analysis 2 – trials subdivided by comparator intervention*

|                                         | Favours dopa                 | mine             | Contr                   | ol                     |                        | Risk Ratio                                    | Risk Ratio          |
|-----------------------------------------|------------------------------|------------------|-------------------------|------------------------|------------------------|-----------------------------------------------|---------------------|
| Study or Subgroup                       | Events                       | Total            | Events                  | Total                  | Weight                 | M-H, Random, 95% Cl                           | M-H, Random, 95% Cl |
| 3.2.6 Subgroup 2: Ina                   | ctive control                |                  |                         |                        |                        |                                               |                     |
| Chen 2013                               | 19                           | 122              | 12                      | 119                    | 35.7%                  | 1.54 [0.78, 3.04]                             | + <b>-</b>          |
| Schneider 1999                          | 20                           | 50               | 10                      | 49                     | 38.0%                  | 1.96 [1.02, 3.75]                             | <b>⊢∎</b>           |
| Triposkiadis 2014                       | 4                            | 28               | 6                       | 55                     | 14.0%                  | 1.31 [0.40, 4.26]                             |                     |
| Woo 2002<br>Subtotal (95% Cl)           | 3                            | 25<br><b>225</b> | 6                       | 25<br><b>248</b>       | 12.3%<br><b>100.0%</b> | 0.50 [0.14, 1.78]<br><b>1.44 [0.90, 2.29]</b> |                     |
| Total events                            | 46                           |                  | 34                      |                        |                        |                                               |                     |
| Heterogeneity: Tau <sup>2</sup> =       | 0.04; Chi <sup>2</sup> = 3.5 | 9, df = 3        | 3 (P = 0.3 <sup>-</sup> | 1); I <sup>z</sup> = 1 | 16%                    |                                               |                     |
| Test for overall effect:                | Z = 1.53 (P = 0.1            | 13)              | `                       |                        |                        |                                               |                     |
|                                         |                              |                  |                         |                        |                        |                                               |                     |
| 3.2.7 Subgroup 2: Po                    | tentially active             | control          |                         |                        |                        |                                               |                     |
| Birnbaum 1990                           | 0                            | 10               | 0                       | 10                     |                        | Not estimable                                 |                     |
| Chen 2012                               | 13                           | 40               | 4                       | 40                     | 21.5%                  | 3.25 [1.16, 9.12]                             |                     |
| Giamouzis 2010                          | 6                            | 30               | 2                       | 30                     | 14.2%                  | 3.00 [0.66, 13.69]                            |                     |
| Kamiya 2015                             | 0                            | 12               | 0                       | 12                     |                        | Not estimable                                 |                     |
| Oppizzi 1997                            | 4                            | 13               | 1                       | 13                     | 9.3%                   | 4.00 [0.51, 31.13]                            |                     |
| Rosseel 1997                            | 25                           | 35               | 24                      | 35                     | 36.1%                  | 1.04 [0.77, 1.42]                             | +                   |
| Sinclair 1997                           | 0                            | 16               | 0                       | 14                     |                        | Not estimable                                 |                     |
| Triposkiadis 2014a<br>Subtotal (95% CI) | 4                            | 28<br><b>184</b> | 6                       | 50<br><b>204</b>       | 18.9%<br><b>100.0%</b> | 1.19 [0.37, 3.86]<br><b>1.80 [0.88, 3.68]</b> |                     |
| Total events                            | 52                           | 104              | 37                      | 204                    | 100.070                | 1.00 [0.00, 0.00]                             |                     |
| Heterogeneity: Tau <sup>2</sup> =       |                              | 7 df = 4         |                         | 5): I <b>2</b> = 5     | 58%                    |                                               |                     |
| Test for overall effect:                |                              |                  | • 0.0.                  | -/1                    |                        |                                               |                     |
|                                         | 2                            | ,                |                         |                        |                        |                                               |                     |
|                                         |                              |                  |                         |                        |                        |                                               |                     |
|                                         |                              |                  |                         |                        |                        |                                               |                     |

Test for subgroup differences:  $Chi^2 = 0.26$ , df = 1 (P = 0.61),  $I^2 = 0\%$ 

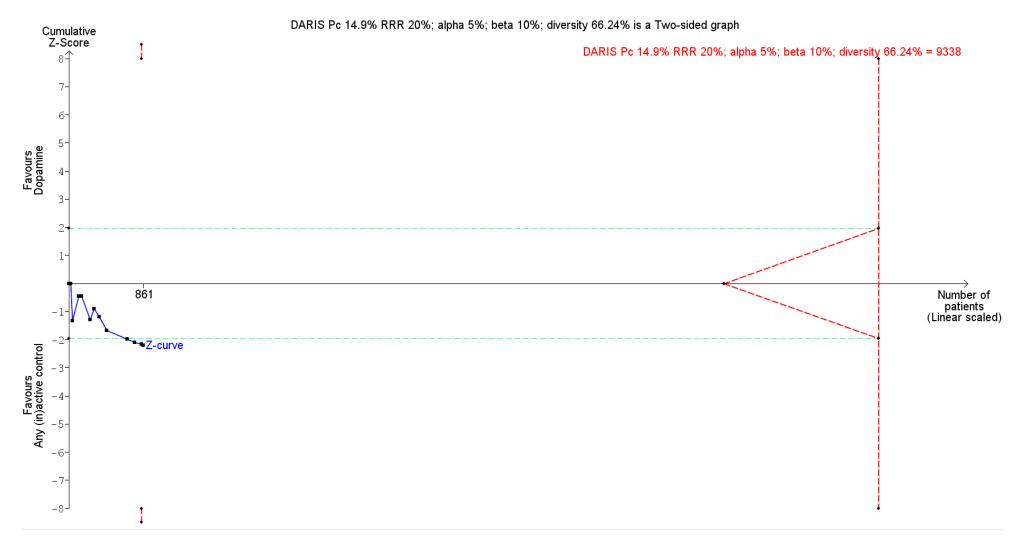
## E-Figures 2.7.8-2.7.10: subgroup analysis 3 – trials subdivided by dose

|                                   | Favours dopa                   | amine      | Contr      | ol                     |          | Risk Ratio                             | Risk Ratio                       |
|-----------------------------------|--------------------------------|------------|------------|------------------------|----------|----------------------------------------|----------------------------------|
| Study or Subgroup                 | Events                         | Total      | Events     | Total                  | Weight   | M-H, Random, 95% Cl                    | M-H, Random, 95% CI              |
| 3.2.8 Subgroup 3: Lo              | wdose                          |            |            |                        |          |                                        |                                  |
| Birnbaum 1990                     | 0                              | 10         | 0          | 10                     |          | Not estimable                          |                                  |
| Chen 2013                         | 19                             | 122        | 12         | 119                    | 23.3%    | 1.54 [0.78, 3.04]                      |                                  |
| Kamiya 2015                       | 0                              | 12         | 0          | 12                     |          | Not estimable                          |                                  |
| Rosseel 1997                      | 25                             | 35         | 24         | 35                     | 42.7%    | 1.04 [0.77, 1.42]                      | +                                |
| Schneider 1999                    | 20                             | 50         | 10         | 49                     | 24.4%    | 1.96 [1.02, 3.75]                      |                                  |
| Sinclair 1997                     | 0                              | 16         | 0          | 14                     |          | Not estimable                          |                                  |
| Woo 2002                          | 3                              | 25         | 6          | 25                     | 9.6%     | 0.50 [0.14, 1.78]                      |                                  |
| Subtotal (95% CI)                 |                                | 270        |            | 264                    | 100.0%   | 1.24 [0.81, 1.91]                      | ◆                                |
| Total events                      | 67                             |            | 52         |                        |          |                                        |                                  |
| Heterogeneity: Tau <sup>2</sup> = | : 0.09; Chi <sup>z</sup> = 5.; | 74, df = 3 | 8 (P = 0.1 | 3); I <sup>2</sup> = 4 | 18%      |                                        |                                  |
| Test for overall effect:          | Z = 0.98 (P = 0.               | .33)       |            |                        |          |                                        |                                  |
|                                   |                                |            |            |                        |          |                                        |                                  |
| 3.2.9 Subgroup 3: Mo              | oderate dose                   |            |            |                        |          |                                        |                                  |
| Giamouzis 2010                    | 6                              | 30         | 2          | 30                     | 20.6%    | 3.00 [0.66, 13.69]                     |                                  |
| Oppizzi 1997                      | 4                              | 13         | 1          | 13                     | 11.3%    | 4.00 [0.51, 31.13]                     |                                  |
| Triposkiadis 2014                 | 4                              | 28         | 6          | 55                     | 34.0%    | 1.31 [0.40, 4.26]                      |                                  |
| Triposkiadis 2014a                | 4                              | 28         | 6          | 50                     | 34.2%    | 1.19 [0.37, 3.86]                      |                                  |
| Subtotal (95% CI)                 |                                | 99         |            | 148                    | 100.0%   | 1.70 [0.86, 3.39]                      | ◆                                |
| Total events                      | 18                             |            | 15         |                        |          |                                        |                                  |
| Heterogeneity: Tau <sup>2</sup> = | : 0.00; Chi <sup>2</sup> = 1.3 | 77, df = 3 | 8 (P = 0.6 | 2); I <b>2</b> = 0     | )%       |                                        |                                  |
| Test for overall effect:          | Z = 1.52 (P = 0.               | .13)       |            |                        |          |                                        |                                  |
| 3.2.10 Subgroup 3: H              | iah doso                       |            |            |                        |          |                                        |                                  |
| Chen 2012                         | 13                             | 40         | 4          | 40                     | 100.0%   | 3.25 [1.16, 9.12]                      |                                  |
| Subtotal (95% CI)                 | 13                             | 40<br>40   | 4          |                        | 100.0%   | 3.25 [1.16, 9.12]<br>3.25 [1.16, 9.12] |                                  |
| Total events                      | 13                             | 40         | 4          | 40                     | 100.070  | 5.25 [1.10, 5.12]                      |                                  |
| Heterogeneity: Not ap             |                                |            | 4          |                        |          |                                        |                                  |
| Test for overall effect:          |                                | 03)        |            |                        |          |                                        |                                  |
| resciul overall ellect.           | Z = 2.24 (F = 0.               | .03)       |            |                        |          |                                        |                                  |
|                                   |                                |            |            |                        |          |                                        |                                  |
|                                   |                                |            |            |                        |          |                                        | 0.01 0.1 1 10 100                |
| Test for subaroup dif             | foroncos: Chiž –               | 3 0 2 df   | = 2 (P -   | 0.221 18               | - 33.8%  |                                        | Favours dopamine Favours control |
| reación subgroup un               | erences. Chr =                 | · 5.02, ui | - 2 (F =   | 0.22), 1               | - 33.070 |                                        |                                  |

#### E-Figures 2.7.11-2.7.12: subgroup analysis 4 – trials subdivided by clinical setting

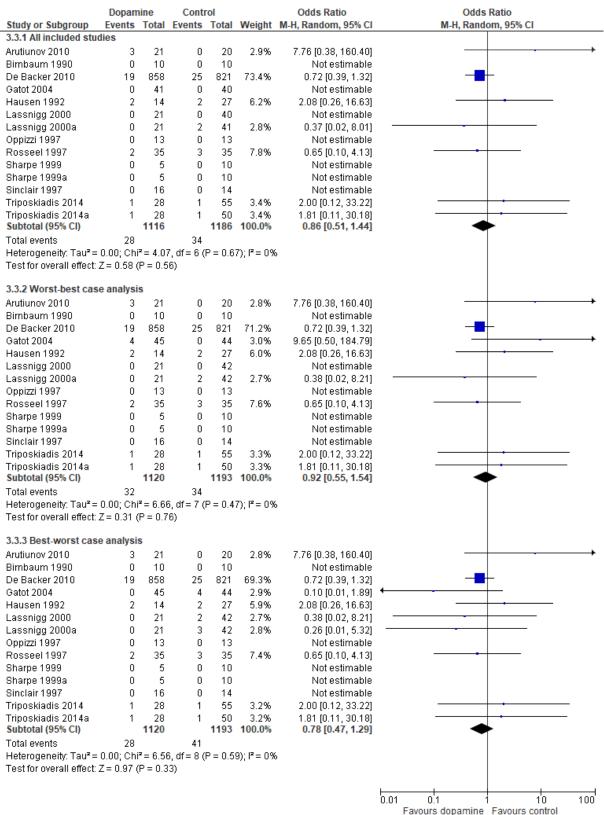
|                                                                                                                                                                                     | Favours dopa                                                           |                                                                            | Contr                             |                                           |                                                  | Risk Ratio                                                                                         | Risk Ratio          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|
| Study or Subgroup                                                                                                                                                                   | Events                                                                 |                                                                            | Events                            | lotal                                     | Weight                                           | M-H, Random, 95% Cl                                                                                | M-H, Random, 95% Cl |
| 3.2.11 Subgroup 4: C                                                                                                                                                                | ardiac surgery                                                         |                                                                            |                                   |                                           |                                                  |                                                                                                    |                     |
| Birnbaum 1990                                                                                                                                                                       | 0                                                                      | 10                                                                         | 0                                 | 10                                        |                                                  | Not estimable                                                                                      |                     |
| Oppizzi 1997                                                                                                                                                                        | 4                                                                      | 13                                                                         | 1                                 | 13                                        | 7.1%                                             | 4.00 [0.51, 31.13]                                                                                 |                     |
| Rosseel 1997                                                                                                                                                                        | 25                                                                     | 35                                                                         | 24                                | 35                                        | 45.7%                                            | 1.04 [0.77, 1.42]                                                                                  |                     |
| Schneider 1999                                                                                                                                                                      | 20                                                                     | 50                                                                         | 10                                | 49                                        | 32.0%                                            | 1.96 [1.02, 3.75]                                                                                  |                     |
| Sinclair 1997                                                                                                                                                                       | 0                                                                      | 16                                                                         | 0                                 | 14                                        |                                                  | Not estimable                                                                                      |                     |
| Woo 2002                                                                                                                                                                            | 3                                                                      | 25                                                                         | 6                                 | 25                                        | 15.2%                                            | 0.50 [0.14, 1.78]                                                                                  |                     |
| Subtotal (95% CI)                                                                                                                                                                   |                                                                        | 149                                                                        |                                   | 146                                       | 100.0%                                           | 1.25 [0.70, 2.26]                                                                                  | <b>•</b>            |
| Total events                                                                                                                                                                        | 52                                                                     |                                                                            | 41                                |                                           |                                                  |                                                                                                    |                     |
| Test for overall effect:                                                                                                                                                            | Z = 0.75 (P = 0.                                                       | 45)                                                                        |                                   |                                           |                                                  |                                                                                                    |                     |
| 2 2 4 2 Subaroup A: N                                                                                                                                                               | ot having cardi                                                        |                                                                            |                                   |                                           |                                                  |                                                                                                    |                     |
| 3.2.12 Subgroup 4: N                                                                                                                                                                |                                                                        |                                                                            | -                                 | 40                                        | 40.00                                            | 2.25 14 46 0.421                                                                                   |                     |
| Chen 2012                                                                                                                                                                           | 13                                                                     | 40                                                                         | 4                                 | 40                                        | 18.8%                                            | 3.25 [1.16, 9.12]                                                                                  |                     |
| Chen 2012<br>Chen 2013                                                                                                                                                              | 13<br>19                                                               | 40<br>122                                                                  | 4<br>12                           | 119                                       | 43.7%                                            | 1.54 [0.78, 3.04]                                                                                  |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010                                                                                                                                            | 13<br>19<br>6                                                          | 40<br>122<br>30                                                            | 4<br>12<br>2                      | 119<br>30                                 |                                                  | 1.54 [0.78, 3.04]<br>3.00 [0.66, 13.69]                                                            |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010<br>Kamiya 2015                                                                                                                             | 13<br>19                                                               | 40<br>122<br>30<br>12                                                      | 4<br>12<br>2<br>0                 | 119<br>30<br>12                           | 43.7%<br>8.7%                                    | 1.54 [0.78, 3.04]<br>3.00 [0.66, 13.69]<br>Not estimable                                           |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010<br>Kamiya 2015<br>Triposkiadis 2014                                                                                                        | 13<br>19<br>6<br>0<br>4                                                | 40<br>122<br>30<br>12<br>28                                                | 4<br>12<br>2<br>0<br>6            | 119<br>30<br>12<br>55                     | 43.7%<br>8.7%<br>14.4%                           | 1.54 [0.78, 3.04]<br>3.00 [0.66, 13.69]<br>Not estimable<br>1.31 [0.40, 4.26]                      |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010<br>Kamiya 2015                                                                                                                             | 13<br>19<br>6                                                          | 40<br>122<br>30<br>12                                                      | 4<br>12<br>2<br>0                 | 119<br>30<br>12                           | 43.7%<br>8.7%<br>14.4%<br>14.4%                  | 1.54 [0.78, 3.04]<br>3.00 [0.66, 13.69]<br>Not estimable                                           |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a                                                                                  | 13<br>19<br>6<br>0<br>4                                                | 40<br>122<br>30<br>12<br>28<br>28                                          | 4<br>12<br>2<br>0<br>6            | 119<br>30<br>12<br>55<br>50               | 43.7%<br>8.7%<br>14.4%<br>14.4%                  | 1.54 (0.78, 3.04)<br>3.00 (0.66, 13.69)<br>Not estimable<br>1.31 (0.40, 4.26)<br>1.19 (0.37, 3.86) |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b>                                                      | 13<br>19<br>6<br>0<br>4<br>4<br>46                                     | 40<br>122<br>30<br>12<br>28<br>28<br><b>28</b><br><b>260</b>               | 4<br>12<br>2<br>0<br>6<br>6<br>30 | 119<br>30<br>12<br>55<br>50<br><b>306</b> | 43.7%<br>8.7%<br>14.4%<br>14.4%<br><b>100.0%</b> | 1.54 (0.78, 3.04)<br>3.00 (0.66, 13.69)<br>Not estimable<br>1.31 (0.40, 4.26)<br>1.19 (0.37, 3.86) |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events                                      | 13<br>19<br>6<br>0<br>4<br>4<br>4<br>6<br>0.00; Chi <sup>2</sup> = 2.6 | 40<br>122<br>30<br>12<br>28<br>28<br><b>28</b><br><b>260</b><br>i5, df = 4 | 4<br>12<br>2<br>0<br>6<br>6<br>30 | 119<br>30<br>12<br>55<br>50<br><b>306</b> | 43.7%<br>8.7%<br>14.4%<br>14.4%<br><b>100.0%</b> | 1.54 (0.78, 3.04)<br>3.00 (0.66, 13.69)<br>Not estimable<br>1.31 (0.40, 4.26)<br>1.19 (0.37, 3.86) |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = | 13<br>19<br>6<br>0<br>4<br>4<br>4<br>6<br>0.00; Chi <sup>2</sup> = 2.6 | 40<br>122<br>30<br>12<br>28<br>28<br><b>28</b><br><b>260</b><br>i5, df = 4 | 4<br>12<br>2<br>0<br>6<br>6<br>30 | 119<br>30<br>12<br>55<br>50<br><b>306</b> | 43.7%<br>8.7%<br>14.4%<br>14.4%<br><b>100.0%</b> | 1.54 (0.78, 3.04)<br>3.00 (0.66, 13.69)<br>Not estimable<br>1.31 (0.40, 4.26)<br>1.19 (0.37, 3.86) |                     |
| Chen 2012<br>Chen 2013<br>Giamouzis 2010<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = | 13<br>19<br>6<br>0<br>4<br>4<br>4<br>6<br>0.00; Chi <sup>2</sup> = 2.6 | 40<br>122<br>30<br>12<br>28<br>28<br><b>28</b><br><b>260</b><br>i5, df = 4 | 4<br>12<br>2<br>0<br>6<br>6<br>30 | 119<br>30<br>12<br>55<br>50<br><b>306</b> | 43.7%<br>8.7%<br>14.4%<br>14.4%<br><b>100.0%</b> | 1.54 (0.78, 3.04)<br>3.00 (0.66, 13.69)<br>Not estimable<br>1.31 (0.40, 4.26)<br>1.19 (0.37, 3.86) |                     |

Test for subgroup differences:  $Chi^2 = 0.83$ , df = 1 (P = 0.36),  $l^2 = 0\%$ 


# *E-Figures 2.7.13: sensitivity analysis – patients with cardiac dysfunction versus a majority/large proportion of patients with cardiac dysfunction*

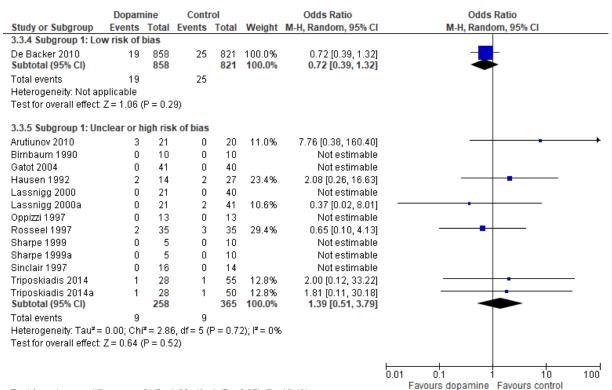
|                                   | Dopam      | ine                 | Contr        | ol      |                         | Risk Ratio          | Risk Ratio          |
|-----------------------------------|------------|---------------------|--------------|---------|-------------------------|---------------------|---------------------|
| Study or Subgroup                 | Events     | Total               | Events       | Total   | Weight                  | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
| 3.2.1 All included stu            | dies       |                     |              |         |                         |                     |                     |
| Birnbaum 1990                     | 0          | 10                  | 0            | 10      |                         | Not estimable       |                     |
| Chen 2012                         | 13         | 40                  | 4            | 40      | 12.2%                   | 3.25 [1.16, 9.12]   |                     |
| Chen 2013                         | 19         | 122                 | 12           | 119     | 26.4%                   | 1.54 [0.78, 3.04]   | +                   |
| Giamouzis 2010                    | 6          | 30                  | 2            | 30      | 5.8%                    | 3.00 [0.66, 13.69]  |                     |
| Kamiya 2015                       | 0          | 12                  | 0            | 12      |                         | Not estimable       |                     |
| Schneider 1999                    | 20         | 50                  | 10           | 49      | 28.4%                   | 1.96 [1.02, 3.75]   | <b>⊢</b> ∎−-        |
| Sinclair 1997                     | 0          | 16                  | 0            | 14      |                         | Not estimable       |                     |
| Triposkiadis 2014                 | 4          | 28                  | 6            | 55      | 9.4%                    | 1.31 [0.40, 4.26]   |                     |
| Triposkiadis 2014a                | 4          | 28                  | 6            | 50      | 9.5%                    | 1.19 [0.37, 3.86]   |                     |
| Woo 2002                          | 3          | 25                  | 6            | 25      | 8.2%                    | 0.50 [0.14, 1.78]   |                     |
| Subtotal (95% CI)                 |            | 361                 |              | 404     | 100.0%                  | 1.65 [1.14, 2.39]   | ◆                   |
| Total events                      | 69         |                     | 46           |         |                         |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.02; Chi  | <sup>2</sup> = 6.40 | D, df = 6 (  | P = 0.3 | 8); I <sup>z</sup> = 6% | )                   |                     |
| Test for overall effect:          | Z=2.64 (   | P = 0.0             | 08)          |         |                         |                     |                     |
| 3.2.3 Pure cardiac dy             | sfunctior  | n studie            | es           |         |                         |                     |                     |
| Oppizzi 1997                      | 4          | 13                  | 1            | 13      | 24.4%                   | 4.00 [0.51, 31.13]  |                     |
| Rosseel 1997                      | 25         | 35                  | 24           | 35      | 75.6%                   | 1.04 [0.77, 1.42]   |                     |
| Subtotal (95% CI)                 |            | 48                  |              | 48      | 100.0%                  | 1.45 [0.43, 4.90]   |                     |
| Total events                      | 29         |                     | 25           |         |                         |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.49; Chi  | <sup>2</sup> = 1.87 | 7, df = 1 (i | P = 0.1 | 7); l² = 47'            | %                   |                     |
| Test for overall effect:          | Z = 0.59 ( | P = 0.5             | 5)           |         |                         |                     |                     |
|                                   |            |                     | -            |         |                         |                     |                     |
|                                   |            |                     |              |         |                         |                     |                     |
|                                   |            |                     |              |         |                         |                     | 0.01 0.1 1 10 100   |

Test for subgroup differences:  $Chi^2 = 0.04$ , df = 1 (P = 0.84),  $l^2 = 0\%$ 


## 2.8. Trial sequential analysis of serious adverse events

*E-Figure 2.8: the TSA is based on 11 trials, which is the meta-analysed effect of dopamine versus any (in)active comparator intervention.* 




#### 2.9. Forest plots of myocardial infarction

#### E-Figures 2.9.1-2.9.3: all trials with worst-best and best-worst case analyses



Test for subgroup differences: Chi<sup>2</sup> = 0.21, df = 2 (P = 0.90),  $I^2 = 0\%$ 

#### E-Figures 2.9.4-2.9.5: subgroup analysis 1 - trials subdivided by risk of bias



Test for subgroup differences: Chi<sup>2</sup> = 1.20, df = 1 (P = 0.27), l<sup>2</sup> = 16.4%

#### E-Figures 2.9.6-2.9.7: subgroup analysis 2 – trials subdivided by comparator intervention

|                                   | Dopan       |                             | Cont        |         |                               | Odds Ratio          | Odds Ratio          |
|-----------------------------------|-------------|-----------------------------|-------------|---------|-------------------------------|---------------------|---------------------|
| Study or Subgroup                 |             |                             | Events      | Total   | Weight                        | M-H, Random, 95% CI | M-H, Random, 95% Cl |
| 3.3.6 Subgroup 2: Ina             | active con  | trol                        |             |         |                               |                     |                     |
| Gatot 2004                        | 0           | 41                          | 0           | 40      |                               | Not estimable       |                     |
| Lassnigg 2000                     | 0           | 21                          | 0           | 40      |                               | Not estimable       |                     |
| Sharpe 1999                       | 0           | 10                          | 0           | 10      |                               | Not estimable       |                     |
| Triposkiadis 2014                 | 1           | 28                          | 1           | 55      | 100.0%                        | 2.00 [0.12, 33.22]  |                     |
| Subtotal (95% CI)                 |             | 100                         |             | 145     | 100.0%                        | 2.00 [0.12, 33.22]  |                     |
| Total events                      | 1           |                             | 1           |         |                               |                     |                     |
| Heterogeneity: Not ap             | oplicable   |                             |             |         |                               |                     |                     |
| Test for overall effect:          | Z=0.48 (    | (P = 0.6                    | 3)          |         |                               |                     |                     |
| 3.3.7 Subgroup 2: Po              | tentially a | ictive c                    | ontrol      |         |                               |                     |                     |
| Arutiunov 2010                    | 3           | 21                          | 0           | 20      | 3.0%                          | 7.76 [0.38, 160.40] |                     |
| Birnbaum 1990                     | 0           | 10                          | 0           | 10      |                               | Not estimable       |                     |
| De Backer 2010                    | 19          | 858                         | 25          | 821     | 76.0%                         | 0.72 [0.39, 1.32]   |                     |
| Hausen 1992                       | 2           | 14                          | 2           | 27      | 6.4%                          | 2.08 [0.26, 16.63]  | •                   |
| Lassnigg 2000a                    | 0           | 21                          | 2           | 41      | 2.9%                          | 0.37 [0.02, 8.01]   |                     |
| Oppizzi 1997                      | 0           | 13                          | 0           | 13      |                               | Not estimable       |                     |
| Rosseel 1997                      | 2           | 35                          | 3           | 35      | 8.1%                          | 0.65 [0.10, 4.13]   |                     |
| Sharpe 1999a                      | 0           | 5                           | 0           | 10      |                               | Not estimable       |                     |
| Sinclair 1997                     | 0           | 16                          | 0           | 14      |                               | Not estimable       |                     |
| Triposkiadis 2014a                | 1           | 28                          | 1           | 50      | 3.5%                          | 1.81 [0.11, 30.18]  |                     |
| Subtotal (95% CI)                 |             | 1021                        |             | 1041    | 100.0%                        | 0.83 [0.49, 1.41]   | <b>•</b>            |
| Total events                      | 27          |                             | 33          |         |                               |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | : 0.00; Chi | <b>z</b> = 3.7 <sup>-</sup> | 1, df = 5 ( | P = 0.5 | 9); <b>I<sup>2</sup> = 0%</b> | )                   |                     |
| Test for overall effect:          |             |                             |             |         |                               |                     |                     |
|                                   |             |                             |             |         |                               |                     |                     |
|                                   |             |                             |             |         |                               |                     | 0.01 0.1 1 10 10    |

Test for subgroup differences: Chi<sup>2</sup> = 0.36, df = 1 (P = 0.55), l<sup>2</sup> = 0%

Favours dopamine Favours control

#### E-Figures 2.9.8-2.9.10: subgroup analysis 3 – trials subdivided by dose

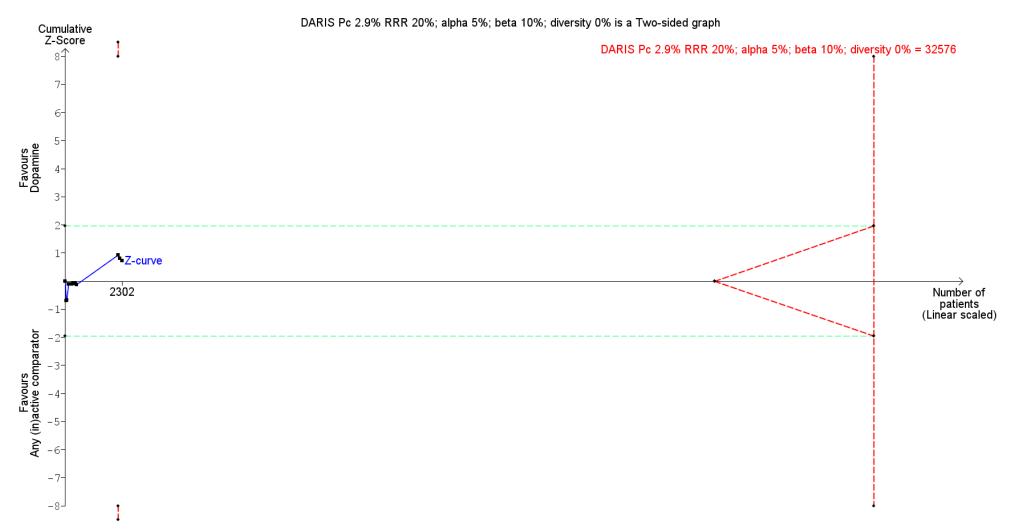
|                                      | Dopam    |                     | Cont        |          |                          | Odds Ratio          | Odds Ratio                       |
|--------------------------------------|----------|---------------------|-------------|----------|--------------------------|---------------------|----------------------------------|
|                                      |          | Total               | Events      | Total    | Weight                   | M-H, Random, 95% Cl | M-H, Random, 95% CI              |
| 3.3.8 Subgroup 3: Low                | dose     |                     |             |          |                          |                     |                                  |
| Arutiunov 2010                       | 3        | 21                  | 0           | 20       | 24.2%                    | 7.76 [0.38, 160.40] |                                  |
| Birnbaum 1990                        | 0        | 10                  | 0           | 10       |                          | Not estimable       |                                  |
| Lassnigg 2000                        | 0        | 21                  | 0           | 40       |                          | Not estimable       |                                  |
| Lassnigg 2000a                       | 0        | 21                  | 2           | 41       | 23.5%                    | 0.37 [0.02, 8.01]   |                                  |
| Rosseel 1997                         | 2        | 35                  | 3           | 35       | 52.3%                    | 0.65 [0.10, 4.13]   |                                  |
| Sinclair 1997                        | 0        | 16                  | 0           | 14       |                          | Not estimable       |                                  |
| Subtotal (95% CI)                    |          | 124                 |             | 160      | 100.0%                   | 1.03 [0.21, 5.14]   |                                  |
| Total events                         | 5        |                     | 5           |          |                          |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = 0. | .39; Chi | <b>z</b> = 2.43     | 3, df = 2 ( | P = 0.3  | 0); I <sup>z</sup> = 189 | %                   |                                  |
| Test for overall effect: Z           | = 0.04 ( | P = 0.9             | 7)          |          |                          |                     |                                  |
| 3.3.9 Subgroup 3: Mode               | erate do | ose                 |             |          |                          |                     |                                  |
| Gatot 2004                           | 0        | 41                  | 0           | 40       |                          | Not estimable       |                                  |
| Hausen 1992                          | 2        | 14                  | 2           | 27       | 47.8%                    | 2.08 [0.26, 16.63]  |                                  |
| Oppizzi 1997                         | 0        | 13                  | 0           | 13       |                          | Not estimable       |                                  |
| Sharpe 1999                          | 0        | 5                   | 0           | 10       |                          | Not estimable       |                                  |
| Sharpe 1999a                         | 0        | 5                   | 0           | 10       |                          | Not estimable       |                                  |
| Triposkiadis 2014                    | 1        | 28                  | 1           | 55       | 26.1%                    | 2.00 [0.12, 33.22]  |                                  |
| Triposkiadis 2014a                   | 1        | 28                  | 1           | 50       | 26.1%                    | 1.81 [0.11, 30.18]  |                                  |
| Subtotal (95% CI)                    |          | 134                 |             | 205      | 100.0%                   | 1.99 [0.47, 8.36]   |                                  |
| Total events                         | 4        |                     | 4           |          |                          |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = 0. | .00: Chi | <sup>2</sup> = 0.01 | l.df=2(     | P = 1.0  | )); <b> </b> ² = 0%      | 1                   |                                  |
| Test for overall effect: Z           | •        |                     | •           |          |                          |                     |                                  |
| 3.3.10 Subgroup 3: Higl              | h dose   |                     |             |          |                          |                     |                                  |
| De Backer 2010                       | 19       | 858                 | 25          | 821      | 100.0%                   | 0.72 [0.39, 1.32]   |                                  |
| Subtotal (95% CI)                    |          | 858                 | 20          |          | 100.0%                   | 0.72 [0.39, 1.32]   |                                  |
| Total events                         | 19       |                     | 25          |          |                          | . ,                 | -                                |
| Heterogeneity: Not appl              |          |                     |             |          |                          |                     |                                  |
| Test for overall effect: Z           |          | P=02                | 9)          |          |                          |                     |                                  |
|                                      |          |                     | -,          |          |                          |                     |                                  |
|                                      |          |                     |             |          |                          |                     |                                  |
|                                      |          |                     |             |          |                          |                     |                                  |
| Test for subaroup differ             | oncos: i | ∩hi≅ – 1            | - 16 9 df   | 2 (P - 1 | 1 / 3) IZ -              | n%                  | Favours dopamine Favours control |

Test for subgroup differences:  $Chi^2 = 1.68$ , df = 2 (P = 0.43),  $I^2 = 0\%$ 

## *E-Figures 2.9.11-2.9.12: subgroup analysis 4 – trials subdivided by clinical setting*

|                                                               | Dopan                 | nine                  | Cont        | rol     |                               | Odds Ratio          | Odds Ratio                                            |
|---------------------------------------------------------------|-----------------------|-----------------------|-------------|---------|-------------------------------|---------------------|-------------------------------------------------------|
| Study or Subgroup                                             | Events                | Total                 | Events      | Total   | Weight                        | M-H, Random, 95% Cl | M-H, Random, 95% CI                                   |
| 3.3.11 Subgroup 4: C                                          | ardiac su             | rgery                 |             |         |                               |                     |                                                       |
| Birnbaum 1990                                                 | 0                     | 10                    | 0           | 10      |                               | Not estimable       |                                                       |
| Gatot 2004                                                    | 0                     | 41                    | 0           | 40      |                               | Not estimable       |                                                       |
| Hausen 1992                                                   | 2                     | 14                    | 2           | 27      | 36.9%                         | 2.08 [0.26, 16.63]  |                                                       |
| Lassnigg 2000                                                 | 0                     | 21                    | 0           | 40      |                               | Not estimable       |                                                       |
| Lassnigg 2000a                                                | 0                     | 21                    | 2           | 41      | 16.8%                         | 0.37 [0.02, 8.01]   |                                                       |
| Oppizzi 1997                                                  | 0                     | 13                    | 0           | 13      |                               | Not estimable       |                                                       |
| Rosseel 1997                                                  | 2                     | 35                    | 3           | 35      | 46.3%                         | 0.65 [0.10, 4.13]   |                                                       |
| Sharpe 1999                                                   | 0                     | 5                     | 0           | 10      |                               | Not estimable       |                                                       |
| Sharpe 1999a                                                  | 0                     | 5                     | 0           | 10      |                               | Not estimable       |                                                       |
| Sinclair 1997                                                 | 0                     | 16                    | 0           | 14      |                               | Not estimable       |                                                       |
| Subtotal (95% CI)                                             |                       | 181                   |             | 240     | 100.0%                        | 0.91 [0.26, 3.20]   |                                                       |
| Total events                                                  | 4                     |                       | 7           |         |                               |                     |                                                       |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: | •                     |                       |             | P = 0.5 | 8); I² = 0%                   | 6                   |                                                       |
| 3.3.12 Subgroup 4: N                                          | lot having            | cardia                | c surger    | у       |                               |                     |                                                       |
| Arutiunov 2010                                                | 3                     | 21                    | 0           | 20      | 3.5%                          | 7.76 [0.38, 160.40] |                                                       |
| De Backer 2010                                                | 19                    | 858                   | 25          | 821     | 88.3%                         | 0.72 [0.39, 1.32]   |                                                       |
| Triposkiadis 2014                                             | 1                     | 28                    | 1           | 55      | 4.1%                          | 2.00 [0.12, 33.22]  |                                                       |
| Triposkiadis 2014a                                            | 1                     | 28                    | 1           | 50      | 4.1%                          | 1.81 [0.11, 30.18]  |                                                       |
| Subtotal (95% CI)                                             |                       | 935                   |             | 946     | 100.0%                        | 0.85 [0.48, 1.50]   | <b>•</b>                                              |
| Total events                                                  | 24                    |                       | 27          |         |                               |                     |                                                       |
| Heterogeneity: Tau <sup>2</sup> =                             | = 0.00; Chi           | i <sup>z</sup> = 3.00 | ), df = 3 ( | P = 0.3 | 9); <b>I<sup>2</sup> = 0%</b> | 6                   |                                                       |
| Test for overall effect:                                      | Z= 0.57 (             | (P = 0.5              | 7)          |         |                               |                     |                                                       |
|                                                               |                       |                       |             |         |                               |                     |                                                       |
|                                                               |                       |                       |             |         |                               |                     |                                                       |
|                                                               |                       |                       |             |         |                               |                     | 0.01 0.1 1 10 100<br>Favours dopamine Favours control |
| Test for subgroup diff                                        | ferences <sup>.</sup> | Chi² = (              | -101 df=    | 1 (P =  | 0.93) E=                      | 0%                  | Favours dopartime Favours control                     |

Test for subgroup differences:  $Chi^2 = 0.01$ , df = 1 (P = 0.93),  $l^2 = 0\%$ 

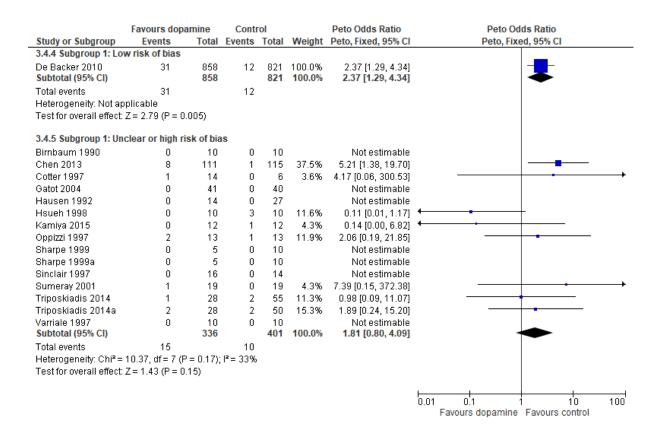

# *E-Figures 2.9.13: sensitivity analysis – patients with cardiac dysfunction versus a majority/large proportion of patients with cardiac dysfunction*

|                                                                                                                                 | Dopam                           | nine                                                 | Contr                       | ol                          |                         | Odds Ratio                                               | Odds Ratio          |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|-----------------------------|-----------------------------|-------------------------|----------------------------------------------------------|---------------------|
| Study or Subgroup                                                                                                               | Events                          | Total                                                | Events                      | Total                       | Weight                  | M-H, Random, 95% Cl                                      | M-H, Random, 95% Cl |
| 3.3.1 All included stu                                                                                                          | dies                            |                                                      |                             |                             |                         |                                                          |                     |
| Birnbaum 1990                                                                                                                   | 0                               | 10                                                   | 0                           | 10                          |                         | Not estimable                                            |                     |
| De Backer 2010                                                                                                                  | 19                              | 858                                                  | 25                          | 821                         | 82.3%                   | 0.72 [0.39, 1.32]                                        |                     |
| Gatot 2004                                                                                                                      | 0                               | 41                                                   | 0                           | 40                          |                         | Not estimable                                            |                     |
| Hausen 1992                                                                                                                     | 2                               | 14                                                   | 2                           | 27                          | 7.0%                    | 2.08 [0.26, 16.63]                                       |                     |
| Lassnigg 2000                                                                                                                   | 0                               | 21                                                   | 0                           | 40                          |                         | Not estimable                                            |                     |
| Lassnigg 2000a                                                                                                                  | 0                               | 21                                                   | 2                           | 41                          | 3.2%                    | 0.37 [0.02, 8.01]                                        |                     |
| Sharpe 1999                                                                                                                     | 0                               | 5                                                    | 0                           | 10                          |                         | Not estimable                                            |                     |
| Sharpe 1999a                                                                                                                    | 0                               | 5                                                    | 0                           | 10                          |                         | Not estimable                                            |                     |
| Binclair 1997                                                                                                                   | 0                               | 16                                                   | 0                           | 14                          |                         | Not estimable                                            |                     |
| Triposkiadis 2014                                                                                                               | 1                               | 28                                                   | 1                           | 55                          | 3.8%                    | 2.00 [0.12, 33.22]                                       |                     |
| Triposkiadis 2014a                                                                                                              | 1                               | 28                                                   | 1                           | 50                          | 3.8%                    | 1.81 [0.11, 30.18]                                       |                     |
| Subtotal (95% CI)                                                                                                               |                                 | 1047                                                 |                             | 1118                        | 100.0%                  | 0.82 [0.47, 1.42]                                        | ◆                   |
| Total events                                                                                                                    | 23                              |                                                      | 31                          |                             |                         |                                                          |                     |
| Heterogeneity: Tau <sup>2</sup> =                                                                                               | : 0.00; Chi                     | r = 1.90                                             | 0, df = 4 (                 | P = 0.7                     | 5); I <sup>z</sup> = 0% |                                                          |                     |
| Test for overall effect:                                                                                                        | Z=0.72 (                        | (P = 0.4                                             | -7)                         |                             |                         |                                                          |                     |
|                                                                                                                                 |                                 |                                                      |                             |                             |                         |                                                          |                     |
| 3.3.2 Pure cardiac dy                                                                                                           | ysfunctior                      | ı studie                                             | es                          |                             |                         |                                                          |                     |
| 3.3.2 Pure cardiac dy<br>Arutiunov 2010                                                                                         | ysfunctior<br>3                 | n <mark>studi</mark> e<br>21                         | es<br>O                     | 20                          | 38.4%                   | 7.76 [0.38, 160.40]                                      |                     |
|                                                                                                                                 | -                               |                                                      |                             | 20<br>13                    | 38.4%                   | 7.76 (0.38, 160.40)<br>Not estimable                     |                     |
| Arutiunov 2010                                                                                                                  | 3                               | 21                                                   | 0                           |                             | 38.4%<br>61.6%          | • • •                                                    |                     |
| Arutiunov 2010<br>Oppizzi 1997                                                                                                  | -<br>3<br>0                     | 21<br>13                                             | 0<br>0                      | 13<br>35                    |                         | Not estimable                                            |                     |
| Arutiunov 2010<br>Oppizzi 1997<br>Rosseel 1997                                                                                  | -<br>3<br>0                     | 21<br>13<br>35                                       | 0<br>0                      | 13<br>35                    | 61.6%                   | Not estimable<br>0.65 [0.10, 4.13]                       |                     |
| Arutiunov 2010<br>Oppizzi 1997<br>Rosseel 1997<br><b>Subtotal (95% CI)</b>                                                      | 3<br>0<br>2<br>5                | 21<br>13<br>35<br><mark>69</mark>                    | 0<br>0<br>3<br>3            | 13<br>35<br><mark>68</mark> | 61.6%<br><b>100.0%</b>  | Not estimable<br>0.65 [0.10, 4.13]<br>1.68 [0.15, 18.75] |                     |
| Arutiunov 2010<br>Oppizzi 1997<br>Rosseel 1997<br><b>Subtotal (95% CI)</b><br>Total events                                      | 3<br>0<br>2<br>5<br>= 1.57; Chi | 21<br>13<br>35<br><b>69</b><br>i <sup>2</sup> = 1.98 | 0<br>0<br>3<br>5, df = 1 (1 | 13<br>35<br><mark>68</mark> | 61.6%<br><b>100.0%</b>  | Not estimable<br>0.65 [0.10, 4.13]<br>1.68 [0.15, 18.75] |                     |
| Arutiunov 2010<br>Oppizzi 1997<br>Rosseel 1997<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = | 3<br>0<br>2<br>5<br>= 1.57; Chi | 21<br>13<br>35<br><b>69</b><br>i <sup>2</sup> = 1.98 | 0<br>0<br>3<br>5, df = 1 (1 | 13<br>35<br><mark>68</mark> | 61.6%<br><b>100.0%</b>  | Not estimable<br>0.65 [0.10, 4.13]<br>1.68 [0.15, 18.75] |                     |
| Arutiunov 2010<br>Oppizzi 1997<br>Rosseel 1997<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = | 3<br>0<br>2<br>5<br>= 1.57; Chi | 21<br>13<br>35<br><b>69</b><br>i <sup>2</sup> = 1.98 | 0<br>0<br>3<br>5, df = 1 (1 | 13<br>35<br><mark>68</mark> | 61.6%<br><b>100.0%</b>  | Not estimable<br>0.65 [0.10, 4.13]<br>1.68 [0.15, 18.75] |                     |

Test for subgroup differences:  $Chi^2 = 0.32$ , df = 1 (P = 0.57),  $l^2 = 0\%$ 

## 2.10. Trial sequential analysis of myocardial infarction

*E*-Figure 2.10: the TSA is based on 11 trials, which is the meta-analysed effect of dopamine versus any (in)active comparator intervention.




# 2.11. Forest plots of ventricular tachyarrhythmias

# *E-Figures 2.11.1-2.11.3: all trials with worst-best and best-worst case analyses*

| Study or Subarous                                                                                                                                                                                                                          | Favours dopa<br>Events                                    |                                                      | Contr                       |                                                       | Woight       | Peto Odds Ratio                                                                                                  | Peto Odds Ratio                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-----------------------------|-------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Study or Subgroup<br>3.4.1 All included stud                                                                                                                                                                                               |                                                           | rotal                                                | events                      | Total                                                 | weight       | Peto, Fixed, 95% Cl                                                                                              | Peto, Fixed, 95% Cl                     |
|                                                                                                                                                                                                                                            |                                                           |                                                      |                             |                                                       |              |                                                                                                                  |                                         |
| Birnbaum 1990                                                                                                                                                                                                                              | 0                                                         | 10                                                   | 0                           | 10                                                    |              | Not estimable                                                                                                    |                                         |
| Chen 2013                                                                                                                                                                                                                                  | 8                                                         | 111                                                  | 1                           | 115                                                   | 13.3%        | 5.21 [1.38, 19.70]                                                                                               |                                         |
| Cotter 1997                                                                                                                                                                                                                                | 1                                                         | 14                                                   | 0                           | 6                                                     | 1.3%         | 4.17 [0.06, 300.53]                                                                                              |                                         |
| De Backer 2010                                                                                                                                                                                                                             | 31                                                        | 858                                                  | 12                          | 821                                                   | 64.4%        | 2.37 [1.29, 4.34]                                                                                                |                                         |
| Gatot 2004                                                                                                                                                                                                                                 | 0                                                         | 41                                                   | 0                           | 40                                                    | •            | Not estimable                                                                                                    |                                         |
|                                                                                                                                                                                                                                            |                                                           |                                                      | -                           |                                                       |              |                                                                                                                  |                                         |
| Hausen 1992                                                                                                                                                                                                                                | 0                                                         | 14                                                   | 0                           | 27                                                    |              | Not estimable                                                                                                    |                                         |
| Hsueh 1998                                                                                                                                                                                                                                 | 0                                                         | 10                                                   | 3                           | 10                                                    | 4.1%         | 0.11 [0.01, 1.17]                                                                                                |                                         |
| Kamiya 2015                                                                                                                                                                                                                                | 0                                                         | 12                                                   | 1                           | 12                                                    | 1.5%         | 0.14 [0.00, 6.82]                                                                                                | ←                                       |
| Oppizzi 1997                                                                                                                                                                                                                               | 2                                                         | 13                                                   | 1                           | 13                                                    | 4.2%         | 2.06 [0.19, 21.85]                                                                                               |                                         |
| Sharpe 1999                                                                                                                                                                                                                                | 0                                                         | 5                                                    | Ó                           | 10                                                    |              | Not estimable                                                                                                    |                                         |
| Sharpe 1999a                                                                                                                                                                                                                               | Ő                                                         | 5                                                    | 0                           | 10                                                    |              |                                                                                                                  |                                         |
|                                                                                                                                                                                                                                            |                                                           |                                                      |                             |                                                       |              | Not estimable                                                                                                    |                                         |
| Binclair 1997                                                                                                                                                                                                                              | 0                                                         | 16                                                   | 0                           | 14                                                    |              | Not estimable                                                                                                    |                                         |
| Sumeray 2001                                                                                                                                                                                                                               | 1                                                         | 19                                                   | 0                           | 19                                                    | 1.5%         | 7.39 [0.15, 372.38]                                                                                              |                                         |
| Friposkiadis 2014                                                                                                                                                                                                                          | 1                                                         | 28                                                   | 2                           | 55                                                    | 4.0%         | 0.98 [0.09, 11.07]                                                                                               |                                         |
| Friposkiadis 2014a                                                                                                                                                                                                                         | 2                                                         | 28                                                   | 2                           | 50                                                    | 5.4%         | 1.89 [0.24, 15.20]                                                                                               |                                         |
| •                                                                                                                                                                                                                                          |                                                           |                                                      |                             |                                                       | 0.470        |                                                                                                                  |                                         |
| /arriale 1997<br>Subtotal (05% CI)                                                                                                                                                                                                         | 0                                                         | 10                                                   | 0                           | 10                                                    | 100.0%       | Not estimable                                                                                                    |                                         |
| Subtotal (95% CI)                                                                                                                                                                                                                          |                                                           | 1194                                                 |                             | 1222                                                  | 100.0%       | 2.15 [1.32, 3.50]                                                                                                | -                                       |
| Fotal events                                                                                                                                                                                                                               | 46                                                        |                                                      | 22                          |                                                       |              |                                                                                                                  |                                         |
| Heterogeneity: Chi <sup>2</sup> = 1                                                                                                                                                                                                        | 10.64, df = 8 (P                                          | = 0.22);                                             | I <sup>z</sup> = 25%        |                                                       |              |                                                                                                                  |                                         |
| est for overall effect: 2                                                                                                                                                                                                                  |                                                           |                                                      |                             |                                                       |              |                                                                                                                  |                                         |
| .4.2 Worst-best case                                                                                                                                                                                                                       | e analysis                                                |                                                      |                             |                                                       |              |                                                                                                                  |                                         |
|                                                                                                                                                                                                                                            | -                                                         | 4.0                                                  | 0                           | 4.0                                                   |              | Not cotimable                                                                                                    |                                         |
| Birnbaum 1990                                                                                                                                                                                                                              | 0                                                         | 10                                                   | 0                           | 10                                                    |              | Not estimable                                                                                                    |                                         |
| Chen 2013                                                                                                                                                                                                                                  | 8                                                         | 111                                                  | 1                           | 115                                                   | 11.8%        | 5.21 [1.38, 19.70]                                                                                               |                                         |
| Cotter 1997                                                                                                                                                                                                                                | 1                                                         | 14                                                   | 0                           | 6                                                     | 1.1%         | 4.17 [0.06, 300.53]                                                                                              |                                         |
| De Backer 2010                                                                                                                                                                                                                             | 31                                                        | 858                                                  | 12                          | 821                                                   | 57.2%        | 2.37 [1.29, 4.34]                                                                                                | ∎                                       |
| Gatot 2004                                                                                                                                                                                                                                 | 4                                                         | 45                                                   | 0                           | 44                                                    | 5.3%         | 7.75 [1.05, 56.94]                                                                                               |                                         |
| Hausen 1992                                                                                                                                                                                                                                | ů,                                                        | 14                                                   | Ő                           | 27                                                    | 0.070        |                                                                                                                  |                                         |
|                                                                                                                                                                                                                                            |                                                           |                                                      |                             |                                                       | 0.70         | Not estimable                                                                                                    |                                         |
| Hsueh 1998                                                                                                                                                                                                                                 | 0                                                         | 10                                                   | 3                           | 10                                                    | 3.7%         | 0.11 [0.01, 1.17]                                                                                                |                                         |
| Kamiya 2015                                                                                                                                                                                                                                | 0                                                         | 12                                                   | 1                           | 12                                                    | 1.4%         | 0.14 [0.00, 6.82]                                                                                                | • • • • • • • • • • • • • • • • • • • • |
| Oppizzi 1997                                                                                                                                                                                                                               | 2                                                         | 13                                                   | 1                           | 13                                                    | 3.8%         | 2.06 [0.19, 21.85]                                                                                               |                                         |
| Sharpe 1999                                                                                                                                                                                                                                | 0                                                         | 5                                                    | 0                           | 10                                                    |              | Not estimable                                                                                                    |                                         |
| Sharpe 1999a                                                                                                                                                                                                                               | Ő                                                         | 5                                                    | Ŭ                           | 10                                                    |              | Not estimable                                                                                                    |                                         |
|                                                                                                                                                                                                                                            |                                                           | -                                                    |                             |                                                       |              |                                                                                                                  |                                         |
| Binclair 1997                                                                                                                                                                                                                              | 0                                                         | 16                                                   | 0                           | 14                                                    |              | Not estimable                                                                                                    |                                         |
| Sumeray 2001                                                                                                                                                                                                                               | 6                                                         | 24                                                   | 0                           | 24                                                    | 7.3%         | 9.38 [1.72, 50.96]                                                                                               |                                         |
| Triposkiadis 2014                                                                                                                                                                                                                          | 1                                                         | 28                                                   | 2                           | 55                                                    | 3.6%         | 0.98 [0.09, 11.07]                                                                                               |                                         |
| Triposkiadis 2014a                                                                                                                                                                                                                         | 2                                                         | 28                                                   | 2                           | 50                                                    | 4.8%         | 1.89 [0.24, 15.20]                                                                                               |                                         |
| Varriale 1997                                                                                                                                                                                                                              | õ                                                         | 10                                                   | Õ                           | 10                                                    | 4.070        |                                                                                                                  |                                         |
|                                                                                                                                                                                                                                            | U                                                         |                                                      | U                           |                                                       | 400.0%       | Not estimable                                                                                                    |                                         |
| Subtotal (95% CI)                                                                                                                                                                                                                          |                                                           | 1203                                                 |                             | 1231                                                  | 100.0%       | 2.52 [1.59, 3.99]                                                                                                |                                         |
| Total events                                                                                                                                                                                                                               | 55                                                        |                                                      | 22                          |                                                       |              |                                                                                                                  |                                         |
| Heterogeneity: Chi <sup>2</sup> = 1                                                                                                                                                                                                        |                                                           |                                                      | I <b>²</b> = 37%            |                                                       |              |                                                                                                                  |                                         |
| Test for overall effect: 2                                                                                                                                                                                                                 | 2 = 3.96 (P < 0.                                          | .0001)                                               |                             |                                                       |              |                                                                                                                  |                                         |
| 3.4.3 Best-worst case                                                                                                                                                                                                                      | -                                                         |                                                      |                             |                                                       |              |                                                                                                                  |                                         |
| 3irnbaum 1990                                                                                                                                                                                                                              | 0                                                         | 10                                                   | 0                           | 10                                                    |              | Not estimable                                                                                                    |                                         |
| Chen 2013                                                                                                                                                                                                                                  | 8                                                         | 111                                                  | 1                           | 115                                                   | 11.8%        | 5.21 [1.38, 19.70]                                                                                               |                                         |
| Cotter 1997                                                                                                                                                                                                                                | 1                                                         | 14                                                   | O                           | 6                                                     | 1.1%         | 4.17 [0.06, 300.53]                                                                                              |                                         |
|                                                                                                                                                                                                                                            |                                                           |                                                      |                             |                                                       |              |                                                                                                                  | _ <b></b>                               |
| De Backer 2010                                                                                                                                                                                                                             | 31                                                        | 858                                                  | 12                          | 821                                                   | 57.2%        | 2.37 [1.29, 4.34]                                                                                                |                                         |
| ∋atot 2004                                                                                                                                                                                                                                 | 0                                                         | 45                                                   | 4                           | 44                                                    | 5.3%         | 0.12 [0.02, 0.91]                                                                                                |                                         |
| Hausen 1992                                                                                                                                                                                                                                | 0                                                         | 14                                                   | 0                           | 27                                                    |              | Not estimable                                                                                                    |                                         |
|                                                                                                                                                                                                                                            | 0                                                         | 10                                                   | 3                           | 10                                                    | 3.7%         | 0.11 [0.01, 1.17]                                                                                                | <b>←</b> → →                            |
| HSUEN 1998                                                                                                                                                                                                                                 |                                                           | 12                                                   | 1                           | 12                                                    | 1.4%         | 0.14 [0.00, 6.82]                                                                                                | ·                                       |
|                                                                                                                                                                                                                                            |                                                           |                                                      |                             |                                                       |              |                                                                                                                  |                                         |
| Kamiya 2015                                                                                                                                                                                                                                | 0                                                         |                                                      |                             | 13                                                    | 3.8%         | 2.06 [0.19, 21.85]                                                                                               |                                         |
| <amiya 2015<br="">Oppizzi 1997</amiya>                                                                                                                                                                                                     | 0<br>2                                                    | 13                                                   | 1                           |                                                       |              |                                                                                                                  |                                         |
| <amiya 2015<br="">Oppizzi 1997</amiya>                                                                                                                                                                                                     | 0<br>2<br>0                                               | 13<br>5                                              | 0                           | 10                                                    |              | Not estimable                                                                                                    |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999                                                                                                                                                                                                 | 0<br>2                                                    | 13                                                   |                             |                                                       |              | Not estimable<br>Not estimable                                                                                   |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a                                                                                                                                                                                 | 0<br>2<br>0<br>0                                          | 13<br>5<br>5                                         | 0<br>0                      | 10<br>10                                              |              | Not estimable                                                                                                    |                                         |
| <amiya 2015<br="">Oppizzi 1997<br/>Sharpe 1999<br/>Sharpe 1999a<br/>Sinclair 1997</amiya>                                                                                                                                                  | 0<br>2<br>0<br>0                                          | 13<br>5<br>5<br>16                                   | 0<br>0<br>0                 | 10<br>10<br>14                                        | 7 204        | Not estimable<br>Not estimable                                                                                   |                                         |
| <amiya 2015<br="">Oppizzi 1997<br/>Sharpe 1999<br/>Sharpe 1999a<br/>Sinclair 1997<br/>Sumeray 2001</amiya>                                                                                                                                 | 0<br>2<br>0<br>0<br>1                                     | 13<br>5<br>16<br>24                                  | 0<br>0<br>0<br>5            | 10<br>10<br>14<br>24                                  | 7.3%         | Not estimable<br>Not estimable<br>0.22 [0.04, 1.22]                                                              |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Sinclair 1997<br>Sumeray 2001<br>Friposkiadis 2014                                                                                                                           | 0<br>2<br>0<br>0<br>1<br>1                                | 13<br>5<br>16<br>24<br>28                            | 0<br>0<br>5<br>2            | 10<br>10<br>14<br>24<br>55                            | 3.6%         | Not estimable<br>Not estimable<br>0.22 (0.04, 1.22)<br>0.98 (0.09, 11.07)                                        |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Sinclair 1997<br>Sumeray 2001<br>Friposkiadis 2014                                                                                                                           | 0<br>2<br>0<br>0<br>1                                     | 13<br>5<br>16<br>24                                  | 0<br>0<br>0<br>5            | 10<br>10<br>14<br>24                                  |              | Not estimable<br>Not estimable<br>0.22 [0.04, 1.22]                                                              |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Sinclair 1997<br>Sumeray 2001<br>Friposkiadis 2014<br>Friposkiadis 2014a                                                                                                     | 0<br>2<br>0<br>0<br>1<br>1                                | 13<br>5<br>16<br>24<br>28<br>28                      | 0<br>0<br>5<br>2            | 10<br>10<br>14<br>24<br>55                            | 3.6%         | Not estimable<br>Not estimable<br>0.22 [0.04, 1.22]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]                  |                                         |
| Hsueh 1998<br>Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Sinclair 1997<br>Sumeray 2001<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Varriale 1997<br>Subtotal (95% CI)                                                 | 0<br>2<br>0<br>0<br>1<br>1<br>2                           | 13<br>5<br>16<br>24<br>28                            | 0<br>0<br>5<br>2<br>2       | 10<br>10<br>14<br>24<br>55<br>50<br>10                | 3.6%         | Not estimable<br>Not estimable<br>0.22 (0.04, 1.22)<br>0.98 (0.09, 11.07)                                        |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Sinclair 1997<br>Sumeray 2001<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Varriale 1997                                                                                    | 0<br>2<br>0<br>0<br>1<br>1<br>2                           | 13<br>5<br>16<br>24<br>28<br>28<br>10                | 0<br>0<br>5<br>2<br>2       | 10<br>10<br>14<br>24<br>55<br>50<br>10                | 3.6%<br>4.8% | Not estimable<br>Not estimable<br>0.22 [0.04, 1.22]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sinclair 1997<br>Sumeray 2001<br>Triposkiadis 2014<br>Friposkiadis 2014a<br>Kariale 1997<br>Subtotal (95% CI)                                                                                | 0<br>2<br>0<br>1<br>1<br>2<br>0<br>46                     | 13<br>5<br>16<br>24<br>28<br>28<br>10<br><b>1203</b> | 0<br>0<br>5<br>2<br>0<br>31 | 10<br>10<br>14<br>24<br>55<br>50<br>10<br><b>1231</b> | 3.6%<br>4.8% | Not estimable<br>Not estimable<br>0.22 [0.04, 1.22]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Sinclair 1997<br>Sumeray 2001<br>Friposkiadis 2014<br>/arriale 1997<br>Subtotal (95% CI)<br>Fotal events                                                                     | 0<br>2<br>0<br>1<br>1<br>2<br>0<br>46<br>22.97, df = 9 (P | 13<br>5<br>16<br>24<br>28<br>28<br>10<br><b>1203</b> | 0<br>0<br>5<br>2<br>0<br>31 | 10<br>10<br>14<br>24<br>55<br>50<br>10<br><b>1231</b> | 3.6%<br>4.8% | Not estimable<br>Not estimable<br>0.22 [0.04, 1.22]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Sinclair 1997<br>Sumeray 2001<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Karriale 1997<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 2        | 0<br>2<br>0<br>1<br>1<br>2<br>0<br>46<br>22.97, df = 9 (P | 13<br>5<br>16<br>24<br>28<br>28<br>10<br><b>1203</b> | 0<br>0<br>5<br>2<br>0<br>31 | 10<br>10<br>14<br>24<br>55<br>50<br>10<br><b>1231</b> | 3.6%<br>4.8% | Not estimable<br>Not estimable<br>0.22 [0.04, 1.22]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                                         |
| Kamiya 2015<br>Oppizzi 1997<br>Sharpe 1999<br>Sharpe 1999a<br>Sinclair 1997<br>Sumeray 2001<br>Friposkiadis 2014<br>Friposkiadis 2014a<br>Varriale 1997<br><b>Subtotal (95% CI)</b><br>Fotal events<br>Heterogeneity: Chi <sup>2</sup> = 2 | 0<br>2<br>0<br>1<br>1<br>2<br>0<br>46<br>22.97, df = 9 (P | 13<br>5<br>16<br>24<br>28<br>28<br>10<br><b>1203</b> | 0<br>0<br>5<br>2<br>0<br>31 | 10<br>10<br>14<br>24<br>55<br>50<br>10<br><b>1231</b> | 3.6%<br>4.8% | Not estimable<br>Not estimable<br>0.22 [0.04, 1.22]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                                         |

E-Figures 2.11.4-2.11.5: subgroup analysis 1 - trials subdivided by risk of bias



*E-Figures 2.11.6-2.11.7: subgroup analysis 2 – trials subdivided by comparator intervention* 

|                                   | Favours dopa      |           | Cont           |       |        | Peto Odds Ratio     | Peto Odds Ratio     |
|-----------------------------------|-------------------|-----------|----------------|-------|--------|---------------------|---------------------|
| Study or Subgroup                 | Events            | Total     | Events         | Total | Weight | Peto, Fixed, 95% CI | Peto, Fixed, 95% Cl |
| 3.4.6 Subgroup 2: Ina             | active control    |           |                |       |        |                     |                     |
| Chen 2013                         | 8                 | 111       | 1              | 115   | 70.6%  | 5.21 [1.38, 19.70]  |                     |
| Gatot 2004                        | 0                 | 41        | 0              | 40    |        | Not estimable       |                     |
| Sharpe 1999                       | 0                 | 5         | 0              | 10    |        | Not estimable       |                     |
| Sumeray 2001                      | 1                 | 19        | 0              | 19    | 8.1%   | 7.39 [0.15, 372.38] |                     |
| Triposkiadis 2014                 | 1                 | 28        | 2              | 55    | 21.3%  | 0.98 [0.09, 11.07]  |                     |
| Varriale 1997                     | 0                 | 10        | 0              | 10    |        | Not estimable       |                     |
| Subtotal (95% CI)                 |                   | 214       |                | 249   | 100.0% | 3.76 [1.23, 11.49]  |                     |
| Total events                      | 10                |           | 3              |       |        |                     |                     |
| Heterogeneity: Chi <sup>2</sup> = | 1.52, df = 2 (P = | = 0.47);1 | ²=0%           |       |        |                     |                     |
| Test for overall effect:          | Z = 2.32 (P = 0   | 02)       |                |       |        |                     |                     |
| 3.4.7 Subgroup 2: Po              | tentially active  | control   |                |       |        |                     |                     |
| Birnbaum 1990                     | 0                 | 10        | 0              | 10    |        | Not estimable       |                     |
| Cotter 1997                       | 1                 | 14        | 0              | 6     | 1.6%   | 4.17 [0.06, 300.53] |                     |
| De Backer 2010                    | 31                | 858       | 12             | 821   | 79.5%  | 2.37 [1.29, 4.34]   | -∎-                 |
| Hausen 1992                       | 0                 | 14        | 0              | 27    |        | Not estimable       |                     |
| Hsueh 1998                        | 0                 | 10        | 3              | 10    | 5.1%   | 0.11 [0.01, 1.17]   | •                   |
| Kamiya 2015                       | 0                 | 12        | 1              | 12    | 1.9%   | 0.14 [0.00, 6.82]   | •                   |
| Oppizzi 1997                      | 2                 | 13        | 1              | 13    | 5.2%   | 2.06 [0.19, 21.85]  |                     |
| Sharpe 1999a                      | 0                 | 5         | 0              | 10    |        | Not estimable       |                     |
| Sinclair 1997                     | 0                 | 16        | 0              | 14    |        | Not estimable       |                     |
| Triposkiadis 2014a                | 2                 | 28        | 2              | 50    | 6.7%   | 1.89 [0.24, 15.20]  |                     |
| Subtotal (95% CI)                 |                   | 980       |                | 973   | 100.0% | 1.89 [1.10, 3.24]   | ●                   |
| Total events                      | 36                |           | 19             |       |        |                     |                     |
| Heterogeneity: Chi <sup>2</sup> = |                   |           | <b>²</b> = 37% |       |        |                     |                     |
| Test for overall effect:          | Z = 2.31 (P = 0   | 02)       |                |       |        |                     |                     |
|                                   |                   |           |                |       |        |                     |                     |
|                                   |                   |           |                |       |        |                     | 0.01 0.1 1 10 1     |

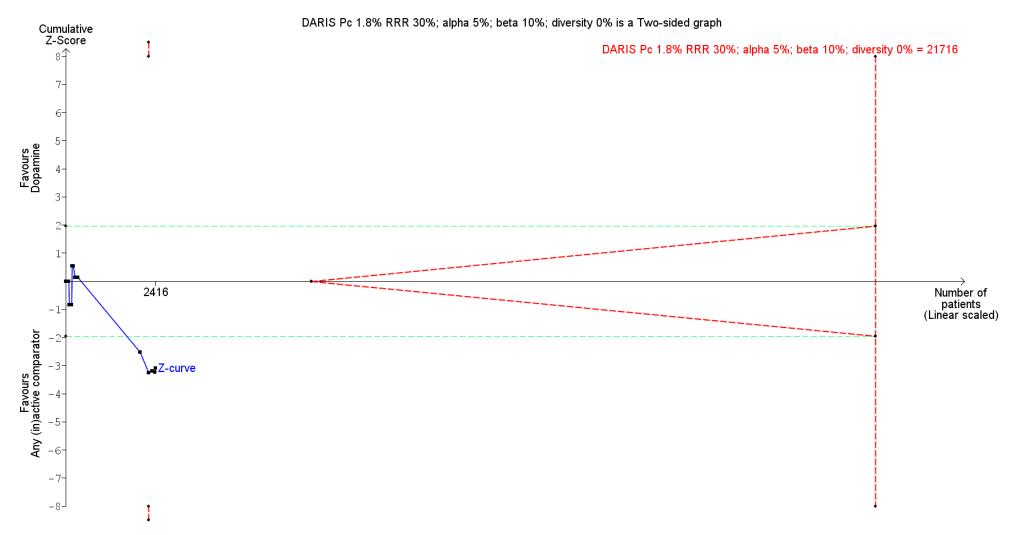
Favours dopamine Favours control

#### *E-Figures 2.11.8-2.11.10: subgroup analysis 3 – trials subdivided by dose*

|                                     | Favours dopa     | mine  | Contr  | ol    |        | Peto Odds Ratio     | Peto Odds Ratio                  |
|-------------------------------------|------------------|-------|--------|-------|--------|---------------------|----------------------------------|
| Study or Subgroup                   | Events           | Total | Events | Total | Weight | Peto, Fixed, 95% Cl | Peto, Fixed, 95% Cl              |
| 3.4.8 Subgroup 3: Lov               | vdose            |       |        |       |        |                     |                                  |
| Birnbaum 1990                       | 0                | 10    | 0      | 10    |        | Not estimable       |                                  |
| Chen 2013                           | 8                | 111   | 1      | 115   | 81.3%  | 5.21 [1.38, 19.70]  |                                  |
| Kamiya 2015                         | 0                | 12    | 1      | 12    | 9.4%   | 0.14 [0.00, 6.82]   | •                                |
| Sinclair 1997                       | 0                | 16    | 0      | 14    |        | Not estimable       |                                  |
| Sumeray 2001                        | 1                | 19    | 0      | 19    | 9.4%   | 7.39 [0.15, 372.38] |                                  |
| Varriale 1997                       | 0                | 10    | 0      | 10    |        | Not estimable       |                                  |
| Subtotal (95% CI)                   |                  | 178   |        | 180   | 100.0% | 3.82 [1.15, 12.69]  |                                  |
| Total events                        | 9                |       | 2      |       |        |                     |                                  |
| Heterogeneity: Chi <sup>2</sup> = 3 |                  |       | ²= 36% |       |        |                     |                                  |
| Test for overall effect: 2          | Z = 2.19 (P = 0. | 03)   |        |       |        |                     |                                  |
| 3.4.9 Subgroup 3: Mod               | derate dose      |       |        |       |        |                     |                                  |
| Cotter 1997                         | 1                | 14    | 0      | 6     | 6.8%   | 4.17 [0.06, 300.53] |                                  |
| Gatot 2004                          | 0                | 41    | 0      | 40    |        | Not estimable       |                                  |
| Hausen 1992                         | 0                | 14    | 0      | 27    |        | Not estimable       |                                  |
| Hsueh 1998                          | 0                | 10    | 3      | 10    | 21.6%  | 0.11 [0.01, 1.17]   | ← ■                              |
| Oppizzi 1997                        | 2                | 13    | 1      | 13    | 22.2%  | 2.06 [0.19, 21.85]  |                                  |
| Sharpe 1999                         | 0                | 5     | 0      | 10    |        | Not estimable       |                                  |
| Sharpe 1999a                        | 0                | 5     | 0      | 10    |        | Not estimable       |                                  |
| Triposkiadis 2014                   | 1                | 28    | 2      | 55    | 21.0%  | 0.98 [0.09, 11.07]  |                                  |
| Triposkiadis 2014a                  | 2                | 28    | 2      | 50    | 28.4%  | 1.89 [0.24, 15.20]  |                                  |
| Subtotal (95% CI)                   |                  | 158   |        | 221   | 100.0% | 0.95 [0.31, 2.90]   |                                  |
| Total events                        | 6                |       | 8      |       |        |                     |                                  |
| Heterogeneity: Chi <sup>2</sup> = 4 |                  |       | ²=11%  |       |        |                     |                                  |
| Test for overall effect: 2          | Z = 0.08 (P = 0. | 93)   |        |       |        |                     |                                  |
| 3.4.10 Subgroup 3: Hig              | gh dose          |       |        |       |        |                     |                                  |
| De Backer 2010                      | 31               | 858   | 12     | 821   | 100.0% | 2.37 [1.29, 4.34]   |                                  |
| Subtotal (95% CI)                   |                  | 858   |        | 821   | 100.0% | 2.37 [1.29, 4.34]   |                                  |
| Total events                        | 31               |       | 12     |       |        |                     |                                  |
| Heterogeneity: Not app              | plicable         |       |        |       |        |                     |                                  |
| Test for overall effect: 2          | Z = 2.79 (P = 0. | 005)  |        |       |        |                     |                                  |
|                                     |                  |       |        |       |        |                     |                                  |
|                                     |                  |       |        |       |        |                     | 0.01 0.1 1 10 100                |
|                                     |                  |       |        |       |        |                     | Favours dopamine Favours control |

*E-Figures 2.11.11-2.11.12: subgroup analysis 4 – trials subdivided by clinical setting* 

|                                                                                                                                                                                                                                     | Favours dopa                                                                   |                                                                                 | Contr                                       |                                        |                                               | Peto Odds Ratio                                                                                                                                 | Peto Odds Ratio |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Study or Subgroup                                                                                                                                                                                                                   | Subgroup Events Total Events Total Weight Peto<br>bgroup 4: Cardiac surgery    |                                                                                 | Peto, Fixed, 95% Cl                         | Peto, Fixed, 95% Cl                    |                                               |                                                                                                                                                 |                 |
| • •                                                                                                                                                                                                                                 | ardiac surgery                                                                 |                                                                                 |                                             |                                        |                                               |                                                                                                                                                 |                 |
| 3irnbaum 1990                                                                                                                                                                                                                       | 0                                                                              | 10                                                                              | 0                                           | 10                                     |                                               | Not estimable                                                                                                                                   |                 |
| ∋atot 2004                                                                                                                                                                                                                          | 0                                                                              | 41                                                                              | 0                                           | 40                                     |                                               | Not estimable                                                                                                                                   |                 |
| lausen 1992                                                                                                                                                                                                                         | 0                                                                              | 14                                                                              | 0                                           | 27                                     |                                               | Not estimable                                                                                                                                   |                 |
| Oppizzi 1997                                                                                                                                                                                                                        | 2                                                                              | 13                                                                              | 1                                           | 13                                     | 73.4%                                         | 2.06 [0.19, 21.85]                                                                                                                              |                 |
| Sharpe 1999                                                                                                                                                                                                                         | 0                                                                              | 5                                                                               | 0                                           | 10                                     |                                               | Not estimable                                                                                                                                   |                 |
| Sharpe 1999a                                                                                                                                                                                                                        | 0                                                                              | 5                                                                               | 0                                           | 10                                     |                                               | Not estimable                                                                                                                                   |                 |
| Sinclair 1997                                                                                                                                                                                                                       | 0                                                                              | 16                                                                              | 0                                           | 14                                     |                                               | Not estimable                                                                                                                                   |                 |
| Sumeray 2001<br>Subtotal (95% CI)                                                                                                                                                                                                   | 1                                                                              | 19<br><b>123</b>                                                                | 0                                           | 19<br><b>143</b>                       | 26.6%<br>100.0%                               | 7.39 [0.15, 372.38]<br>2.90 [0.38, 21.88]                                                                                                       |                 |
| otal events                                                                                                                                                                                                                         | 3                                                                              |                                                                                 | 1                                           |                                        |                                               |                                                                                                                                                 |                 |
| est for overall effect:                                                                                                                                                                                                             | 2 = 1.00 (i = 0                                                                | 50)                                                                             |                                             |                                        |                                               |                                                                                                                                                 |                 |
| 3.4.12 Subgroup 4: N                                                                                                                                                                                                                |                                                                                | ŕ                                                                               | егу                                         |                                        |                                               |                                                                                                                                                 |                 |
|                                                                                                                                                                                                                                     |                                                                                | ŕ                                                                               | ery<br>1                                    | 115                                    | 14.2%                                         | 5.21 [1.38, 19.70]                                                                                                                              |                 |
| 3.4.12 Subgroup 4: N                                                                                                                                                                                                                | lot having cardi                                                               | ac surge                                                                        | <b>ery</b><br>1<br>0                        | 115<br>6                               | 14.2%<br>1.4%                                 | 5.21 [1.38, 19.70]<br>4.17 [0.06, 300,53]                                                                                                       |                 |
| 3 <b>.4.12 Subgroup 4: N</b><br>Chen 2013                                                                                                                                                                                           | lot having cardi                                                               | ac surge                                                                        | 1                                           |                                        |                                               | 5.21 [1.38, 19.70]<br>4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]                                                                                  |                 |
| <b>3.4.12 Subgroup 4: N</b><br>Chen 2013<br>Cotter 1997                                                                                                                                                                             | lot having cardi<br>8<br>1                                                     | ac surge<br>111<br>14                                                           | 1<br>0                                      | 6                                      | 1.4%                                          | 4.17 [0.06, 300.53]                                                                                                                             | <br>            |
| <b>3.4.12 Subgroup 4: N</b><br>Chen 2013<br>Cotter 1997<br>De Backer 2010                                                                                                                                                           | lot having cardi<br>8<br>1<br>31                                               | ac surge<br>111<br>14<br>858                                                    | 1<br>0<br>12                                | 6<br>821                               | 1.4%<br>68.4%                                 | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]                                                                                                        |                 |
| <b>6.4.12 Subgroup 4: N</b><br>Chen 2013<br>Cotter 1997<br>De Backer 2010<br>Hsueh 1998                                                                                                                                             | lot having cardi<br>8<br>1<br>31<br>0                                          | ac surge<br>111<br>14<br>858<br>10                                              | 1<br>0<br>12<br>3                           | 6<br>821<br>10                         | 1.4%<br>68.4%<br>4.4%                         | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]<br>0.11 [0.01, 1.17]                                                                                   |                 |
| <b>3.4.12 Subgroup 4: N</b><br>Chen 2013<br>Cotter 1997<br>De Backer 2010<br>Hsueh 1998<br>Kamiya 2015                                                                                                                              | lot having cardi<br>8<br>1<br>31<br>0                                          | ac surge<br>111<br>14<br>858<br>10<br>12                                        | 1<br>0<br>12<br>3<br>1                      | 6<br>821<br>10<br>12                   | 1.4%<br>68.4%<br>4.4%<br>1.6%                 | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]<br>0.11 [0.01, 1.17]<br>0.14 [0.00, 6.82]                                                              |                 |
| <b>3.4.12 Subgroup 4: N</b><br>Chen 2013<br>Cotter 1997<br>De Backer 2010<br>Hsueh 1998<br>Kamiya 2015<br>Triposkiadis 2014                                                                                                         | lot having cardi<br>8<br>1<br>31<br>0<br>0<br>1                                | ac surge<br>111<br>14<br>858<br>10<br>12<br>28                                  | 1<br>0<br>12<br>3<br>1<br>2                 | 6<br>821<br>10<br>12<br>55             | 1.4%<br>68.4%<br>4.4%<br>1.6%<br>4.3%         | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]<br>0.11 [0.01, 1.17]<br>0.14 [0.00, 6.82]<br>0.98 [0.09, 11.07]                                        |                 |
| <b>5.4.12 Subgroup 4: N</b><br>Chen 2013<br>Cotter 1997<br>De Backer 2010<br>Hsueh 1998<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a                                                                                   | lot having cardi<br>8<br>1<br>31<br>0<br>0<br>1<br>2                           | ac surge<br>111<br>14<br>858<br>10<br>12<br>28<br>28                            | 1<br>0<br>12<br>3<br>1<br>2<br>2            | 6<br>821<br>10<br>12<br>55<br>50<br>10 | 1.4%<br>68.4%<br>4.4%<br>1.6%<br>4.3%         | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]<br>0.11 [0.01, 1.17]<br>0.14 [0.00, 6.82]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]                  |                 |
| 6.4.12 Subgroup 4: N<br>Chen 2013<br>Cotter 1997<br>De Backer 2010<br>Hsueh 1998<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Kariale 1997                                                                          | lot having cardi<br>8<br>1<br>31<br>0<br>0<br>1<br>2                           | ac surge<br>111<br>14<br>858<br>10<br>12<br>28<br>28<br>28<br>10                | 1<br>0<br>12<br>3<br>1<br>2<br>2            | 6<br>821<br>10<br>12<br>55<br>50<br>10 | 1.4%<br>68.4%<br>4.4%<br>1.6%<br>4.3%<br>5.8% | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]<br>0.11 [0.01, 1.17]<br>0.14 [0.00, 6.82]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                 |
| 6.4.12 Subgroup 4: N<br>Chen 2013<br>Cotter 1997<br>De Backer 2010<br>Hsueh 1998<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Yarriale 1997<br>Subtotal (95% CI)                                                    | lot having cardi<br>8<br>1<br>31<br>0<br>0<br>1<br>2<br>0<br>43                | ac surge<br>111<br>14<br>858<br>10<br>12<br>28<br>28<br>28<br>28<br>10<br>1071  | 1<br>0<br>12<br>3<br>1<br>2<br>2<br>0<br>21 | 6<br>821<br>10<br>12<br>55<br>50<br>10 | 1.4%<br>68.4%<br>4.4%<br>1.6%<br>4.3%<br>5.8% | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]<br>0.11 [0.01, 1.17]<br>0.14 [0.00, 6.82]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                 |
| 6.4.12 Subgroup 4: N<br>Chen 2013<br>Cotter 1997<br>De Backer 2010<br>Hsueh 1998<br>Camiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Yarriale 1997<br>Subtotal (95% CI)<br>Total events                                    | lot having cardi<br>8<br>1<br>31<br>0<br>1<br>2<br>0<br>43<br>10.25, df = 6 (F | ac surge<br>111<br>14<br>858<br>10<br>12<br>28<br>28<br>10<br>1071<br>'= 0.11); | 1<br>0<br>12<br>3<br>1<br>2<br>2<br>0<br>21 | 6<br>821<br>10<br>12<br>55<br>50<br>10 | 1.4%<br>68.4%<br>4.4%<br>1.6%<br>4.3%<br>5.8% | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]<br>0.11 [0.01, 1.17]<br>0.14 [0.00, 6.82]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                 |
| 6.4.12 Subgroup 4: N<br>Chen 2013<br>Cotter 1997<br>De Backer 2010<br>Hsueh 1998<br>Kamiya 2015<br>Triposkiadis 2014<br>Triposkiadis 2014<br>Arriale 1997<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = | lot having cardi<br>8<br>1<br>31<br>0<br>1<br>2<br>0<br>43<br>10.25, df = 6 (F | ac surge<br>111<br>14<br>858<br>10<br>12<br>28<br>28<br>10<br>1071<br>'= 0.11); | 1<br>0<br>12<br>3<br>1<br>2<br>2<br>0<br>21 | 6<br>821<br>10<br>12<br>55<br>50<br>10 | 1.4%<br>68.4%<br>4.4%<br>1.6%<br>4.3%<br>5.8% | 4.17 [0.06, 300.53]<br>2.37 [1.29, 4.34]<br>0.11 [0.01, 1.17]<br>0.14 [0.00, 6.82]<br>0.98 [0.09, 11.07]<br>1.89 [0.24, 15.20]<br>Not estimable |                 |

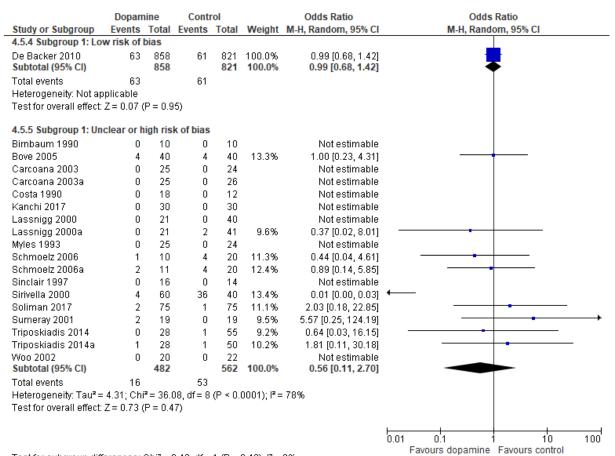

0.01 0.1 1 10 Favours dopamine Favours control

# *E-Figures 2.11.13: sensitivity analysis – patients with cardiac dysfunction versus a majority/large proportion of patients with cardiac dysfunction*

|                                   | Dopam      |                     | Contr       |         |                         | Odds Ratio          | Odds Ratio          |
|-----------------------------------|------------|---------------------|-------------|---------|-------------------------|---------------------|---------------------|
| Study or Subgroup                 | Events     | Total               | Events      | Total   | Weight                  | M-H, Random, 95% Cl | M-H, Random, 95% CI |
| 3.4.1 All included stu            | dies       |                     |             |         |                         |                     |                     |
| 3irnbaum 1990                     | 0          | 10                  | 0           | 10      |                         | Not estimable       |                     |
| Chen 2013                         | 8          | 111                 | 1           | 115     | 7.5%                    | 8.85 [1.09, 72.01]  |                     |
| De Backer 2010                    | 31         | 858                 | 12          | 821     | 72.7%                   | 2.53 [1.29, 4.96]   |                     |
| ∋atot 2004                        | 0          | 41                  | 0           | 40      |                         | Not estimable       |                     |
| lausen 1992                       | 0          | 14                  | 0           | 27      |                         | Not estimable       |                     |
| (amiya 2015                       | 0          | 12                  | 1           | 12      | 3.0%                    | 0.31 [0.01, 8.31]   |                     |
| harpe 1999                        | 0          | 5                   | 0           | 10      |                         | Not estimable       |                     |
| harpe 1999a                       | 0          | 5                   | 0           | 10      |                         | Not estimable       |                     |
| Sinclair 1997                     | 0          | 16                  | 0           | 14      |                         | Not estimable       |                     |
| Sumeray 2001                      | 1          | 19                  | 0           | 19      | 3.1%                    | 3.16 [0.12, 82.64]  |                     |
| riposkiadis 2014                  | 1          | 28                  | 2           | 55      | 5.5%                    | 0.98 [0.09, 11.31]  |                     |
| riposkiadis 2014a                 | 2          | 28                  | 2           | 50      | 8.1%                    | 1.85 [0.25, 13.88]  |                     |
| Subtotal (95% CI)                 |            | 1147                |             | 1183    | 100.0%                  | 2.43 [1.37, 4.31]   | ◆                   |
| Total events                      | 43         |                     | 18          |         |                         |                     |                     |
| Heterogeneity: Tau² =             | 0.00; Chi  | <b>²</b> = 3.60     | 3, df = 5 ( | P = 0.6 | 0); I <b>²</b> = 0%     |                     |                     |
| est for overall effect:           | Z = 3.03 ( | (P = 0.0)           | 102)        |         |                         |                     |                     |
| 3.4.2 Pure cardiac dy             | sfunctior  | n studie            | es          |         |                         |                     |                     |
| otter 1997                        | 1          | 14                  | 0           | 6       | 27.2%                   | 1.44 [0.05, 40.54]  |                     |
| Isueh 1998                        | 0          | 10                  | 3           | 10      | 30.6%                   | 0.10 [0.00, 2.28]   | ← ■                 |
| )ppizzi 1997                      | 2          | 13                  | 1           | 13      | 42.2%                   | 2.18 [0.17, 27.56]  |                     |
| /arriale 1997                     | 0          | 10                  | 0           | 10      |                         | Not estimable       |                     |
| Subtotal (95% CI)                 |            | 47                  |             | 39      | 100.0%                  | 0.76 [0.11, 5.08]   |                     |
| otal events                       | 3          |                     | 4           |         |                         |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.54; Chi  | <sup>2</sup> = 2.43 | 7, df = 2 ( | P = 0.2 | 9); I <sup>2</sup> = 19 | %                   |                     |
| est for overall effect:           | Z = 0.28 ( | (P = 0.7            | 8)          |         |                         |                     |                     |
| estitut üverall ellett.           |            |                     |             |         |                         |                     |                     |
| estilor overall ellect.           |            |                     |             |         |                         |                     |                     |
| estion overall ellect.            |            |                     |             |         |                         |                     | 0.01 0.1 1 10 100   |

#### 2.12. Trial sequential analysis of ventricular tachyarrhythmias

*E*-Figure 2.12: the TSA is based on 14 trials, which is the meta-analysed effect of dopamine versus any (in)active comparator intervention.




# 2.13. Forest plots of renal replacement therapy

*E-Figures 2.13.1-2.13.3: all trials with worst-best and best-worst case analyses* 

| Study or Subgroup                                                                                                                                                               | Dopan<br>Events                          |                                                        | Conti<br>Events                 |                         | Weight                        | Odds Ratio<br>M-H, Random, 95% Cl                            | Odds Ratio<br>M-H, Random, 95% Cl       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|---------------------------------|-------------------------|-------------------------------|--------------------------------------------------------------|-----------------------------------------|
| .5.1 All included stu                                                                                                                                                           |                                          |                                                        |                                 |                         |                               |                                                              |                                         |
| 3imbaum 1990                                                                                                                                                                    | 0                                        | 10                                                     | 0                               | 10                      |                               | Not estimable                                                |                                         |
| 30ve 2005                                                                                                                                                                       | 4                                        | 40                                                     | 4                               | 40                      | 12.2%                         | 1.00 [0.23, 4.31]                                            |                                         |
| arcoana 2003                                                                                                                                                                    | Ö                                        | 25                                                     | ,<br>O                          | 24                      | 12.270                        | Not estimable                                                |                                         |
| arcoana 2003a                                                                                                                                                                   | 0                                        | 25                                                     | 0                               | 26                      |                               | Not estimable                                                |                                         |
| costa 1990                                                                                                                                                                      | 0                                        | 18                                                     | 0                               | 12                      |                               | Not estimable                                                |                                         |
| ) e Backer 2010                                                                                                                                                                 | 63                                       | 858                                                    | 61                              | 821                     | 14.6%                         |                                                              |                                         |
|                                                                                                                                                                                 |                                          |                                                        | 0                               |                         | 14.0%                         | 0.99 [0.68, 1.42]                                            | Ī                                       |
| (anchi 2017                                                                                                                                                                     | 0                                        | 30                                                     |                                 | 30                      |                               | Not estimable                                                |                                         |
| assnigg 2000                                                                                                                                                                    | 0                                        | 21                                                     | 0                               | 40                      | 7.00                          | Not estimable                                                |                                         |
| assnigg 2000a                                                                                                                                                                   | 0                                        | 21                                                     | 2                               | 41                      | 7.6%                          | 0.37 [0.02, 8.01]                                            |                                         |
| fyles 1993                                                                                                                                                                      | 0                                        | 25                                                     | 0                               | 24                      |                               | Not estimable                                                |                                         |
| Schmoelz 2006                                                                                                                                                                   | 1                                        | 10                                                     | 4                               | 20                      | 9.6%                          | 0.44 [0.04, 4.61]                                            |                                         |
| Schmoelz 2006a                                                                                                                                                                  | 2                                        | 11                                                     | 4                               | 20                      | 11.0%                         | 0.89 [0.14, 5.85]                                            |                                         |
| Sinclair 1997                                                                                                                                                                   | 0                                        | 16                                                     | 0                               | 14                      |                               | Not estimable                                                |                                         |
| Sirivella 2000                                                                                                                                                                  | 4                                        | 60                                                     | 36                              | 40                      | 12.3%                         | 0.01 [0.00, 0.03]                                            | ←                                       |
| Soliman 2017                                                                                                                                                                    | 2                                        | 75                                                     | 1                               | 75                      | 9.4%                          | 2.03 [0.18, 22.85]                                           |                                         |
| Sumeray 2001                                                                                                                                                                    | 2                                        | 19                                                     | 0                               | 19                      | 7.6%                          | 5.57 [0.25, 124.19]                                          |                                         |
| riposkiadis 2014                                                                                                                                                                | 0                                        | 28                                                     | 1                               | 55                      | 7.3%                          | 0.64 [0.03, 16.15]                                           |                                         |
| riposkiadis 2014a                                                                                                                                                               | 1                                        | 28                                                     | 1                               | 50                      | 8.3%                          | 1.81 [0.11, 30.18]                                           |                                         |
| Voo 2002                                                                                                                                                                        | O                                        | 20                                                     | 0                               | 22                      |                               | Not estimable                                                |                                         |
| ubtotal (95% CI)                                                                                                                                                                | Ŭ                                        | 1340                                                   | Ŭ                               |                         | 100.0%                        | 0.58 [0.17, 1.96]                                            |                                         |
| otal events                                                                                                                                                                     | 79                                       |                                                        | 114                             |                         |                               |                                                              |                                         |
| leterogeneity: Tau² =                                                                                                                                                           |                                          | i² = 44.7                                              |                                 | (P ≤ 0.                 | 00001); I <sup>z</sup>        | = 80%                                                        |                                         |
| est for overall effect:                                                                                                                                                         | Z = 0.88 (                               | (P = 0.3                                               | 8)                              |                         |                               |                                                              |                                         |
| .5.2 Worst-best cas                                                                                                                                                             | -                                        |                                                        |                                 |                         |                               |                                                              |                                         |
| 3imbaum 1990                                                                                                                                                                    | 0                                        | 10                                                     | 0                               | 10                      |                               | Not estimable                                                |                                         |
| 3ove 2005                                                                                                                                                                       | 4                                        | 40                                                     | 4                               | 40                      | 8.6%                          | 1.00 [0.23, 4.31]                                            |                                         |
| arcoana 2003                                                                                                                                                                    | 9                                        | 34                                                     | 0                               | 33                      | 5.8%                          | 24.96 [1.39, 449.17]                                         |                                         |
| arcoana 2003a                                                                                                                                                                   | 9                                        | 34                                                     | 0                               | 34                      | 5.8%                          | 25.71 [1.43, 462.31]                                         |                                         |
| osta 1990                                                                                                                                                                       | 6                                        | 24                                                     | 0                               | 12                      | 5.7%                          | 8.78 [0.45, 170.29]                                          |                                         |
| )e Backer 2010                                                                                                                                                                  | 63                                       | 858                                                    | 61                              | 821                     | 10.2%                         | 0.99 [0.68, 1.42]                                            |                                         |
| anchi 2017                                                                                                                                                                      | 0                                        | 30                                                     | 0                               | 30                      | 10.270                        | Not estimable                                                |                                         |
| assnigg 2000                                                                                                                                                                    | Ő                                        | 21                                                     | 0                               | 42                      |                               | Not estimable                                                |                                         |
|                                                                                                                                                                                 | 0                                        | 21                                                     | 2                               | 42                      | E E 04                        |                                                              |                                         |
| assnigg 2000a                                                                                                                                                                   |                                          |                                                        |                                 |                         | 5.5%                          | 0.38 [0.02, 8.21]                                            |                                         |
| fyles 1993                                                                                                                                                                      | 1                                        | 26                                                     | 0                               | 26                      | 5.2%                          | 3.12 [0.12, 80.12]                                           |                                         |
| chmoelz 2006                                                                                                                                                                    | 2                                        | 11                                                     | 4                               | 21                      | 7.8%                          | 0.94 [0.14, 6.19]                                            |                                         |
| ichmoelz 2006a                                                                                                                                                                  | 2                                        | 11                                                     | 4                               | 21                      | 7.8%                          | 0.94 [0.14, 6.19]                                            |                                         |
| linclair 1997                                                                                                                                                                   | 0                                        | 16                                                     | 0                               | 14                      |                               | Not estimable                                                |                                         |
| irivella 2000                                                                                                                                                                   | 4                                        | 60                                                     | 36                              | 40                      | 8.6%                          | 0.01 [0.00, 0.03]                                            | ←                                       |
| oliman 2017                                                                                                                                                                     | 2                                        | 75                                                     | 1                               | 75                      | 6.7%                          | 2.03 [0.18, 22.85]                                           |                                         |
| Sumeray 2001                                                                                                                                                                    | 7                                        | 24                                                     | 0                               | 24                      | 5.7%                          | 21.00 [1.12, 392.38]                                         |                                         |
| riposkiadis 2014                                                                                                                                                                | 0                                        | 28                                                     | 1                               | 55                      | 5.2%                          | 0.64 [0.03, 16.15]                                           |                                         |
| riposkiadis 2014a                                                                                                                                                               | 1                                        | 28                                                     | 1                               | 50                      | 5.9%                          | 1.81 [0.11, 30.18]                                           |                                         |
| Voo 2002                                                                                                                                                                        | 5                                        | 25                                                     | Ó                               | 25                      | 5.7%                          | 13.68 [0.71, 262.17]                                         |                                         |
| Subtotal (95% CI)                                                                                                                                                               | Ŭ                                        | 1376                                                   | Ŭ                               |                         | 100.0%                        | 1.58 [0.55, 4.51]                                            |                                         |
| otal events                                                                                                                                                                     | 115                                      |                                                        | 114                             |                         |                               | 1000 [0100, 1101]                                            |                                         |
|                                                                                                                                                                                 |                                          | 8-620                                                  |                                 | 4 /D - 0                | 000043                        | IZ - 700/                                                    |                                         |
| leterogeneity: Tau² =<br>'est for overall effect:                                                                                                                               |                                          |                                                        |                                 | 4 (P < l                | .00001);                      | 17 = 78%                                                     |                                         |
|                                                                                                                                                                                 |                                          |                                                        |                                 |                         |                               |                                                              |                                         |
| . <b>5.3 Best-worst cas</b><br>Birnbaum 1990                                                                                                                                    | e analysi<br>O                           | s<br>10                                                | 0                               | 10                      |                               | Not estimable                                                |                                         |
| ove 2005                                                                                                                                                                        | 4                                        | 40                                                     | 4                               | 40                      | 8.7%                          | 1.00 [0.23, 4.31]                                            | <b>_</b>                                |
| arcoana 2003                                                                                                                                                                    | Ū,                                       | 34                                                     | 8                               | 33                      | 5.5%                          | 0.04 [0.00, 0.79]                                            | ← <b>-</b> − − − − −                    |
| arcoana 2003<br>arcoana 2003a                                                                                                                                                   | 0                                        | 34                                                     | 9                               | 34                      | 5.5%                          | 0.04 [0.00, 0.70]                                            |                                         |
| osta 1990                                                                                                                                                                       | 0                                        | 24                                                     | 9                               | 12                      | 5.5 %                         | Not estimable                                                |                                         |
|                                                                                                                                                                                 |                                          |                                                        | -                               |                         | 10.8%                         |                                                              | <u> </u>                                |
| e Backer 2010                                                                                                                                                                   | 63                                       | 858                                                    | 61                              | 821                     | 10.8%                         | 0.99 [0.68, 1.42]                                            | Ţ                                       |
| anchi 2017                                                                                                                                                                      | 0                                        | 30                                                     | 0                               | 30                      |                               | Not estimable                                                |                                         |
| assnigg 2000                                                                                                                                                                    | 0                                        | 21                                                     | 2                               | 42                      | 5.2%                          | 0.38 [0.02, 8.21]                                            |                                         |
| assnigg 2000a                                                                                                                                                                   | 0                                        | 21                                                     | 3                               | 42                      | 5.3%                          | 0.26 [0.01, 5.32]                                            |                                         |
| lyles 1993                                                                                                                                                                      | 0                                        | 26                                                     | 2                               | 26                      | 5.2%                          | 0.18 [0.01, 4.05]                                            | • • • • • • • • • • • • • • • • • • • • |
| chmoelz 2006                                                                                                                                                                    | 1                                        | 11                                                     | 5                               | 21                      | 6.8%                          | 0.32 [0.03, 3.15]                                            |                                         |
| chmoelz 2006a                                                                                                                                                                   | 2                                        | 11                                                     | 5                               | 21                      | 7.8%                          | 0.71 [0.11, 4.44]                                            |                                         |
|                                                                                                                                                                                 | 0                                        | 16                                                     | 0                               | 14                      |                               | Not estimable                                                |                                         |
| inclair 1997                                                                                                                                                                    | 4                                        | 60                                                     | 36                              | 40                      | 8.8%                          | 0.01 [0.00, 0.03]                                            | ←                                       |
|                                                                                                                                                                                 |                                          | 75                                                     | 1                               | 75                      | 6.5%                          | 2.03 [0.18, 22.85]                                           |                                         |
| irivella 2000                                                                                                                                                                   |                                          |                                                        | 5                               | 24                      | 8.0%                          | 0.35 [0.06, 1.99]                                            | <b>.</b>                                |
| Sirivella 2000<br>Soliman 2017                                                                                                                                                  | 2                                        | 24                                                     |                                 | 24                      |                               | 0.64 [0.03, 16.15]                                           |                                         |
| Sinclair 1997<br>Sirivella 2000<br>Soliman 2017<br>Sumeray 2001<br>Sincekiadie 2014                                                                                             | 2<br>2                                   | 24                                                     |                                 | 66                      |                               |                                                              |                                         |
| irivella 2000<br>Soliman 2017<br>Sumeray 2001<br>Tiposkiadis 2014                                                                                                               | 2<br>2<br>0                              | 28                                                     | 1                               | 55                      | 4.9%                          |                                                              |                                         |
| Sirivella 2000<br>Soliman 2017<br>Sumeray 2001<br>Triposkiadis 2014<br>Triposkiadis 2014a                                                                                       | 2<br>2<br>0<br>1                         | 28<br>28                                               | 1<br>1                          | 50                      | 5.7%                          | 1.81 [0.11, 30.18]                                           |                                         |
| Sirivella 2000<br>Soliman 2017<br>Sumeray 2001<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Voo 2002                                                                           | 2<br>2<br>0                              | 28<br>28<br>25                                         | 1                               | 50<br>25                | 5.7%<br>5.3%                  | 1.81 [0.11, 30.18]<br>0.13 [0.01, 2.58]                      | ·                                       |
| Sirivella 2000<br>Soliman 2017<br>Sumeray 2001<br>Triposkiadis 2014<br>Triposkiadis 2014a                                                                                       | 2<br>2<br>0<br>1<br>0                    | 28<br>28                                               | 1<br>1                          | 50<br>25                | 5.7%                          | 1.81 [0.11, 30.18]                                           |                                         |
| Sirivella 2000<br>Soliman 2017<br>Sumeray 2001<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Voo 2002                                                                           | 2<br>2<br>0<br>1                         | 28<br>28<br>25                                         | 1<br>1                          | 50<br>25                | 5.7%<br>5.3%                  | 1.81 [0.11, 30.18]<br>0.13 [0.01, 2.58]                      |                                         |
| Sirivella 2000<br>Soliman 2017<br>Sumeray 2001<br>Triposkiadis 2014<br>Triposkiadis 2014a<br>Voo 2002<br>Subtotal (95% CI)                                                      | 2<br>2<br>0<br>1<br>0<br>79              | 28<br>28<br>25<br><b>1376</b>                          | 1<br>1<br>3<br>146              | 50<br>25<br><b>1415</b> | 5.7%<br>5.3%<br><b>100.0%</b> | 1.81 [0.11, 30.18]<br>0.13 [0.01, 2.58]<br>0.29 [0.11, 0.77] |                                         |
| irivella 2000<br>coliman 2017<br>rumeray 2001<br>riposkiadis 2014<br>riposkiadis 2014a<br>voo 2002<br>ubtotal (95% CI)<br>iotal events                                          | 2<br>2<br>0<br>1<br>0<br>79<br>2.23; Chi | 28<br>28<br>25<br><b>1376</b><br>i <sup>2</sup> = 55.0 | 1<br>1<br>3<br>146<br>)4, df= 1 | 50<br>25<br><b>1415</b> | 5.7%<br>5.3%<br><b>100.0%</b> | 1.81 [0.11, 30.18]<br>0.13 [0.01, 2.58]<br>0.29 [0.11, 0.77] |                                         |
| irivella 2000<br>oliman 2017<br>umeray 2001<br>riposkiadis 2014<br>riposkiadis 2014a<br>(oo 2002<br><b>ubtotal (95% CI)</b><br>otal events<br>leterogeneity: Tau <sup>2</sup> = | 2<br>2<br>0<br>1<br>0<br>79<br>2.23; Chi | 28<br>28<br>25<br><b>1376</b><br>i <sup>2</sup> = 55.0 | 1<br>1<br>3<br>146<br>)4, df= 1 | 50<br>25<br><b>1415</b> | 5.7%<br>5.3%<br><b>100.0%</b> | 1.81 [0.11, 30.18]<br>0.13 [0.01, 2.58]<br>0.29 [0.11, 0.77] |                                         |
| irivella 2000<br>oliman 2017<br>umeray 2001<br>riposkiadis 2014<br>riposkiadis 2014a<br>/oo 2002<br><b>ubtotal (95% CI)</b><br>otal events<br>leterogeneity: Tau <sup>2</sup> = | 2<br>2<br>0<br>1<br>0<br>79<br>2.23; Chi | 28<br>28<br>25<br><b>1376</b><br>i <sup>2</sup> = 55.0 | 1<br>1<br>3<br>146<br>)4, df= 1 | 50<br>25<br><b>1415</b> | 5.7%<br>5.3%<br><b>100.0%</b> | 1.81 [0.11, 30.18]<br>0.13 [0.01, 2.58]<br>0.29 [0.11, 0.77] |                                         |

#### E-Figures 2.13.4-2.13.5: subgroup analysis 1 - trials subdivided by risk of bias



Test for subgroup differences:  $Chi^2 = 0.48$ , df = 1 (P = 0.49),  $I^2 = 0\%$ 

#### E-Figures 2.13.6-2.13.7: subgroup analysis 2 – trials subdivided by comparator intervention

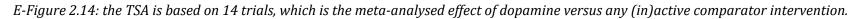
|                                                                                                                                                                                                                                     | Dopam                                                                |                                                                                           | Contr                                                              |                                                       |                                                                     | Odds Ratio                                                                                                                                                                                     | Odds Ratio          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Study or Subgroup                                                                                                                                                                                                                   |                                                                      |                                                                                           | Events                                                             | Total                                                 | Weight                                                              | M-H, Random, 95% Cl                                                                                                                                                                            | M-H, Random, 95% Cl |
| 4.5.6 Subgroup 2: In                                                                                                                                                                                                                | active con                                                           | trol                                                                                      |                                                                    |                                                       |                                                                     |                                                                                                                                                                                                |                     |
| Carcoana 2003                                                                                                                                                                                                                       | 0                                                                    | 25                                                                                        | 0                                                                  | 24                                                    |                                                                     | Not estimable                                                                                                                                                                                  |                     |
| Carcoana 2003a                                                                                                                                                                                                                      | 0                                                                    | 25                                                                                        | 0                                                                  | 26                                                    |                                                                     | Not estimable                                                                                                                                                                                  |                     |
| Costa 1990                                                                                                                                                                                                                          | 0                                                                    | 18                                                                                        | 0                                                                  | 12                                                    |                                                                     | Not estimable                                                                                                                                                                                  |                     |
| Kanchi 2017                                                                                                                                                                                                                         | 0                                                                    | 30                                                                                        | 0                                                                  | 30                                                    |                                                                     | Not estimable                                                                                                                                                                                  |                     |
| assnigg 2000_                                                                                                                                                                                                                       | 0                                                                    | 21                                                                                        | 0                                                                  | 40                                                    |                                                                     | Not estimable                                                                                                                                                                                  |                     |
| vlyles 1993                                                                                                                                                                                                                         | 0                                                                    | 25                                                                                        | 0                                                                  | 24                                                    |                                                                     | Not estimable                                                                                                                                                                                  |                     |
| 3chmoelz 2006                                                                                                                                                                                                                       | 1                                                                    | 10                                                                                        | 4                                                                  | 20                                                    | 47.8%                                                               | 0.44 [0.04, 4.61]                                                                                                                                                                              |                     |
| Sumeray 2001                                                                                                                                                                                                                        | 2                                                                    | 19                                                                                        | 0                                                                  | 19                                                    | 27.1%                                                               | 5.57 [0.25, 124.19]                                                                                                                                                                            |                     |
| Friposkiadis 2014                                                                                                                                                                                                                   | 0                                                                    | 28                                                                                        | 1                                                                  | 55                                                    | 25.0%                                                               | 0.64 [0.03, 16.15]                                                                                                                                                                             |                     |
| Noo 2002                                                                                                                                                                                                                            | 0                                                                    | 20                                                                                        | 0                                                                  | 22                                                    |                                                                     | Not estimable                                                                                                                                                                                  |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                   |                                                                      | 221                                                                                       |                                                                    | 272                                                   | 100.0%                                                              | 0.97 [0.19, 4.87]                                                                                                                                                                              |                     |
| Fotal events                                                                                                                                                                                                                        | 3                                                                    |                                                                                           | 5                                                                  |                                                       |                                                                     |                                                                                                                                                                                                |                     |
| Heterogeneity: Tau <sup>2</sup> :                                                                                                                                                                                                   | = 0.00; Chi                                                          | <sup>2</sup> = 1.73                                                                       | ), df = 2 (                                                        | P = 0.4                                               | 2); I <b>²</b> = 0%                                                 |                                                                                                                                                                                                |                     |
| Fest for overall effect                                                                                                                                                                                                             | : Z = 0.04 (                                                         | P = 0.9                                                                                   | 7)                                                                 |                                                       |                                                                     |                                                                                                                                                                                                |                     |
|                                                                                                                                                                                                                                     |                                                                      |                                                                                           |                                                                    |                                                       |                                                                     |                                                                                                                                                                                                |                     |
|                                                                                                                                                                                                                                     |                                                                      |                                                                                           |                                                                    |                                                       |                                                                     |                                                                                                                                                                                                |                     |
| 4.5.7 Subgroup 2: Po                                                                                                                                                                                                                | -                                                                    |                                                                                           |                                                                    |                                                       |                                                                     |                                                                                                                                                                                                |                     |
| 3irnbaum 1990                                                                                                                                                                                                                       | Ō                                                                    | 10                                                                                        | 0                                                                  | 10                                                    |                                                                     | Not estimable                                                                                                                                                                                  |                     |
| 3irnbaum 1990<br>3ove 2005                                                                                                                                                                                                          | 0<br>4                                                               | 10<br>40                                                                                  | 0<br>4                                                             | 40                                                    | 16.0%                                                               | 1.00 [0.23, 4.31]                                                                                                                                                                              |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010                                                                                                                                                                                        | 0<br>4<br>63                                                         | 10<br>40<br>858                                                                           | 0<br>4<br>61                                                       | 40<br>821                                             | 18.4%                                                               | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]                                                                                                                                                         |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a                                                                                                                                                                      | 0<br>4<br>63<br>0                                                    | 10<br>40<br>858<br>21                                                                     | 0<br>4<br>61<br>2                                                  | 40<br>821<br>41                                       | 18.4%<br>10.7%                                                      | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]                                                                                                                                    |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Bchmoelz 2006a                                                                                                                                                    | 0<br>4<br>63<br>0<br>2                                               | 10<br>40<br>858<br>21<br>11                                                               | 0<br>4<br>61<br>2<br>4                                             | 40<br>821<br>41<br>20                                 | 18.4%                                                               | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]<br>0.89 [0.14, 5.85]                                                                                                               |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Bchmoelz 2006a<br>Binclair 1997                                                                                                                                   | 0<br>4<br>63<br>0<br>2<br>0                                          | 10<br>40<br>858<br>21<br>11<br>16                                                         | 0<br>4<br>61<br>2<br>4<br>0                                        | 40<br>821<br>41<br>20<br>14                           | 18.4%<br>10.7%<br>14.6%                                             | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]<br>0.89 [0.14, 5.85]<br>Not estimable                                                                                              |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Binclair 1997<br>Birivella 2000                                                                                                                                   | 0<br>4<br>63<br>0<br>2<br>0<br>4                                     | 10<br>40<br>858<br>21<br>11<br>16<br>60                                                   | 0<br>4<br>61<br>2<br>4<br>0<br>36                                  | 40<br>821<br>41<br>20<br>14<br>40                     | 18.4%<br>10.7%<br>14.6%<br>16.0%                                    | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]<br>0.89 [0.14, 5.85]<br>Not estimable<br>0.01 [0.00, 0.03]                                                                         |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Binclair 1997<br>Birivella 2000<br>Boliman 2017                                                                                                                   | 0<br>4<br>63<br>0<br>2<br>0<br>4<br>2                                | 10<br>40<br>858<br>21<br>11<br>16<br>60<br>75                                             | 0<br>4<br>61<br>2<br>4<br>0<br>36<br>1                             | 40<br>821<br>41<br>20<br>14<br>40<br>75               | 18.4%<br>10.7%<br>14.6%<br>16.0%<br>12.8%                           | 1.00 (0.23, 4.31)<br>0.99 (0.68, 1.42)<br>0.37 (0.02, 8.01)<br>0.89 (0.14, 5.85)<br>Not estimable<br>0.01 (0.00, 0.03)<br>2.03 (0.18, 22.85)                                                   |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Binclair 1997<br>Birivella 2000<br>Boliman 2017<br>Friposkiadis 2014a                                                                                             | 0<br>4<br>63<br>0<br>2<br>0<br>4                                     | 10<br>40<br>858<br>21<br>11<br>16<br>60<br>75<br>28                                       | 0<br>4<br>61<br>2<br>4<br>0<br>36                                  | 40<br>821<br>41<br>20<br>14<br>40<br>75<br>50         | 18.4%<br>10.7%<br>14.6%<br>16.0%<br>12.8%<br>11.5%                  | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]<br>0.89 [0.14, 5.85]<br>Not estimable<br>0.01 [0.00, 0.03]<br>2.03 [0.18, 22.85]<br>1.81 [0.11, 30.18]                             |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Binclair 1997<br>Birivella 2000<br>Boliman 2017<br>Friposkiadis 2014a<br>Subtotal (95% CI)                                                                        | 0<br>4<br>63<br>0<br>2<br>0<br>4<br>2<br>1                           | 10<br>40<br>858<br>21<br>11<br>16<br>60<br>75                                             | 0<br>4<br>61<br>2<br>4<br>0<br>36<br>1<br>1                        | 40<br>821<br>41<br>20<br>14<br>40<br>75<br>50         | 18.4%<br>10.7%<br>14.6%<br>16.0%<br>12.8%                           | 1.00 (0.23, 4.31)<br>0.99 (0.68, 1.42)<br>0.37 (0.02, 8.01)<br>0.89 (0.14, 5.85)<br>Not estimable<br>0.01 (0.00, 0.03)<br>2.03 (0.18, 22.85)                                                   |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Binclair 1997<br>Birivella 2000<br>Soliman 2017<br>Friposkiadis 2014a<br>Subtotal (95% CI)<br>Fotal events                                                        | 0<br>4<br>63<br>0<br>2<br>0<br>4<br>2<br>1<br>76                     | 10<br>40<br>858<br>21<br>11<br>16<br>60<br>75<br>28<br><b>1119</b>                        | 0<br>4<br>61<br>2<br>4<br>0<br>36<br>1<br>1<br>109                 | 40<br>821<br>41<br>20<br>14<br>40<br>75<br>50<br>1111 | 18.4%<br>10.7%<br>14.6%<br>16.0%<br>12.8%<br>11.5%<br><b>100.0%</b> | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]<br>0.89 [0.14, 5.85]<br>Not estimable<br>0.01 [0.00, 0.03]<br>2.03 [0.18, 22.85]<br>1.81 [0.11, 30.18]<br><b>0.48 [0.10, 2.23]</b> |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Bohmoelz 2006a<br>Binclair 1997<br>Birivella 2000<br>Soliman 2017<br>Friposkiadis 2014a<br>Subtotal (95% CI)<br>Fotal events<br>Heterogeneity: Tau <sup>2</sup> : | 0<br>4<br>63<br>0<br>2<br>0<br>4<br>2<br>1<br>1<br>76<br>= 3.33; Chi | 10<br>40<br>858<br>21<br>11<br>16<br>60<br>75<br>28<br><b>1119</b><br><sup>2</sup> = 43.1 | 0<br>4<br>61<br>2<br>4<br>0<br>36<br>1<br>1<br>1<br>9<br>0, df = 6 | 40<br>821<br>41<br>20<br>14<br>40<br>75<br>50<br>1111 | 18.4%<br>10.7%<br>14.6%<br>16.0%<br>12.8%<br>11.5%<br><b>100.0%</b> | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]<br>0.89 [0.14, 5.85]<br>Not estimable<br>0.01 [0.00, 0.03]<br>2.03 [0.18, 22.85]<br>1.81 [0.11, 30.18]<br><b>0.48 [0.10, 2.23]</b> |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Binclair 1997<br>Birivella 2000<br>Soliman 2017<br>Friposkiadis 2014a<br>Subtotal (95% CI)<br>Fotal events                                                        | 0<br>4<br>63<br>0<br>2<br>0<br>4<br>2<br>1<br>1<br>76<br>= 3.33; Chi | 10<br>40<br>858<br>21<br>11<br>16<br>60<br>75<br>28<br><b>1119</b><br><sup>2</sup> = 43.1 | 0<br>4<br>61<br>2<br>4<br>0<br>36<br>1<br>1<br>1<br>9<br>0, df = 6 | 40<br>821<br>41<br>20<br>14<br>40<br>75<br>50<br>1111 | 18.4%<br>10.7%<br>14.6%<br>16.0%<br>12.8%<br>11.5%<br><b>100.0%</b> | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]<br>0.89 [0.14, 5.85]<br>Not estimable<br>0.01 [0.00, 0.03]<br>2.03 [0.18, 22.85]<br>1.81 [0.11, 30.18]<br><b>0.48 [0.10, 2.23]</b> |                     |
| Birnbaum 1990<br>Bove 2005<br>De Backer 2010<br>Lassnigg 2000a<br>Bohmoelz 2006a<br>Binclair 1997<br>Birivella 2000<br>Soliman 2017<br>Friposkiadis 2014a<br>Subtotal (95% CI)<br>Fotal events<br>Heterogeneity: Tau <sup>2</sup> : | 0<br>4<br>63<br>0<br>2<br>0<br>4<br>2<br>1<br>1<br>76<br>= 3.33; Chi | 10<br>40<br>858<br>21<br>11<br>16<br>60<br>75<br>28<br><b>1119</b><br><sup>2</sup> = 43.1 | 0<br>4<br>61<br>2<br>4<br>0<br>36<br>1<br>1<br>1<br>9<br>0, df = 6 | 40<br>821<br>41<br>20<br>14<br>40<br>75<br>50<br>1111 | 18.4%<br>10.7%<br>14.6%<br>16.0%<br>12.8%<br>11.5%<br><b>100.0%</b> | 1.00 [0.23, 4.31]<br>0.99 [0.68, 1.42]<br>0.37 [0.02, 8.01]<br>0.89 [0.14, 5.85]<br>Not estimable<br>0.01 [0.00, 0.03]<br>2.03 [0.18, 22.85]<br>1.81 [0.11, 30.18]<br><b>0.48 [0.10, 2.23]</b> |                     |

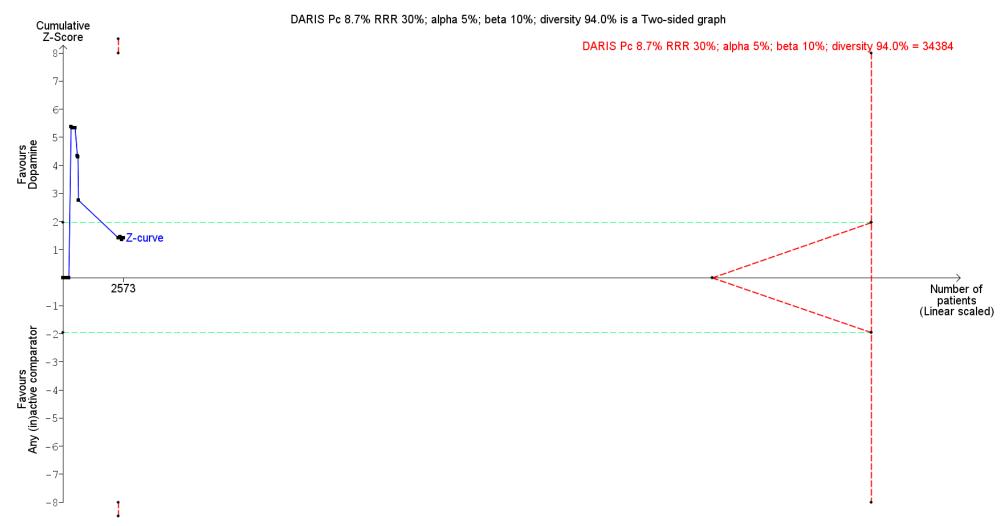
Test for subgroup differences:  $Chi^2 = 0.39$ , df = 1 (P = 0.53), l<sup>2</sup> = 0%

Favours dopamine Favours control

# E-Figures 2.13.8-2.13.10: subgroup analysis 3 – trials subdivided by dose

|                                                                 | Dopam          |                         | Cont                                    |                         |                         | Odds Ratio                                    | Odds Ratio                       |
|-----------------------------------------------------------------|----------------|-------------------------|-----------------------------------------|-------------------------|-------------------------|-----------------------------------------------|----------------------------------|
| Study or Subgroup                                               |                | Total                   | Events Total Weight M-H, Random, 95% Cl |                         | M-H, Random, 95% Cl     | M-H, Random, 95% Cl                           |                                  |
| 4.5.8 Subgroup 3: Lov                                           |                |                         | _                                       |                         |                         |                                               |                                  |
| Birnbaum 1990                                                   | 0              | 10                      | 0                                       | 10                      |                         | Not estimable                                 |                                  |
| Bove 2005                                                       | 4              | 40                      | 4                                       | 40                      | 18.5%                   | 1.00 [0.23, 4.31]                             |                                  |
| Carcoana 2003                                                   | 0              | 25                      | 0                                       | 24                      |                         | Not estimable                                 |                                  |
| Carcoana 2003a                                                  | 0              | 25                      | 0                                       | 26                      |                         | Not estimable                                 |                                  |
| Costa 1990                                                      | 0              | 18                      | 0                                       | 12                      |                         | Not estimable                                 |                                  |
| Kanchi 2017                                                     | 0              | 30                      | 0                                       | 30                      |                         | Not estimable                                 |                                  |
| Lassnigg 2000                                                   | 0              | 21                      | 0                                       | 40                      |                         | Not estimable                                 |                                  |
| Lassnigg 2000a                                                  | 0              | 21                      | 2                                       | 41                      | 13.8%                   | 0.37 [0.02, 8.01]                             |                                  |
| Myles 1993                                                      | 0              | 25                      | 0                                       | 24                      |                         | Not estimable                                 |                                  |
| Schmoelz 2006                                                   | 1              | 10                      | 4                                       | 20                      | 16.0%                   | 0.44 [0.04, 4.61]                             |                                  |
| Schmoelz 2006a                                                  | 2              | 11                      | 4                                       | 20                      | 17.4%                   | 0.89 [0.14, 5.85]                             |                                  |
| Sinclair 1997                                                   | 0              | 16                      | 0                                       | 14                      |                         | Not estimable                                 |                                  |
| Sirivella 2000                                                  | 0              | 0                       | 0                                       | 0                       |                         | Not estimable                                 |                                  |
| Soliman 2017                                                    | 2              | 75                      | 1                                       | 75                      | 15.8%                   | 2.03 [0.18, 22.85]                            |                                  |
| Sumeray 2001                                                    | 4              | 60                      | 36                                      | 40                      | 18.6%                   | 0.01 [0.00, 0.03]                             | <u>←</u>                         |
| Woo 2002                                                        | 0              | 20                      | 0                                       | 22                      |                         | Not estimable                                 |                                  |
| Subtotal (95% CI)                                               |                | 407                     |                                         | 438                     | 100.0%                  | 0.34 [0.05, 2.48]                             |                                  |
| Total events                                                    | 13             |                         | 51                                      |                         |                         |                                               |                                  |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: . |                |                         |                                         | (P < 0.)                | 0001); I² =             | : 84%                                         |                                  |
| 4.5.9 Subgroup 3: Mo                                            | derate do      | se                      |                                         |                         |                         |                                               |                                  |
| Triposkiadis 2014                                               | 0              | 28                      | 1                                       | 55                      | 43.1%                   | 0.64 [0.03, 16.15]                            | <b>_</b>                         |
| Triposkiadis 2014a                                              | 1              | 28                      | 1                                       | 50                      | 56.9%                   | 1.81 [0.11, 30,18]                            |                                  |
| Subtotal (95% CI)                                               | '              | 56                      |                                         | 105                     | 100.0%                  | 1.16 [0.14, 9.65]                             |                                  |
| Total events                                                    | 1              |                         | 2                                       |                         |                         |                                               |                                  |
| Heterogeneity: Tau <sup>2</sup> =                               | •              | <sup>2</sup> = 0.2°     | _                                       | P = 0.6                 | 3): I≊ = 0.%            |                                               |                                  |
| Test for overall effect:                                        |                |                         | •                                       | , = 0.0                 | 0,,, = 0,,              | ,                                             |                                  |
| 4.5.10 Subgroup 3: Hi                                           | iah doso       |                         |                                         |                         |                         |                                               |                                  |
|                                                                 | -              | 050                     | 64                                      | 0.04                    | 400.00                  | 0.00.00.00.4.403                              | <b>_</b>                         |
| De Backer 2010<br>Subtotal (95% CI)                             | 63             | 858<br><mark>858</mark> | 61                                      | 821<br><mark>821</mark> | 100.0%<br><b>100.0%</b> | 0.99 [0.68, 1.42]<br><b>0.99 [0.68, 1.42]</b> | <b>—</b>                         |
| Total events<br>Heterogeneity: Not ap                           | 63<br>nlicable |                         | 61                                      |                         |                         |                                               |                                  |
| Test for overall effect:                                        | •              | P = 0.9                 | 5)                                      |                         |                         |                                               |                                  |
|                                                                 |                |                         |                                         |                         |                         |                                               |                                  |
|                                                                 |                |                         |                                         |                         |                         |                                               |                                  |
| Test for subgroup diff                                          | erences: (     | Chi <sup>z</sup> = 1    | l.10. df=                               | 2 (P = 1                | 0.58), I <sup>2</sup> = | 0%                                            | Favours dopamine Favours control |


#### *E-Figures 2.13.11-2.13.12: subgroup analysis 4 – trials subdivided by clinical setting*

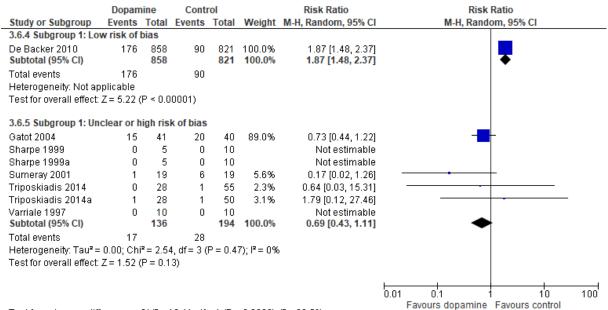

|                                         | Doparr      | nine                 | Contr       | ol              |                         | Odds Ratio                             | Odds Ratio                       |
|-----------------------------------------|-------------|----------------------|-------------|-----------------|-------------------------|----------------------------------------|----------------------------------|
| Study or Subgroup                       | Events      | Total                | Events      | Total           | Weight                  | M-H, Random, 95% Cl                    | M-H, Random, 95% Cl              |
| 4.5.11 Subgroup 4: C                    | ardiac su   | rgery                |             |                 |                         |                                        |                                  |
| Birnbaum 1990                           | 0           | 10                   | 0           | 10              |                         | Not estimable                          |                                  |
| Bove 2005                               | 4           | 40                   | 4           | 40              | 22.2%                   | 1.00 [0.23, 4.31]                      | <b>_</b>                         |
| Carcoana 2003                           | 0           | 25                   | 0           | 24              |                         | Not estimable                          |                                  |
| Carcoana 2003a                          | 0           | 25                   | 0           | 26              |                         | Not estimable                          |                                  |
| Costa 1990                              | 0           | 18                   | 0           | 12              |                         | Not estimable                          |                                  |
| Kanchi 2017                             | 0           | 30                   | 0           | 30              |                         | Not estimable                          |                                  |
| Lassnigg 2000                           | 0           | 21                   | 0           | 40              |                         | Not estimable                          |                                  |
| Lassnigg 2000a                          | 0           | 21                   | 2           | 41              | 18.0%                   | 0.37 [0.02, 8.01]                      |                                  |
| Myles 1993                              | 0           | 25                   | 0           | 24              |                         | Not estimable                          |                                  |
| Sinclair 1997                           | 0           | 16                   | 0           | 14              |                         | Not estimable                          |                                  |
| Sirivella 2000                          | 4           | 60                   | 36          | 40              | 22.2%                   | 0.01 [0.00, 0.03]                      | <u>←</u>                         |
| Soliman 2017                            | 2           | 75                   | 1           | 75              | 19.8%                   | 2.03 [0.18, 22.85]                     |                                  |
| Sumeray 2001                            | 2           | 19                   | 0           | 19              | 17.9%                   | 5.57 [0.25, 124.19]                    |                                  |
| Noo 2002                                | 0           | 20                   | 0           | 22              |                         | Not estimable                          |                                  |
| Subtotal (95% CI)                       |             | 405                  |             | 417             | 100.0%                  | 0.45 [0.03, 6.26]                      |                                  |
| Total events                            | 12          |                      | 43          |                 |                         |                                        |                                  |
| Heterogeneity: Tau <sup>2</sup> =       | = 7.63; Chi | <sup>2</sup> = 31.0  | 84, df = 4  | (P ≤ 0.         | 00001); P               | ²= 87%                                 |                                  |
| Test for overall effect:                | Z = 0.60 (  | P = 0.5              | 5)          |                 |                         |                                        |                                  |
| 4.5.12 Subgroup 4: N                    | lot having  | cardia               | c surgor    | v               |                         |                                        |                                  |
| 4.3.12 Subgroup 4. N<br>De Backer 2010  | 63          | 858                  | 61          | <b>9</b><br>821 | 91.6%                   | 0.00.00.00.4.401                       | <b>_</b>                         |
| Schmoelz 2006                           | 03<br>1     | 858<br>10            | 4           | 20              | 2.2%                    | 0.99 [0.68, 1.42]                      |                                  |
| Schmoelz 2006<br>Schmoelz 2006a         | 2           | 10                   | 4           | 20              | 2.2%                    | 0.44 [0.04, 4.61]<br>0.89 [0.14, 5.85] |                                  |
| Triposkiadis 2014                       | 2           | 28                   | 4           | 55              | 1.2%                    | 0.64 [0.03, 16.15]                     |                                  |
| Triposkiadis 2014<br>Triposkiadis 2014a | 1           | 20                   | 1           | 50              | 1.2%                    | 1.81 [0.11, 30.18]                     |                                  |
| Subtotal (95% CI)                       | I           | 935                  | I           |                 | 100.0%                  | 0.97 [0.68, 1.38]                      | <b>•</b>                         |
| Total events                            | 67          |                      | 71          |                 |                         |                                        |                                  |
| Heterogeneity: Tau <sup>2</sup> =       | = 0.00; Chi | <sup>2</sup> = 0.71  | D, df = 4 ( | P = 0.9         | 5); I <sup>z</sup> = 09 | 6                                      |                                  |
| Test for overall effect:                | Z=0.17 (    | P = 0.8              | (7)         |                 |                         |                                        |                                  |
|                                         |             |                      |             |                 |                         |                                        |                                  |
|                                         |             |                      |             |                 |                         |                                        | 0.01 0.1 1 10 10                 |
|                                         |             |                      |             |                 |                         |                                        | Favours dopamine Favours control |
| Fest for subgroup dif                   | ferences:   | Chi <sup>z</sup> = I | 0.33, df =  | 1 (P =          | 0.57), I <sup>z</sup> = | :0%                                    |                                  |

*E-Figures 2.13.13: sensitivity analysis – patients with cardiac dysfunction versus a majority/large proportion of patients with cardiac dysfunction* 

Not possible because all seven trials on patients with documented cardiac dysfunction did not report renal replacement therapy proportions.

#### 2.14. Trial sequential analysis of renal replacement therapy





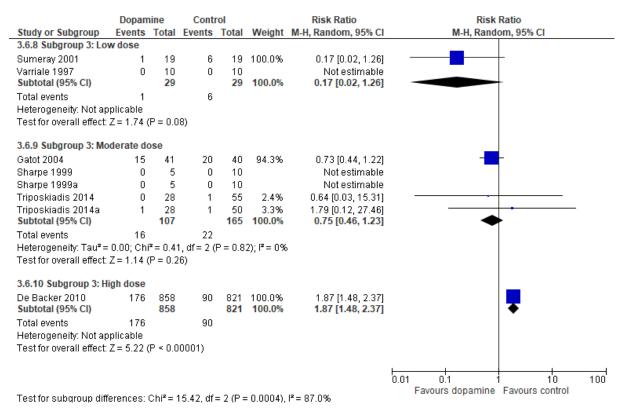

## 2.15. Forest plots of atrial tachyarrhythmias

|                                       | Dopan      |                       | Cont       |           |                     | Risk Ratio          | Risk Ratio          |
|---------------------------------------|------------|-----------------------|------------|-----------|---------------------|---------------------|---------------------|
| Study or Subgroup                     |            | Total                 | Events     | Total     | Weight              | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
| 3.6.1 All included stu                |            |                       |            |           |                     |                     |                     |
| De Backer 2010                        | 176        | 858                   | 90         | 821       | 39.6%               | 1.87 [1.48, 2.37]   | _ =                 |
| Gatot 2004                            | 15         | 41                    | 20         | 40        | 35.4%               | 0.73 [0.44, 1.22]   |                     |
| Sharpe 1999                           | 0          | 5                     | 0          | 10        |                     | Not estimable       |                     |
| Sharpe 1999a                          | 0          | 5                     | 0          | 10        |                     | Not estimable       |                     |
| Sumeray 2001                          | 1          | 19                    | 6          | 19        | 11.8%               | 0.17 [0.02, 1.26]   |                     |
| Triposkiadis 2014                     | 0          | 28                    | 1          | 55        | 5.8%                | 0.64 [0.03, 15.31]  |                     |
| Triposkiadis 2014a                    | 1          | 28                    | 1          | 50        | 7.4%                | 1.79 [0.12, 27.46]  |                     |
| Varriale 1997                         | 0          | 10                    | 0          | 10        |                     | Not estimable       |                     |
| Subtotal (95% CI)                     |            | 994                   |            | 1015      | 100.0%              | 0.94 [0.42, 2.15]   | -                   |
| Total events                          | 193        |                       | 118        |           |                     |                     |                     |
| Heterogeneity: Tau² =                 | 0.43; Chi  | i <sup>z</sup> = 15.8 | 38, df = 4 | (P = 0.1) | 003); I <b>²</b> =  | 75%                 |                     |
| Test for overall effect:              | Z = 0.13 ( | (P = 0.8              | 9)         |           |                     |                     |                     |
| 3.6.2 Worst-best cas                  | e analysi  | s                     |            |           |                     |                     |                     |
| De Backer 2010                        | 176        | 858                   | 90         | 821       | 44.9%               | 1.87 [1.48, 2.37]   | <del>■</del>        |
| Gatot 2004                            | 19         | 45                    | 20         | 44        | 33.9%               | 0.93 [0.58, 1.49]   |                     |
| Sharpe 1999                           | 0          | 5                     | 0          | 10        |                     | Not estimable       |                     |
| Sharpe 1999a                          | Ō          | 5                     | Ō          | 10        |                     | Not estimable       |                     |
| Sumeray 2001                          | 6          | 24                    | 6          | 24        | 16.2%               | 1.00 [0.38, 2.66]   | <b>_</b>            |
| Triposkiadis 2014                     | 0          | 28                    | 1          | 55        | 2.2%                | 0.64 [0.03, 15.31]  |                     |
| Triposkiadis 2014a                    | 1          | 28                    | 1          | 50        | 2.9%                | 1.79 [0.12, 27.46]  |                     |
| Varriale 1997                         | O          | 10                    | O          | 10        | 2.070               | Not estimable       |                     |
| Subtotal (95% CI)                     | Ŭ          | 1003                  | Ŭ          |           | 100.0%              | 1.30 [0.81, 2.10]   | ★                   |
| Total events                          | 202        |                       | 118        |           |                     |                     | -                   |
| Heterogeneity: Tau <sup>2</sup> =     |            | i <sup>2</sup> = 8.20 |            | P = 0.0   | 8): <b>F</b> = 51   | %                   |                     |
| Test for overall effect:              |            |                       |            |           | -,,. 01             |                     |                     |
| 3.6.3 Best-worst cas                  | e analysi  | s                     |            |           |                     |                     |                     |
| De Backer 2010                        | 176        | 858                   | 90         | 821       | 35.2%               | 1.87 [1.48, 2.37]   |                     |
| Gatot 2004                            | 15         | 45                    | 24         | 44        | 33.0%               | 0.61 [0.37, 1.00]   |                     |
| Sharpe 1999                           | 0          | 5                     | 0          | 10        |                     | Not estimable       |                     |
| Sharpe 1999a                          | Ő          | 5                     | Ő          | 10        |                     | Not estimable       |                     |
| Sumeray 2001                          | 1          | 24                    | 11         | 24        | 14.7%               | 0.09 [0.01, 0.65]   |                     |
| Triposkiadis 2014                     | O          | 28                    | 1          | 55        | 7.6%                | 0.64 [0.03, 15.31]  |                     |
| Triposkiadis 2014a                    | 1          | 28                    | 1          | 50        | 9.5%                | 1.79 [0.12, 27.46]  | <b>_</b>            |
| Varriale 1997                         |            | 10                    | n          | 10        | 0.070               | Not estimable       |                     |
|                                       |            | 1003                  |            |           | 100.0%              | 0.76 [0.29, 2.03]   |                     |
| Subiolai (95% CI)                     | 193        |                       | 127        |           |                     |                     | -                   |
| Subtotal (95% CI)<br>Total events     |            | i <sup>z</sup> = 24.1 |            | (P < 0.   | 0001): I <b>P</b> = | = 83%               |                     |
| Total events                          | 0.70.000   |                       |            |           |                     |                     |                     |
|                                       |            | (P = 0.5              | 9)         |           |                     |                     |                     |
| Total events<br>Heterogeneity: Tau² = |            | (P = 0.5              | 9)         |           |                     |                     |                     |
| Total events<br>Heterogeneity: Tau² = |            | (P = 0.5              | 9)         |           |                     |                     |                     |

## *E-Figures 2.15.1-2.15.3: all trials with worst-best and best-worst case analyses*

#### E-Figures 2.15.4-2.15.5: subgroup analysis 1 - trials subdivided by risk of bias




Test for subgroup differences: Chi<sup>2</sup> = 13.41, df = 1 (P = 0.0003), l<sup>2</sup> = 92.5%

#### E-Figures 2.15.6-2.15.7: subgroup analysis 2 – trials subdivided by comparator intervention

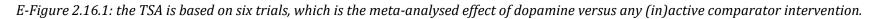
|                                   | Dopam       | ine                             | Cont        | ol      |             | Risk Ratio          | Risk Ratio                       |
|-----------------------------------|-------------|---------------------------------|-------------|---------|-------------|---------------------|----------------------------------|
| Study or Subgroup                 | Events      | Total                           | Events      | Total   | Weight      | M-H, Random, 95% CI | M-H, Random, 95% Cl              |
| 3.6.6 Subgroup 2: Ina             | active con  | trol                            |             |         |             |                     |                                  |
| Gatot 2004                        | 15          | 41                              | 20          | 40      | 87.5%       | 0.73 [0.44, 1.22]   |                                  |
| Sharpe 1999                       | 0           | 5                               | 0           | 10      |             | Not estimable       |                                  |
| Sumeray 2001                      | 1           | 19                              | 6           | 19      | 8.8%        | 0.17 [0.02, 1.26]   |                                  |
| Triposkiadis 2014                 | 0           | 28                              | 1           | 55      | 3.7%        | 0.64 [0.03, 15.31]  |                                  |
| Varriale 1997                     | 0           | 10                              | 0           | 10      |             | Not estimable       |                                  |
| Subtotal (95% CI)                 |             | 103                             |             | 134     | 100.0%      | 0.64 [0.35, 1.18]   |                                  |
| Total events                      | 16          |                                 | 27          |         |             |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.04; Chi | <sup>2</sup> = 2.1 <sup>4</sup> | 1, df = 2 ( | P = 0.3 | 5); I² = 5% | 6                   |                                  |
| Test for overall effect:          | Z=1.43 (    | P = 0.1                         | 5)          |         |             |                     |                                  |
|                                   |             |                                 |             |         |             |                     |                                  |
| 3.6.7 Subgroup 2: Po              | -           |                                 |             |         |             |                     |                                  |
| De Backer 2010                    | 176         | 858                             | 90          | 821     | 99.3%       | 1.87 [1.48, 2.37]   |                                  |
| Sharpe 1999a                      | 0           | 5                               | 0           | 10      |             | Not estimable       |                                  |
| Triposkiadis 2014a                | 1           | 28                              | 1           | 50      | 0.7%        | 1.79 [0.12, 27.46]  |                                  |
| Subtotal (95% CI)                 |             | 891                             |             | 881     | 100.0%      | 1.87 [1.48, 2.36]   | •                                |
| Total events                      | 177         |                                 | 91          |         |             |                     |                                  |
| Heterogeneity: Tau² =             | = 0.00; Chi | ² = 0.01                        | D, df = 1 ( | P = 0.9 | 7); I² = 0% | 6                   |                                  |
| Test for overall effect:          | Z= 5.24 (   | P < 0.0                         | 0001)       |         |             |                     |                                  |
|                                   |             |                                 |             |         |             |                     |                                  |
|                                   |             |                                 |             |         |             |                     | 0.01 0.1 1 10 10                 |
|                                   |             |                                 |             |         |             |                     | Favours dopamine Favours control |

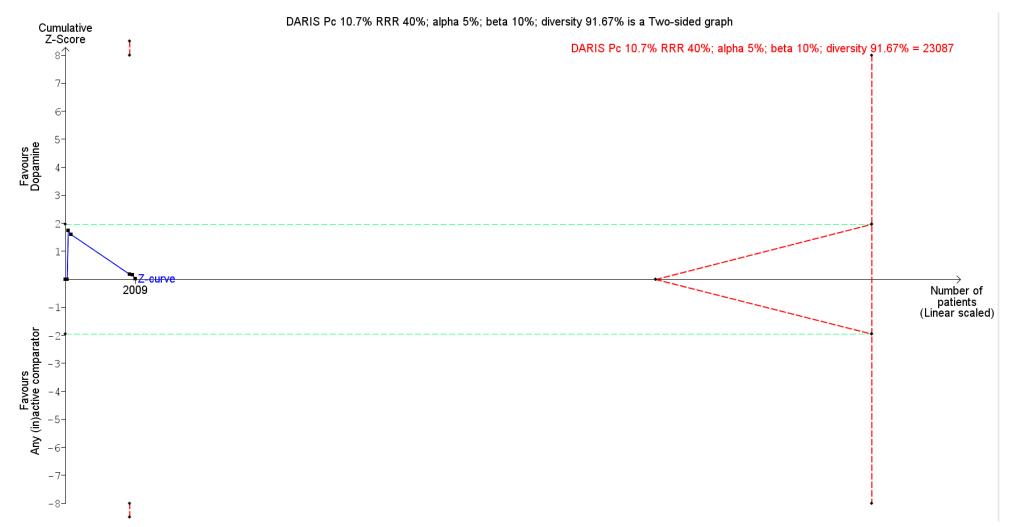
Test for subgroup differences:  $Chi^2 = 10.30$ , df = 1 (P = 0.001), l<sup>2</sup> = 90.3%

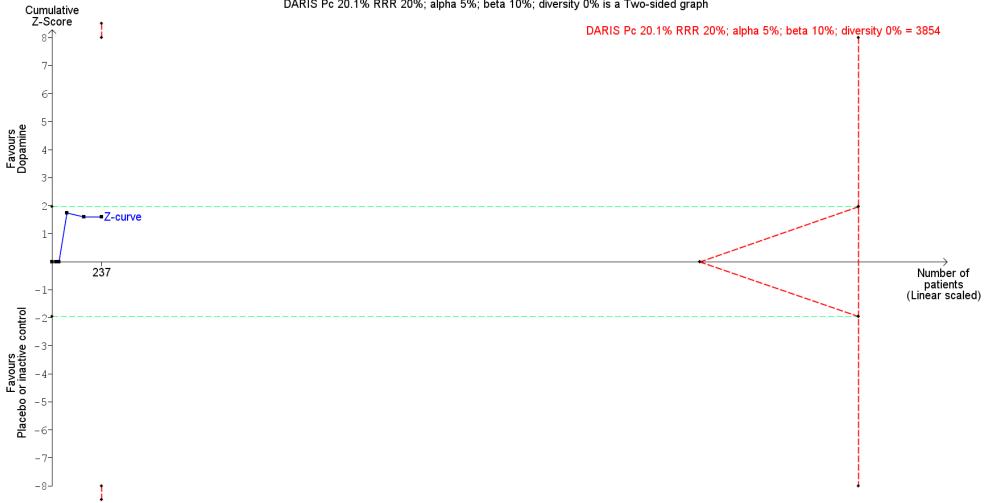
#### E-Figures 2.15.8-3.9.10: subgroup analysis 3 - trials subdivided by dose



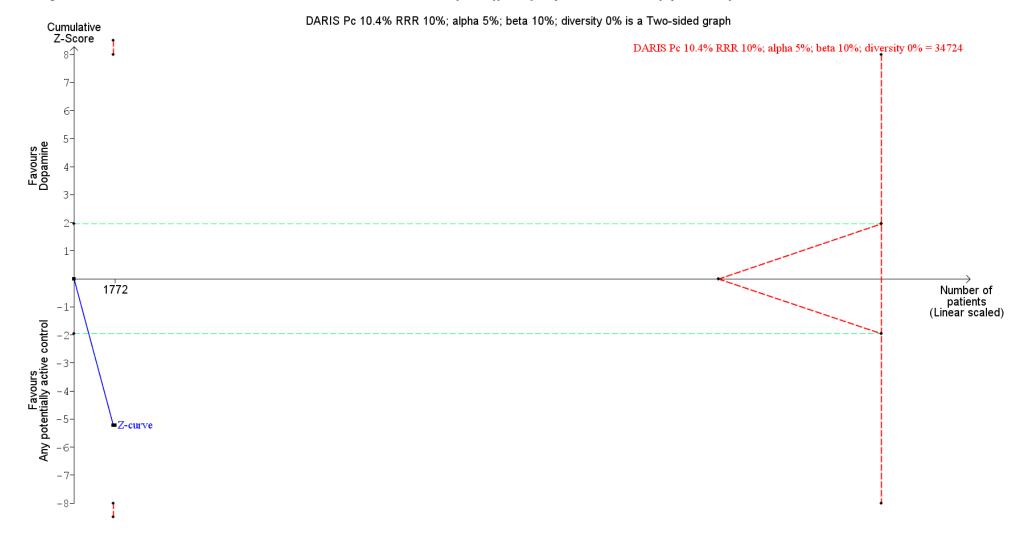
#### *E-Figures 2.15.11-3.9.12: subgroup analysis 4 – trials subdivided by clinical setting*


|                                   | Dopam                  | ine                 | Contr       | ol      |                         | Risk Ratio          | Risk Ratio                       |
|-----------------------------------|------------------------|---------------------|-------------|---------|-------------------------|---------------------|----------------------------------|
| Study or Subgroup                 | Events                 | Total               | Events      | Total   | Weight                  | M-H, Random, 95% Cl | M-H, Random, 95% CI              |
| 3.6.11 Subgroup 4: Ca             | ardiac su              | rgery               |             |         |                         |                     |                                  |
| Gatot 2004                        | 15                     | 41                  | 20          | 40      | 70.8%                   | 0.73 [0.44, 1.22]   |                                  |
| Sharpe 1999                       | 0                      | 5                   | 0           | 10      |                         | Not estimable       |                                  |
| Sharpe 1999a                      | 0                      | 5                   | 0           | 10      |                         | Not estimable       |                                  |
| Sumeray 2001                      | 1                      | 19                  | 6           | 19      | 29.2%                   | 0.17 [0.02, 1.26]   |                                  |
| Subtotal (95% CI)                 |                        | 70                  |             | 79      | 100.0%                  | 0.48 [0.12, 1.88]   |                                  |
| Total events                      | 16                     |                     | 26          |         |                         |                     |                                  |
| Heterogeneity: Tau² =             | 0.63; Chi <sup>a</sup> | ²= 2.12             | 2, df = 1 ( | P = 0.1 | 5); I² = 53             | %                   |                                  |
| Test for overall effect:          | Z = 1.06 (ł            | P = 0.2             | 9)          |         |                         |                     |                                  |
| 2.0.42.0.0                        |                        |                     |             |         |                         |                     |                                  |
| 3.6.12 Subgroup 4: No             | -                      |                     |             | -       |                         |                     |                                  |
| De Backer 2010                    | 176                    | 858                 | 90          | 821     | 98.7%                   | 1.87 [1.48, 2.37]   |                                  |
| Triposkiadis 2014                 | 0                      | 28                  | 1           | 55      | 0.5%                    | 0.64 [0.03, 15.31]  |                                  |
| Triposkiadis 2014a                | 1                      | 28                  | 1           | 50      | 0.7%                    | 1.79 [0.12, 27.46]  |                                  |
| Varriale 1997                     | 0                      | 10                  | 0           | 10      |                         | Not estimable       |                                  |
| Subtotal (95% CI)                 |                        | 924                 |             | 936     | 100.0%                  | 1.86 [1.47, 2.35]   | ▲                                |
| Total events                      | 177                    |                     | 92          |         |                         |                     |                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi <sup>a</sup> | <sup>2</sup> = 0.40 | 3, df = 2 ( | P = 0.8 | 0); I <sup>2</sup> = 0% | 6                   |                                  |
| Test for overall effect:          | Z = 5.20 (ł            | P < 0.0             | 0001)       |         |                         |                     |                                  |
|                                   |                        |                     |             |         |                         |                     |                                  |
|                                   |                        |                     |             |         |                         |                     | 0.01 0.1 1 10 100                |
| To at fair and success diff       |                        |                     | 0.07.46     |         | 0.000 17                | 70.70               | Favours dopamine Favours control |


Test for subgroup differences:  $Chi^2 = 3.67$ , df = 1 (P = 0.06),  $l^2 = 72.7\%$ 


*E-Figures 2.15.13: sensitivity analysis – patients with cardiac dysfunction versus a majority/large proportion of patients with cardiac dysfunction* 

Not possible because all seven trials on patients with documented cardiac dysfunction did not report the occurrence of atrial tachyarrhythmias.


#### 2.16. Trial sequential analyses of atrial tachyarryhythmias







*E-Figure 2.16.2: the TSA is based on five trials, which is the meta-analysed effect of dopamine versus placebo or inactive control.* DARIS Pc 20.1% RRR 20%; alpha 5%; beta 10%; diversity 0% is a Two-sided graph



*E*-Figure 2.16.3: the TSA is based on three trials, which is the meta-analysed effect of dopamine versus any potentially active control.

#### 2.17. E-Table 4: GRADEpro summary of finding e-Table of the outcomes of interest

| Quality a       | assessment           |                              |                           |                      |                      |                           | Nº of patien        | ts                              | Effect                               |                                                         |                  |                  |
|-----------------|----------------------|------------------------------|---------------------------|----------------------|----------------------|---------------------------|---------------------|---------------------------------|--------------------------------------|---------------------------------------------------------|------------------|------------------|
| № of<br>studies | Study<br>design      | Risk of<br>bias              | Inconsistency             | Indirectness         | Imprecision          | Other<br>considerations   | Dopamine            | Any<br>(in)active<br>comparator | Relative<br>(95% Cl)                 | Absolute<br>(95% CI)                                    | Quality          | Importance       |
| Mortalit        | y at maximum         | follow-up                    | - All included stud       | ies                  |                      |                           |                     |                                 |                                      | ·                                                       |                  |                  |
| 40              | randomised<br>trials | serious <sup>a</sup>         | not serious               | serious <sup>b</sup> | serious <sup>c</sup> | dose response<br>gradient | 640/1909<br>(33.5%) | 614/2062<br>(29.8%)             | <b>RR 1.07</b> (0.99 to 1.16)        | <b>21 more per 1.000</b><br>(from 3 fewer to 48 more)   |                  | CRITICAL         |
| Serious a       | adverse events       | - All includ                 | ded studies               |                      | •                    | •                         |                     | •                               |                                      | •                                                       |                  | •                |
| 12              | randomised<br>trials | very<br>serious <sup>d</sup> | serious <sup>e</sup>      | serious <sup>b</sup> | serious <sup>f</sup> | dose response<br>gradient | 98/409<br>(24.0%)   | 71/452<br>(15.7%)               | <b>RR 1.44</b> (1.03 to 2.00)        | <b>69 more per 1.000</b><br>(from 5 more to 157 more)   |                  | CRITICAL         |
| Myocard         | lial infarction -    | All include                  | ed studies                |                      | •                    | •                         |                     | •                               |                                      | •                                                       |                  | •                |
| 11              | randomised<br>trials | not<br>serious <sup>a</sup>  | not serious               | serious <sup>b</sup> | serious <sup>f</sup> | none                      | 28/1116<br>(2.5%)   | 34/1186<br>(2.9%)               | <b>OR 0.82</b> (0.48 to 1.40)        | 5 fewer per 1.000<br>(from 11 more to 15 fewer)         | ⊕⊕⊖⊖<br>Low      | IMPORTANT        |
| Ventricu        | lar tachyarrhy       | thmias - Al                  | l included studies        |                      |                      |                           |                     | •                               |                                      |                                                         |                  | •                |
| 16              | randomised<br>trials | not<br>serious ª             | not serious               | serious <sup>b</sup> | serious <sup>f</sup> | none                      | 46/1194<br>(3.9%)   | 22/1222<br>(1.8%)               | <b>Peto's OR 2.15</b> (1.32 to 3.50) | <b>20 more per 1.000</b><br>(from 6 more to 42 more)    | ⊕⊕⊖⊖<br>Low      | IMPORTANT        |
| Renal re        | placement the        | rapy - All ii                | ncluded studies           |                      |                      |                           |                     |                                 |                                      | ·                                                       |                  |                  |
| 14              | randomised<br>trials | not<br>serious <sup>a</sup>  | very serious <sup>g</sup> | serious <sup>b</sup> | serious <sup>f</sup> | none                      | 79/1340<br>(5.9%)   | 114/1383<br>(8.2%)              | <b>OR 0.60</b> (0.24 to 1.23)        | <b>31 fewer per 1.000</b> (from 24 more to 59 fewer)    | ⊕⊖⊖⊖<br>VERY LOW | IMPORTANT        |
| Atrial ta       | chyarrhythmia        | s - All inclu                | ded studies               |                      |                      | •                         |                     | •                               | •                                    | •                                                       |                  |                  |
| 7               | randomised<br>trials | not<br>serious <sup>a</sup>  | not serious               | serious <sup>b</sup> | serious <sup>f</sup> | dose response<br>gradient | 193/994<br>(19.4%)  | 118/1015<br>(11.6%)             | <b>RR 1.58</b> (1.28 to 1.95)        | <b>67 more per 1.000</b><br>(from 33 fewer to 110 more) | ⊕⊕⊕⊖<br>MODERATE | NOT<br>IMPORTANT |

Abbreviations: CI, confidence interval; RR, risk ratio; OR, odds ratio. Explanations: a. There was only one large trial at low risk of bias present (n = 1679); many bias domains and especially allocation concealment is not described in the trials; b. There was considerable difference in population types (i.e. heart failure, cardiac surgery and septic shock), incidence of cardiac dysfunction, and both dosing and length of administration of the study drugs; c. Many trials with few patients and few events; nearly 50% of the DARIS accrued; d. There were no trials with low risk of bias in this domain; many bias domains and especially allocation concealment is not described in the trials; e. There was considerable clinical diversity and statistical heterogeneity; f. Many trials did not report these serious adverse events; in total less than 30% of the DARIS was accrued; g. There was considerable statistical heterogeneity, which was caused by one study with a high risk of bias. The heterogeneity disappeared after removing the trial as a sensitivity analysis.

# 3. Risk of bias description for each domain per study

Arutiunov et al. 2010 [6]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                          |
|-----------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)               | Low risk              | Quote: "Randomization was performed according to the e-<br>Table of random numbers".           |
| Allocation concealment (selection bias)                   | Unclear risk          | Comment: Probably done.                                                                        |
| Blinding of participants and personnel (performance bias) | Unclear risk          | Not described.                                                                                 |
| Blinding of outcome<br>assessment (detection bias)        | Unclear risk          | Not stated.                                                                                    |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | Not stated.                                                                                    |
| Selective reporting (reporting bias)                      | Unclear risk          | No incomplete outcome data.                                                                    |
| Other bias                                                | Unclear risk          | The manuscript does not contain a statement on conflicts of interest or financial disclosures. |

## Birnbaum et al. 1990 [32]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                                 |
|-----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation<br>(selection bias)            | Unclear risk          | Quote "divided randomly into two groups".<br>Comment: unclear, since early reports of the same<br>investigators do also not describe their method of<br>randomization |
| Allocation concealment<br>(selection bias)                | Unclear risk          | Not described.<br>Comment: unclear, since early reports of the same<br>investigators also did not include a statement on allocation<br>concealment.                   |
| Blinding of participants and personnel (performance bias) | High risk             | Blinding not described, dosing schemes of both interventions<br>differed.<br>Comment: probably not blinded.                                                           |
| Blinding of outcome<br>assessment (detection bias)        | Unclear risk          | Not stated. Probably not.<br>Comment: low risk on mortality, high risk on other outcomes.                                                                             |
| Incomplete outcome data (attrition bias)                  | Low risk              | No incomplete outcome data.                                                                                                                                           |
| Selective reporting (reporting bias)                      | Unclear risk          | The authors did not register the trial or prepublished the trial design.                                                                                              |
| Other bias                                                | Unclear risk          | The manuscript does not contain a statement on conflicts of interest or financial disclosures.                                                                        |

## Bove et al. 2005 [13]

| Bias                                        | Authors'<br>judgement | Support for judgement                                                |
|---------------------------------------------|-----------------------|----------------------------------------------------------------------|
| Random sequence generation (selection bias) | Low risk              | Quote: "Randomization was performed by permuting blocks of size 40". |

| Allocation concealment<br>(selection bias)                | Low risk     | Comment: probably low risk, because a meta-analysis of the<br>same research group describes the use of "Computer-<br>generated random numbers" in this trial.<br>Quote: "The details of the randomization were contained in a<br>set of sealed envelopes".<br>Comment: Probably done properly, however there is no<br>information on sequentially numbering and opacity. In |
|-----------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           |              | addition, a meta-analysis of the same research group describes the allocation concealment as "adequate".                                                                                                                                                                                                                                                                    |
| Blinding of participants and personnel (performance bias) | Low risk     | Quote: "double-blind trial".<br>Comment: probably done, since a meta analyses of the same<br>investigators describe this study as "low risk" of performance<br>bias.                                                                                                                                                                                                        |
| Blinding of outcome<br>assessment (detection bias)        | Unclear risk | Not stated.<br>Comment: probably unclear, since a meta analyses of the<br>same investigators describe this study as "unclear" of<br>detection bias. Low risk for mortality, high risk for other<br>outcomes.                                                                                                                                                                |
| Incomplete outcome data<br>(attrition bias)               | Low risk     | Quote: "All participants who underwent random allocation<br>were analyzed according to group assignment".<br>Comment: probably low risk.                                                                                                                                                                                                                                    |
| Selective reporting (reporting bias)                      | High risk    | The authors did not register the trial or prepublished the trial design. ARF was measured on at least three occasions, but only one (with statistically insignificant results) is reported.                                                                                                                                                                                 |
| Other bias                                                | Unclear risk | Quote: "Fenoldopam (Corlopam) was provided free of charge<br>by the producer (Elan Pharma Italia SPA)"<br>Comment: influence of the sponsor on the trial is not<br>addressed.                                                                                                                                                                                               |

## Carcoana et al. 2003 [33]

| Bias                                    | Authors'<br>judgement | Support for judgement                                                                    |
|-----------------------------------------|-----------------------|------------------------------------------------------------------------------------------|
| Random sequence generation              | Low risk              | Quote: "use of computer-generated random-number tables".                                 |
| (selection bias)                        |                       | Comment: probably done.                                                                  |
| Allocation concealment (selection bias) | Low risk              | Quote: "Patients were randomly allocated by the Department of Investigational Pharmacy". |
|                                         |                       | Comment: probably done properly. Unclear information on                                  |
|                                         |                       | the sequential numbering, opacity and sealing of envelopes,                              |
|                                         |                       | but it was likely concealed allocation due to the central                                |
|                                         |                       | allocation. A similar trial by these investigators included the                          |
|                                         |                       | same phrase yet did not describe the opacity and sealing.                                |
| Blinding of participants and            | Low risk              | Quote: "supplied by the Department of Investigational                                    |
| personnel (performance bias)            |                       | Pharmacy in a blinded manner".                                                           |
|                                         |                       | Comment: probably done.                                                                  |
| Blinding of outcome                     | Low risk              | Quote: "supplied by the Department of Investigational                                    |
| assessment (detection bias)             |                       | Pharmacy in a blinded manner".                                                           |
|                                         |                       | Comment: probably done.                                                                  |
| Incomplete outcome data                 | High risk             | Quote: "Of the 135 patients enrolled, 35 patients were                                   |
| (attrition bias)                        |                       | removed because of a change in".                                                         |
|                                         |                       | Comment: probably high risk, as excluding 26% of the                                     |
|                                         |                       | randomized patients could result in substantial inequality in                            |
|                                         |                       | patient characteristics between both groups.                                             |
| Selective reporting (reporting          | Unclear risk          | The authors did not register the trial or prepublished the trial                         |
| bias)                                   |                       | design.                                                                                  |
| Other bias                              | Unclear risk          | The manuscript does not contain a statement on conflicts of                              |
|                                         |                       | interest or financial disclosures.                                                       |

Chaiyaroj et al. 1999 [55]

| Bias                           | Authors'<br>judgement | Support for judgement                                            |
|--------------------------------|-----------------------|------------------------------------------------------------------|
| Random sequence generation     | High risk -           | Quote: "randomly assigned to one of two groups according to      |
| (selection bias)               | REMOVED               | odd or even unit registry numbers".                              |
|                                |                       | Comment: high risk, as randomization on patient number is        |
|                                |                       | 'quasi-random'. QUASI RANDOMISED TRIAL                           |
| Allocation concealment         | High risk             | Not described. Probably not performed properly as the            |
| (selection bias)               |                       | method of randomization was 'quasi-random'.                      |
| Blinding of participants and   | High risk             | Quote: "blinded prospective randomized study".                   |
| personnel (performance bias)   |                       | Comment: Probably not done, because control group did not        |
|                                |                       | receive a placebo and therefore the personnel was probably       |
|                                |                       | not blinded.                                                     |
| Blinding of outcome            | High risk             | Not stated. Probably not.                                        |
| assessment (detection bias)    |                       | Comment: low risk for mortality (not reported), high risk for    |
|                                |                       | other outcomes.                                                  |
| Incomplete outcome data        | High risk             | "Two patients were excluded from the study because of unse-      |
| (attrition bias)               |                       | Table hemodynamics following cardiopulmonary bypass".            |
|                                |                       | Comment: no events were observed in the study group and          |
|                                |                       | these two excluded patients have a high chance of needing        |
|                                |                       | renal replacement therapy.                                       |
| Selective reporting (reporting | High risk             | The authors did not register the trial or prepublished the trial |
| bias)                          |                       | design. The primary outcome of this meta-analysis (mortality)    |
|                                |                       | is not reported.                                                 |
| Other bias                     | Unclear risk          | The manuscript does not contain a statement on conflicts of      |
|                                |                       | interest or financial disclosures.                               |

## Chen et al. 2012 [34]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                          |
|-----------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|
| Random sequence generation                                | Unclear risk          | Quote: "randomly divided into two groups"                                                      |
| (selection bias)                                          |                       | Comment: unclear information on selection bias.                                                |
| Allocation concealment (selection bias)                   | Unclear risk          | Not described.                                                                                 |
| Blinding of participants and personnel (performance bias) | High risk             | Blinding was not applied.                                                                      |
| Blinding of outcome                                       | Unclear risk          | Not stated, probably not.                                                                      |
| assessment (detection bias)                               |                       | Low risk for mortality, high risk for other outcomes.                                          |
| Incomplete outcome data (attrition bias)                  | Unclear risk          | Not specified.                                                                                 |
| Selective reporting (reporting                            | Unclear risk          | The authors did not register the trial or prepublished the trial                               |
| bias)                                                     |                       | design.                                                                                        |
| Other bias                                                | Unclear risk          | The manuscript does not contain a statement on conflicts of interest or financial disclosures. |

#### Chen et al. 2013 [4]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation<br>(selection bias)            | Low risk              | Quote: "A permuted block randomization scheme stratified by<br>clinical site was performed using an automated web-based<br>system".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Allocation concealment<br>(selection bias)                | Low risk              | Quote: "A permuted block randomization scheme stratified by<br>clinical site was performed using an automated web-based<br>system".<br>Comment: probably done, as an automated web-based system<br>also ensures allocation concealment.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Blinding of participants and personnel (performance bias) | Low risk              | Quote from supplements: "Clinical personnel, investigators,<br>and the patients will be blinded" and "For each of the two<br>strategies (nesiritide vs. placebo and dopamine vs. placebo),<br>the treatment assignments will be double-blinded".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Blinding of outcome<br>assessment (detection bias)        | Low risk              | Quote from supplements: "Clinical personnel, investigators,<br>and the patients will be blinded" and "The primary safety<br>endpoint will be change in serum cystatin C from<br>randomization to 72 hours, based on a standardized, blinded<br>core lab assessment" and "All patients will have a telephone<br>visit at day 60 to assess vital status and any potential<br>rehospitalizations. Mortality data will be collected at 6 months<br>via telephone call"<br>Comment: Although it is unclear if the outcome assessors of<br>mortality and rehospitalizations were blinded for the<br>treatment group, they had a 100% follow-up and these hard<br>endpoints are probably low risk. |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | <10% of all randomized patients were excluded due to various<br>reasons.<br>Quote supplements: "Handling of Dropouts and Missing Data:<br>If patient did not die before the 6-month follow-up, they will<br>be considered to be a censored observation as of last<br>contact".<br>Comment: probably low risk.                                                                                                                                                                                                                                                                                                                                                                               |
| Selective reporting (reporting bias)                      | Low risk              | All measured outcomes were reported and prespecified in a protocol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other bias                                                | High risk             | Seen manuscripts quote on: "All authors have completed and<br>submitted the ICMJE Form for Disclosure of Potential Conflicts<br>of Interest.<br>Funding/Support: This work was supported by grants from the<br>National Heart, Lung, and Blood Institute (NHLBI)"<br>Comment: high risk of industry bias.                                                                                                                                                                                                                                                                                                                                                                                   |

#### Costa et al. 1990 [12]

| Bias                                                         | Authors'     | Support for judgement                                            |
|--------------------------------------------------------------|--------------|------------------------------------------------------------------|
|                                                              | judgement    |                                                                  |
| Random sequence generation                                   | Unclear risk | Quote: "'Randomly divided into three groups".                    |
| (selection bias)                                             |              | Comment: no description of randomization.                        |
| Allocation concealment                                       | Unclear risk | Not described.                                                   |
| (selection bias)                                             |              |                                                                  |
| Blinding of participants and<br>personnel (performance bias) | Unclear risk | Not stated.                                                      |
| Blinding of outcome                                          | Unclear risk | Not stated.                                                      |
| assessment (detection bias)                                  |              | Not stateu.                                                      |
| Incomplete outcome data                                      | High risk    | Quote: "Because six patients were disqualified from the study,   |
| (attrition bias)                                             |              | groups D and DN included nine patients each."                    |
|                                                              |              | Comment: probably high risk, as excluding 17% of the             |
|                                                              |              | randomized patients could result in substantial inequality in    |
|                                                              |              | patient characteristics between both groups.                     |
| Selective reporting (reporting                               | High risk    | The authors did not register the trial or prepublished the trial |
| bias)                                                        |              | design. The primary outcome of this meta-analysis (mortality)    |
|                                                              |              | is not reported.                                                 |
| Other bias                                                   | Unclear risk | The manuscript does not contain a statement on conflicts of      |
|                                                              |              | interest or financial disclosures.                               |

## Cotter et al. 1997 [9]

| Bias                                                         | Authors'<br>judgement | Support for judgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)                  | Low risk              | Quote: "Patients were randomized by lottery into three<br>groups".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Allocation concealment (selection bias)                      | Unclear risk          | Not described.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Blinding of participants and<br>personnel (performance bias) | High risk             | Blinding not described, however dosing schemes of both interventions differed.<br>Comment: probably not blinded.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Blinding of outcome<br>assessment (detection bias)           | Unclear risk          | Not stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Incomplete outcome data<br>(attrition bias)                  | High risk             | Quote: "It was decided to discontinue the study because of<br>the severe adverse side effects".<br>Comment: probably high risk, however data was used in our<br>meta-analysis: the mention of early stopping of a trial has<br>been removed, because (i) simulation evidence suggests that<br>inclusion of stopped early trials in meta-analyses will not lead<br>to substantial bias, and (ii) exclusion of stopped early trials has<br>the potential to bias meta-analyses towards the null (as well<br>as leading to loss of precision). |
| Selective reporting (reporting bias)                         | Unclear risk          | The authors did not register the trial or prepublished the trial design. Despite describing the prespecified outcomes; the outcome adverse events is very short and one might argue that more adverse events were to be expected considering the population studied.                                                                                                                                                                                                                                                                        |
| Other bias                                                   | Unclear risk          | The manuscript does not contain a statement on conflicts of interest or financial disclosures.                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### De Backer et al. 2010 [35]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation<br>(selection bias)            | Low risk              | Qoute: "Randomization was performed in computer-<br>generated, permuted blocks of 6 to 10".<br>Quote (clinicaltrials.gov): "Randomization by blocks for each<br>participating ICU, using a computer generated list to allocate<br>treatments A or B, put in sealed envelopes near the drug<br>supplies".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                  |
| Allocation concealment<br>(selection bias)                | Low risk              | Quote: "Treatment assignments and a five-digit reference<br>number were placed in sealed, opaque envelopes, which were<br>opened by the person responsible for the preparation of the<br>trial-drug solutions".<br>Quote (clinicaltrials.gov): "In each ICU, sealed envelopes<br>including treatment allocation and a five digit number will be<br>available. The envelope will be opened by the person<br>responsible for preparation of the dopamine and<br>norepinephrine solutions. The random number and treatment<br>allocation will be written on a hidden book, available only for<br>the person responsible for preparation of the dopamine and<br>norepinephrine solutions".<br>Comment: probably done.    |
| Blinding of participants and personnel (performance bias) | Low risk              | Quote: "The doctors and nurses administering the drugs, as<br>well as the local investigators and research personnel who<br>collected data, were unaware of the treatment assignments".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Blinding of outcome<br>assessment (detection bias)        | Low risk              | Quote: "The doctors and nurses administering the drugs, as<br>well as the local investigators and research personnel who<br>collected data, were unaware of the treatment assignments".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | Quote: "data on the outcome during the stay in the hospital<br>were available for 1656 patients (98.6%)".<br>Comment: probably low risk, because of high incidence of<br>primary outcome (50%) and small percentage of missing data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Selective reporting (reporting bias)                      | Low risk              | All measured outcomes were reported and prespecified in a protocol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other bias                                                | Low risk              | Quote: "Supported in part by the European Society of<br>Intensive Care through support from the European Critical<br>Care Research Network. Dr. Aldecoa reports receiving<br>consulting fees from Covidien. No other potential conflict of<br>interest relevant to this article was reported."<br>Quote: "the mention of early stopping of a trial has been<br>removed, because (i) simulation evidence suggests that<br>inclusion of stopped early trials in meta-analyses will not lead<br>to substantial bias, and (ii) exclusion of stopped early trials has<br>the potential to bias meta-analyses towards the null (as well<br>as leading to loss of precision)".<br>Comment: probably low risk of other bias. |

## Dzhaiani et al. 2011 [56]

| Bias                                     | Authors'     | Support for judgement                                            |
|------------------------------------------|--------------|------------------------------------------------------------------|
|                                          | judgement    |                                                                  |
| Random sequence generation               | High risk –  | Quote: "divided by simple randomization into 2 groups." (even    |
| (selection bias)                         | REMOVED      | numbers 1st group, uneven 2nd group).                            |
|                                          |              | Comment: not random and predice-Table allocation. QUASI          |
|                                          |              | RANDOMISED TRIAL                                                 |
| Allocation concealment                   | High risk    | Quote: "divided by simple randomization into 2 groups." (even    |
| (selection bias)                         |              | numbers 1st group, uneven 2nd group).                            |
|                                          |              | Comment: not random and predice-Table allocation.                |
| Blinding of participants and             | High risk    | Quote: "A pilot prospective one-center open-ended                |
| personnel (performance bias)             |              | randomized trial".                                               |
|                                          |              | Comment: not blinded.                                            |
| Blinding of outcome                      | High risk    | Not described. Probably not blinded because it was an open-      |
| assessment (detection bias)              |              | label trial.                                                     |
| Incomplete outcome data (attrition bias) | Low risk     | No incomplete outcome data.                                      |
| Selective reporting (reporting           | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                                    |              | design.                                                          |
| Other bias                               | Unclear risk | The manuscript does not contain a statement on conflicts of      |
|                                          |              | interest or financial disclosures.                               |

## Gao et al. 2008 [37]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                                                                                    |
|-----------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation<br>(selection bias)            | Unclear risk          | Quote: "44 patients included in this study were randomly<br>divided into two groups".<br>Comment: insufficient information and no previous trials from<br>the same researchers are available for additional information. |
| Allocation concealment (selection bias)                   | Unclear risk          | Not described.<br>Comment: insufficient information and no previous trials from<br>the same researchers are available for additional information.                                                                        |
| Blinding of participants and personnel (performance bias) | High risk             | Blinding not described, however dosing schemes of both interventions differed.<br>Comment: probably not blinded.                                                                                                         |
| Blinding of outcome<br>assessment (detection bias)        | High risk             | Not stated. Probably not done.                                                                                                                                                                                           |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | Data and follow-up of all patients were reported.                                                                                                                                                                        |
| Selective reporting (reporting bias)                      | Unclear risk          | The authors did not register the trial or prepublished the trial design. Also, the trial does not state their primary and secondary outcomes.                                                                            |
| Other bias                                                | Unclear risk          | The manuscript does not contain a statement on conflicts of interest or financial disclosures.                                                                                                                           |

#### Gatot et al. 2004 [36]

| Bias                           | Authors'  | Support for judgement                                                             |
|--------------------------------|-----------|-----------------------------------------------------------------------------------|
|                                | judgement |                                                                                   |
| Random sequence                | Unclear   | Quote: "The patients were randomly and blindly assigned".                         |
| generation (selection bias)    | risk      | Comment: method of randomization unclear. Comment:                                |
|                                |           | unclear, as a similar trial by these investigators included the                   |
|                                |           | same phrase yet did not elaborate on method of randomization.                     |
| Allocation concealment         | Unclear   | Not described.                                                                    |
| (selection bias)               | risk      | Comment: unclear, as a similar trial by these investigator                        |
|                                |           | report: "Treatment allocation was made with the sealed                            |
|                                |           | envelope method", however they do not report anything on                          |
|                                | Lauradal. | opacity and numbering.                                                            |
| Blinding of participants and   | Low risk  | Quote: "Dopamine and saline were provided in code uniformly                       |
| personnel (performance bias)   |           | appearing 10 mL syringes. The content of the syringes was                         |
|                                |           | unknown to the caring staff and to the investigators."<br>Comment: probably done. |
| Blinding of outcome            | Low risk  | Quote: "Dopamine and saline were provided in code uniformly                       |
| assessment (detection bias)    | LOW HISK  | appearing 10 mL syringes. The content of the syringes was                         |
| discission (detection sids)    |           | unknown to the caring staff and to the investigators."                            |
|                                |           | Comment: probably done.                                                           |
| Incomplete outcome data        | Low risk  | Quote: ""A total of 89 patients were initially enrolled in the                    |
| (attrition bias)               |           | study. Four patients were excluded from the study - two due to                    |
|                                |           | reoperation for postoperative bleeding, one due to high blood                     |
|                                |           | pressure and postoperative atrial fibrillation, and one due to                    |
|                                |           | mechanical ventilation for more than 24 hours".                                   |
|                                |           | Comment: Small percentage of drop-out and plausible reasons                       |
|                                |           | for exclusion. Probably low risk.                                                 |
| Selective reporting (reporting | High risk | The authors did not register the trial or prepublished the trial                  |
| bias)                          |           | design. The primary outcome of this meta-analysis (mortality) is                  |
|                                |           | not reported.                                                                     |
| Other bias                     | Unclear   | The manuscript does not contain a statement on conflicts of                       |
|                                | risk      | interest or financial disclosures.                                                |

## Giamouzis et al. 2010 [5]

| Bias                                           | Authors'        | Support for judgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | judgement       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Random sequence<br>generation (selection bias) | Low risk        | Quote: "subsequently allocated to one of two treatment<br>strategies in a double-blind randomized fashion".<br>Comment: Probably done properly, as a similar trial by these<br>investigators state that "Randomization was based on a<br>sequence of binary numbers. In detail, for each consecutive<br>patient of our clinic we assigned a sequence of random binary<br>numbers (ie, 1,1,1,0,1,0,1,1,0,1) that assisted to allocate<br>participants into the 2 treatment arms. For example if a patient<br>was assigned to number 1, he/she was treated with<br>levosimendan, if he/she was assigned to number 0, he/she was<br>not treated with levosimendan. No blocking or stratification<br>was performed. The treatment code was not known to the<br>physician of the study. The randomization system was created<br>by a special software (STATA, STATA Corp, College Station,<br>Texas 77845 USA, data command: sample # [if exp] [in range] [, |
| Allocation concealment<br>(selection bias)     | Unclear<br>risk | count by (groupvars)])".<br>Quote: "Patients were subsequently allocated"<br>Comment: unclear information on this risk of bias. Similar trials<br>by these investigators also do not elaborate on their allocation<br>concealment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Blinding of participants and personnel (performance bias) | Low risk        | Quote: "randomized double-blind study"<br>Comment: Probably done.                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blinding of outcome<br>assessment (detection bias)        | Low risk        | Quote: "All measurements were performed by one investigator<br>in each hospital who was blinded with respect to treatment<br>allocation"<br>Comment: probably done.                                                                                                                                                                                         |
| Incomplete outcome data<br>(attrition bias)               | Low risk        | Quote: "One hundred eighty-seven consecutive ADHF patients<br>were screened for the study A total of 60 patients fulfilled all<br>inclusion criteria and were enrolled in the study".<br>Comment: probably low risk, as all allocated patients completed<br>the trial and withdrawals were before randomization and<br>according to the exclusion criteria. |
| Selective reporting (reporting bias)                      | Low risk        | Quote: "All primary and secondary outcomes were prespecified<br>in the protocol".<br>Comment: probably low risk, as all outcome measures are<br>reported and the protocol was registered at clinicaltrials.gov.                                                                                                                                             |
| Other bias                                                | Unclear<br>risk | The manuscript does not contain a statement on conflicts of interest or financial disclosures.                                                                                                                                                                                                                                                              |

# Hausen et al. 1992 [17]

| Bias                           | Authors'     | Support for judgement                                            |
|--------------------------------|--------------|------------------------------------------------------------------|
|                                | judgement    |                                                                  |
| Random sequence generation     | Low risk     | Quote: "Patients were allocated to either group according to     |
| (selection bias)               |              | randomization tables provided by the Statistical Program for     |
|                                |              | the Social Sciences (SPSS)."                                     |
|                                |              | Comment: probably done.                                          |
| Allocation concealment         | High risk    | Quote: "Patients were allocated to either group according to     |
| (selection bias)               |              | randomization tables provided by the Statistical Program for     |
|                                |              | the Social Sciences (SPSS)."                                     |
|                                |              | Comment: probably high risk. The researchers could probably      |
|                                |              | access these randomization tables and therefore were aware       |
|                                |              | of the allocation. Furthermore, no details on allocation         |
|                                |              | method described and previous trials from the same               |
|                                |              | researchers also do not elaborate on allocation concealment.     |
| Blinding of participants and   | High risk    | Blinding not described, however dosing schemes of both           |
| personnel (performance bias)   |              | interventions differed.                                          |
|                                |              | Comment: probably not blinded.                                   |
| Blinding of outcome            | Unclear risk | Not stated. probably not done.                                   |
| assessment (detection bias)    |              | Comment: low risk for mortality, high risk for other outcomes.   |
| Incomplete outcome data        | Low risk     | Quote: "There are no reports regarding late death in any         |
| (attrition bias)               |              | case".                                                           |
|                                |              | Comment: probably none lost to follow-up.                        |
| Selective reporting (reporting | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                          |              | design. Also, the trial does not state their primary and         |
|                                |              | secondary outcomes.                                              |
| Other bias                     | Unclear risk | The manuscript does not contain a statement on conflicts of      |
|                                |              | interest or financial disclosures.                               |

## Hsueh et al. 1998 [7]

| Bias                                                         | Authors'     | Support for judgement                                                              |
|--------------------------------------------------------------|--------------|------------------------------------------------------------------------------------|
|                                                              | judgement    |                                                                                    |
| Random sequence generation                                   | Unclear risk | Quote: "randomized to either".                                                     |
| (selection bias)                                             |              | Comment: insufficient information and no previous trials from                      |
|                                                              |              | the same researchers are available for additional information.                     |
| Allocation concealment                                       | Unclear risk | Not described.                                                                     |
| (selection bias)                                             |              | Comment: insufficient information and no previous trials from                      |
|                                                              |              | the same researchers are available for additional information.                     |
| Blinding of participants and<br>personnel (performance bias) | Unclear risk | Not stated. Dosages of both interventions were similar.                            |
| Blinding of outcome                                          | Low risk     | Quote: "The ECGs were further edited and analyzed by an                            |
| assessment (detection bias)                                  |              | experienced cardiologist not involved in the study".                               |
|                                                              |              | Comment: not involved in the study means that this outcome                         |
|                                                              |              | assessor was probably not aware of the assigned treatment.                         |
| Incomplete outcome data<br>(attrition bias)                  | Low risk     | Data and follow-up of all patients were reported.                                  |
| Selective reporting (reporting                               | Unclear risk | The authors did not register the trial or prepublished the trial                   |
| bias)                                                        |              | design. All hemodynamic variables in methods section are described in the results. |
| Other bias                                                   | Unclear risk | The manuscript does not contain a statement on conflicts of                        |
|                                                              |              | interest or financial disclosures.                                                 |

## Hua et al. 2005 [38]

| Bias                           | Authors'     | Support for judgement                                              |
|--------------------------------|--------------|--------------------------------------------------------------------|
|                                | judgement    |                                                                    |
| Random sequence generation     | Low risk     | Quote: "Patients were randomized to one of two study groups        |
| (selection bias)               |              | using                                                              |
|                                |              | a computer-generated random number table".                         |
|                                |              | Comment: probably done.                                            |
| Allocation concealment         | Unclear risk | Not described.                                                     |
| (selection bias)               |              | Comment: insufficient information and no previous trials from      |
|                                |              | the same researchers are available for additional information.     |
| Blinding of participants and   | High risk    | Blinding not described, however dosing schemes of both             |
| personnel (performance bias)   |              | interventions differed.                                            |
|                                |              | Comment: probably not blinded.                                     |
| Blinding of outcome            | High risk    | Not stated. Probably not done.                                     |
| assessment (detection bias)    |              | Comment: Low risk for mortality outcomes, high risk for other      |
|                                |              | outcomes.                                                          |
| Incomplete outcome data        | Low risk     | Quote: "None of the enrolled patients died during the study        |
| (attrition bias)               |              | period" and "Of the 72 patients with ARDS and shock who met        |
|                                |              | the inclusion criteria of the study, 40 were excluded due to       |
|                                |              | prior catecholamine therapy (n = 27), severe cardiovascular        |
|                                |              | disorders (n = 6), and severe liver or renal dysfunction (n = 7)." |
|                                |              | Comment: no patients lost to follow-up. Probably low risk, as      |
|                                |              | all allocated patients completed the trial and withdrawals         |
|                                |              | were before allocation.                                            |
| Selective reporting (reporting | Unclear risk | The authors did not register the trial or prepublished the trial   |
| bias)                          |              | design. All outcomes mentioned in methods section are              |
|                                |              | described in the results.                                          |
| Other bias                     | Unclear risk | The manuscript does not contain a statement on conflicts of        |
|                                |              | interest or financial disclosures.                                 |

#### Kamiya et al. 2015 [1]

| Bias                                        | Authors'     | Support for judgement                                                      |
|---------------------------------------------|--------------|----------------------------------------------------------------------------|
|                                             | judgement    |                                                                            |
| Random sequence generation                  | Unclear risk | Quote: "patients were randomized to".                                      |
| (selection bias)                            |              | Comment:No further details described and previous trials                   |
|                                             |              | from the same researchers also do not elaborate on allocation concealment. |
| Allocation concealment                      | Unclear risk | No details on allocation method described and previous trials              |
| (selection bias)                            |              | from the same researchers also do not elaborate on allocation concealment. |
| Blinding of participants and                | High risk    | Quote: "This study was a prospective, open-labeled".                       |
| personnel (performance bias)                |              | Comment: personnel was not blinded.                                        |
| Blinding of outcome                         | High risk    | Not stated. Probably not done.                                             |
| assessment (detection bias)                 |              | Comment: Low risk for mortality outcomes, high risk for other              |
|                                             |              | outcomes.                                                                  |
| Incomplete outcome data<br>(attrition bias) | Low risk     | Data and follow-up of all patients were reported.                          |
| Selective reporting (reporting              | Unclear risk | The authors did not register the trial or prepublished the trial           |
| bias)                                       |              | design. All outcomes described in the methods section,                     |
|                                             |              | including mortality and SAEs, are described in the results.                |
| Other bias                                  | Low risk     | Quote: "The authors report no conflicts of interest".                      |

## Kanchi et al. 2017 [53]

| Bias                                        | Authors'     | Support for judgement                                            |
|---------------------------------------------|--------------|------------------------------------------------------------------|
|                                             | judgement    |                                                                  |
| Random sequence generation                  | Unclear risk | Quote: "patients were randomized to".                            |
| (selection bias)                            |              | Comment: No further details described and previous trials        |
|                                             |              | from the same researchers also do not elaborate on allocation    |
|                                             |              | concealment.                                                     |
| Allocation concealment                      | Unclear risk | No details on allocation method described and previous trials    |
| (selection bias)                            |              | from the same researchers also do not elaborate on allocation    |
|                                             |              | concealment.                                                     |
| Blinding of participants and                | High risk    | Quote: "This study was a prospective, open-labeled".             |
| personnel (performance bias)                |              | Comment: personnel was not blinded.                              |
| Blinding of outcome                         | High risk    | Not stated. Probably not done.                                   |
| assessment (detection bias)                 |              | Comment: Low risk for mortality outcomes, high risk for other    |
|                                             |              | outcomes.                                                        |
| Incomplete outcome data<br>(attrition bias) | Low risk     | Data and follow-up of all patients were reported.                |
| Selective reporting (reporting              | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                                       |              | design. All outcomes described in the methods section,           |
|                                             |              | including mortality and SAEs, are described in the results.      |
| Other bias                                  | Low risk     | Quote: "The authors report no conflicts of interest".            |

#### Lassnigg et al. 2000 [39]

| Bias                                                      | Authors'     | Support for judgement                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           | judgement    |                                                                                                                                                                                                                                                                                                                                                                         |
| Random sequence generation<br>(selection bias)            | Low risk     | Quote: "block randomization (sealed envelopes)".<br>Email first author: "Computer generated block randomization<br>(statgraphics old version)"<br>Comment: probably low risk.                                                                                                                                                                                           |
| Allocation concealment<br>(selection bias)                | Low risk     | Quote: "block randomization (sealed envelopes)".<br>Email first author: "Opaque envelopes were used and drugs<br>were prepared by the director of the study (PI) not involved in<br>any patient evaluation or data collection."<br>Comment: probably low risk.                                                                                                          |
| Blinding of participants and personnel (performance bias) | Low risk     | Quote: "The study medications and placebo were provided in<br>uniformly appearing 50-ml syringes blinded to attending<br>physicians and nurses involved in intra- and postoperative<br>care."<br>Comment: probably done.                                                                                                                                                |
| Blinding of outcome<br>assessment (detection bias)        | Low risk     | Quote from personal correspondence: "The caregivers and the study personal were blinded to the study medication".<br>Comment: probably done.                                                                                                                                                                                                                            |
| Incomplete outcome data<br>(attrition bias)               | Low risk     | Quote: "Three patients were excluded after randomization.<br>One patient in group F and two in group P required<br>reoperation because of bleeding" and "None of the three<br>patients who were excluded developed ARI".<br>Comment: Only 3 of the 126 allocated excluded due to<br>plausible reasons. Clinical outcomes of excluded patients are<br>clearly described. |
| Selective reporting (reporting bias)                      | Unclear risk | The authors did not register the trial or prepublished the trial design. All outcomes mentioned in methods are reported in results section.                                                                                                                                                                                                                             |
| Other bias                                                | Low risk     | Email first author: "No conflict of interest. No pharmaceutical company involved in any stage of the trial. Drugs available in routine care at that time were used."                                                                                                                                                                                                    |

Liu et al. 2010 [40]

| Bias                                                         | Authors'<br>judgement | Support for judgement                                                                                                                              |
|--------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)                  | Unclear risk          | No statement on randomization and no previous trials from the same researchers are available for additional information.                           |
| Allocation concealment (selection bias)                      | Unclear risk          | Not described.<br>Comment: insufficient information and no previous trials from<br>the same researchers are available for additional information.  |
| Blinding of participants and<br>personnel (performance bias) | High risk             | Blinding not described, however dosing schemes of both<br>interventions differed.<br>Comment: probably not blinded.                                |
| Blinding of outcome<br>assessment (detection bias)           | Unclear risk          | Not stated. Probably not done.<br>Comment: Low risk for mortality, high risk for other outcomes.                                                   |
| Incomplete outcome data (attrition bias)                     | Low risk              | All patients seemed to have completed the follow-up.                                                                                               |
| Selective reporting (reporting bias)                         | Unclear risk          | The authors did not register the trial or prepublished the trial design. No primary or secondary outcome measures reported in the methods section. |
| Other bias                                                   | Unclear risk          | The manuscript does not contain a statement on conflicts of interest or financial disclosures.                                                     |

## Marik et al. 1994 [41]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                                                                                           |
|-----------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)               | Low risk              | Quote: "Patients were randomized using a random-number<br>generator to receive".<br>Comment: probably done.                                                                                                                     |
| Allocation concealment<br>(selection bias)                | Low risk              | Email first author: "white sealed envelopes (non translucent)<br>were used".<br>Comment: unclear, as two similar trials by these investigators<br>also do not report additional information on their allocation<br>concealment. |
| Blinding of participants and personnel (performance bias) | High risk             | Blinding not described, however dosing schemes of both interventions differed.<br>Comment: probably high risk.                                                                                                                  |
| Blinding of outcome<br>assessment (detection bias)        | High risk             | Not stated. Probably not done.<br>Comment: Low risk for mortality, high risk for other outcomes.                                                                                                                                |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | All patients seemed to have completed the follow-up.                                                                                                                                                                            |
| Selective reporting (reporting bias)                      | Unclear risk          | The authors did not register the trial or prepublished the trial design. All outcomes mentioned in methods are reported in results section.                                                                                     |
| Other bias                                                | Low risk              | Email from first author (prof. Marik): "There were NO conflicts of interest".                                                                                                                                                   |

# Martin et al. 1993 [42]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                    |
|-----------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)               | Unclear risk          | Method of randomization not described.<br>Comment: unclear, as two similar trials by these investigators                                                 |
|                                                           |                       | also do not report additional information on their randomization method.                                                                                 |
| Allocation concealment<br>(selection bias)                | Unclear risk          | Not described.<br>Comment: unclear, as two similar trials by these investigators<br>also did not include a statement on their allocation<br>concealment. |
| Blinding of participants and personnel (performance bias) | Low risk              | Quote: "At no time was the physician in charge of the patient<br>aware of the drug being infused".<br>Comment: probably done.                            |
| Blinding of outcome assessment (detection bias)           | Unclear risk          | Not stated.<br>Comment: Low risk for mortality, high risk for other outcomes.                                                                            |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | Quote: "Fifteen patients were discharged from the hospital".<br>Comment: probably all patients had complete follow-up until<br>hospital discharge.       |
| Selective reporting (reporting bias)                      | Unclear risk          | The authors did not register the trial or prepublished the trial design. No primary or secondary outcome measures reported in the methods section.       |
| Other bias                                                | High risk             | Possible carry-over effect in cross-over design. The manuscript does not contain a statement on conflicts of interest or financial disclosures.          |

#### Mathur et al. 2007 [43]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                                                                                 |
|-----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation<br>(selection bias)            | Low risk              | Method of randomization not described.<br>Comment: probably done properly, as one similar trial by<br>these investigators report to have used "a computer-<br>generated table" for randomization sequence generation. |
| Allocation concealment<br>(selection bias)                | Unclear risk          | Not described.<br>Comment: unclear, as one similar trial by these investigators<br>also did not include a statement on their allocation<br>concealment.                                                               |
| Blinding of participants and personnel (performance bias) | High risk             | Quote: "The person who manipulated the syringe pump knew<br>what drug the patient was receiving and what were the set<br>aliquots for that drug."<br>Comment: not blinded.                                            |
| Blinding of outcome<br>assessment (detection bias)        | Low risk              | Quote: "The outcome assessors were blinded to the drug the patient was receiving."<br>Comment: probably done.                                                                                                         |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | Probably all patients had complete follow-up until hospital discharge.                                                                                                                                                |
| Selective reporting (reporting bias)                      | Unclear risk          | The authors did not register the trial or prepublished the trial design. The outcome mentioned in methods ("goal of therapy achieved") is reported in results section.                                                |
| Other bias                                                | Low risk              | Quote: "Source of Support: Nil, Conflict of Interest: None<br>declared".<br>Comment: probably low risk.                                                                                                               |

# Myles et al. 1993 [44]

| Bias                                                      | Authors'              | Support for judgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)               | judgement<br>Low risk | Quote: "Patients were randomised into either group according<br>to a e-Table of random numbers"<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                  |
| Allocation concealment<br>(selection bias)                | Low risk              | Quote: "randomised into either group according to a e-Table<br>of random numbers, arranged by the hospital Pharmacy<br>Department".<br>Comment: probably done properly, as central allocation was<br>used.                                                                                                                                                                                                                                                                                  |
| Blinding of participants and personnel (performance bias) | Low risk              | Quote: "It was a prospective, double-blind, randomised trial".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                                   |
| Blinding of outcome<br>assessment (detection bias)        | Low risk              | Quote: "The coded 50 ml syringes were prepared by<br>pharmacy, with the contents remaining unknown by the<br>investigators until the end of the trial".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                          |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | Quote: "There were three withdrawals (one patient withdrew<br>consent before commencement of surgery after discussion<br>with their spouse, one patient was haemofiltered during<br>cardiopulmonary bypass to correct dilutional anaemia, one<br>patient required an intra-aortic balloon pump following return<br>to the operating theatre for continued bleeding and<br>pericardia! tamponade)."<br>Comment: Only 3 of the 52 allocated were withdrawn and<br>reasons are well described. |
| Selective reporting (reporting bias)                      | Unclear risk          | The authors did not register the trial or prepublished the trial design. All outcomes mentioned in methods are reported in results section.                                                                                                                                                                                                                                                                                                                                                 |
| Other bias                                                | Low risk              | Email author: "there were no conflicts of interest."                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## Oppizzi et al. 1997 [11]

| Bias                           | Authors'     | Support for judgement                                            |
|--------------------------------|--------------|------------------------------------------------------------------|
|                                | judgement    |                                                                  |
| Random sequence generation     | Unclear risk | Quote: "Patients were randomized to 2 groups".                   |
| (selection bias)               |              | Comment: unclear, as one similar trial by these investigators    |
|                                |              | also did not elaborate on their method of randomization.         |
| Allocation concealment         | Unclear risk | Not described.                                                   |
| (selection bias)               |              | Comment: unclear, as one similar trial by these investigators    |
|                                |              | also did not include a statement on their allocation             |
|                                |              | concealment.                                                     |
| Blinding of participants and   | High risk    | Blinding not described, however dosing schemes of both           |
| personnel (performance bias)   |              | interventions differed.                                          |
|                                |              | Comment: probably high risk.                                     |
| Blinding of outcome            | High risk    | Not stated. Probably not done.                                   |
| assessment (detection bias)    |              | Comment: Low risk for mortality, high risk for other outcomes.   |
| Incomplete outcome data        | Low risk     | Probably all patients had complete follow-up until hospital      |
| (attrition bias)               |              | discharge.                                                       |
| Selective reporting (reporting | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                          |              | design. The outcomes mentioned in methods are well defined       |
|                                |              | and reported in results section.                                 |
| Other bias                     | High risk    | Possible carry-over effect in cross-over design. The manuscript  |
|                                |              | does not contain a statement on conflicts of interest or         |
|                                |              | financial disclosures.                                           |

## Patel et al. 2010 [57]

| Bias                                                      | Authors'<br>judgement  | Support for judgement                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)               | High risk -<br>REMOVED | Quote: "Randomized by day of month".<br>Comment: high risk, as randomization on day of the month is<br>'quasi-random'. QUASI RANDOMISED TRIAL                                                                                                                                  |
| Allocation concealment<br>(selection bias)                | High risk              | Quote: "Randomization was based on whether the patient<br>presented on an odd or even calendar day of the month".<br>Comment: allocation could not be concealed with this quasi-<br>randomization scheme.                                                                      |
| Blinding of participants and personnel (performance bias) | High risk              | Quote: "open-label comparison of DA versus NE"<br>Comment: high risk, as the care givers were aware of the<br>instituted intervention.                                                                                                                                         |
| Blinding of outcome<br>assessment (detection bias)        | High risk              | Not stated. Probably not.                                                                                                                                                                                                                                                      |
| Incomplete outcome data<br>(attrition bias)               | Low risk               | Probably all patients had complete follow-up until hospital discharge.                                                                                                                                                                                                         |
| Selective reporting (reporting bias)                      | Low risk               | The authors registered the trial prior to the start of the study.<br>The outcomes mentioned in methods are well defined and<br>reported in results section.                                                                                                                    |
| Other bias                                                | Low risk               | Quote: "The dopamine versus norepinephrine trial was not<br>funded. None of the authors have any financial involvement or<br>commercial association that might pose a real or perceived<br>conflict of interest in connection with this study."<br>Comment: probably low risk. |

#### Rosseel et al. 1997 [15]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                                                                                                                       |
|-----------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)               | Low risk              | Quote: "to a randomisation list with balanced blocks of four<br>within each centre".<br>Comment: Probably done properly.                                                                                                                                    |
| Allocation concealment<br>(selection bias)                | Low risk              | Quote: "The drugs were supplied by the hospital pharmacist as<br>a blinded, prepared infusion according to a randomisation list<br>with balanced blocks of four within each centre."<br>Comment: Probably done properly, as central allocation was<br>used. |
| Blinding of participants and personnel (performance bias) | Low risk              | Quote: "The randomisation list with the patient study number<br>and the matching study medication was not revealed to the<br>investigator or anyone else involved in the study in order to<br>maintain the blind."<br>Comment: probably done.               |
| Blinding of outcome<br>assessment (detection bias)        | Low risk              | Quote: "The randomisation list with the patient study number<br>and the matching study medication was not revealed to the<br>investigator or anyone else involved in the study in order to<br>maintain the blind."<br>Comment: probably done.               |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | Probably all patients had complete follow-up until hospital discharge.                                                                                                                                                                                      |
| Selective reporting (reporting bias)                      | Unclear risk          | The authors did not register the trial or prepublished the trial design. The outcomes mentioned in methods are well defined and reported in results section.                                                                                                |
| Other bias                                                | High risk             | The last author is employed at Speywood Pharmaceuticals.<br>Comment: probably high risk.                                                                                                                                                                    |

## Schmoelz et al. 2006 [45]

| Bias                           | Authors'<br>judgement | Support for judgement                                            |
|--------------------------------|-----------------------|------------------------------------------------------------------|
| Random sequence generation     | Low risk              | Quote: "Group assignment was performed using a computer-         |
| (selection bias)               |                       | generated randomization table".                                  |
|                                |                       | Comment: probably done.                                          |
| Allocation concealment         | Unclear risk          | Quote: "the drug infusions were prepared by a study nurse        |
| (selection bias)               |                       | who was not involved in the care of the patients".               |
|                                |                       | Comment: unclear, study nurse could be aware of the              |
|                                |                       | prognosis of the patient. Another trial from this research       |
|                                |                       | group also did not include a statement on allocation             |
|                                |                       | concealment.                                                     |
| Blinding of participants and   | Low risk              | Quote: "the drug infusions were prepared by a study nurse        |
| personnel (performance bias)   |                       | who was not involved in the care of the patients".               |
|                                |                       | Comment: probably blinded.                                       |
| Blinding of outcome            | Unclear risk          | Not described.                                                   |
| assessment (detection bias)    |                       | Comment: unclear. Low risk for mortality and renal               |
|                                |                       | replacement therapy.                                             |
| Incomplete outcome data        | Low risk              | Quote: "One patient from each group was excluded from the        |
| (attrition bias)               |                       | trial because of a protocol violation".                          |
|                                |                       | Comment: only 3/61 excluded and reason for exclusion is          |
|                                |                       | described.                                                       |
| Selective reporting (reporting | Unclear risk          | The authors did not register the trial or prepublished the trial |
| bias)                          |                       | design. The hypotheses and endpoints mentioned in methods        |
|                                |                       | are well defined and reported in results section.                |
| Other bias                     | Unclear risk          | Study supported by grant from the Elan Corporation (drug firm).  |

|  | Comment: it is unclear to what extent the Elan Corporation |
|--|------------------------------------------------------------|
|  | was involved in the trial                                  |

# Schneider et al. 1999 [46]

| Bias                           | Authors'<br>judgement | Support for judgement                                            |
|--------------------------------|-----------------------|------------------------------------------------------------------|
| Random sequence generation     | Unclear risk          | Quote: "were randomly allocated".                                |
| (selection bias)               |                       | Comment: unclear information, as a previous trial of the same    |
|                                |                       | group also did not describe their method of randomization.       |
| Allocation concealment         | Unclear risk          | Quote: "contents of a sealed envelope in a 2 x 2 factorial       |
| (selection bias)               |                       | structure".                                                      |
|                                |                       | Comment: unclear information on opacity and sequential           |
|                                |                       | opening. A previous trial of the same group also did not         |
|                                |                       | elaborate on their allocation concealment method.                |
| Blinding of participants and   | Low risk              | Quote: "Clinicians involved with the case were blinded to the    |
| personnel (performance bias)   |                       | study drug".                                                     |
|                                |                       | Comment: probably done.                                          |
| Blinding of outcome            | Unclear risk          | Not described.                                                   |
| assessment (detection bias)    |                       | Comment: unclear. Low risk for mortality, high risk for SEAs.    |
| Incomplete outcome data        | Low risk              | Quote: "One patient (group 2) had to be withdrawn from the       |
| (attrition bias)               |                       | study because of damage to the gastric tonometer balloon".       |
|                                |                       | Comment: only 1/101 included patients is withdraw after          |
|                                |                       | allocation and the reason is well described.                     |
| Selective reporting (reporting | Unclear risk          | The authors did not register the trial or prepublished the trial |
| bias)                          |                       | design. The outcome measures are mentioned in methods and        |
|                                |                       | include both mortality and SAEs.                                 |
| Other bias                     | Low risk              | Quote: "This study was supported by grants from the              |
|                                |                       | Australian and New Zealand College of Anaesthetists and the      |
|                                |                       | Australian Society of Anaesthetists".                            |
|                                |                       | Comment: probably low risk.                                      |

## Shah et al. 2014 [2]

| Bias                           | Authors'<br>judgement | Support for judgement                                            |
|--------------------------------|-----------------------|------------------------------------------------------------------|
| Random sequence generation     | Low risk              | Quote: "they were randomized into three groups".                 |
| (selection bias)               |                       | Comment: Probably done properly, as a similar trial by these     |
|                                |                       | investigators state that they used a "simple random method"      |
|                                |                       | for randomization.                                               |
| Allocation concealment         | Unclear risk          | Not described.                                                   |
| (selection bias)               |                       | Comment: unclear, as one similar trial by these investigators    |
|                                |                       | also did not include a statement on their allocation             |
|                                |                       | concealment.                                                     |
| Blinding of participants and   | High risk             | Blinding not described, however dosing schemes of both           |
| personnel (performance bias)   |                       | interventions differed.                                          |
|                                |                       | Comment: probably not blinded.                                   |
| Blinding of outcome            | High risk             | Not stated. Probably not done.                                   |
| assessment (detection bias)    |                       | Comment: Low risk for mortality, high risk for other outcomes.   |
| Incomplete outcome data        | Low risk              | Quote: "One patient each expired in the infusion b dopamine      |
| (attrition bias)               |                       | group and bolus group during first 24 h of index                 |
|                                |                       | hospitalization and one patient in infusion group got            |
|                                |                       | discharged against medical advice within 24 h of admission.      |
|                                |                       | These three patients were excluded."                             |
|                                |                       | Comment: only 3/93 excluded and reasons for withdrawal are       |
|                                |                       | well described.                                                  |
| Selective reporting (reporting | Unclear risk          | The authors did not register the trial or prepublished the trial |
| bias)                          |                       | design. The outcome measures are mentioned in methods and        |
|                                |                       | reported in results section.                                     |
| Other bias                     | Low risk              | Quote: "Conflict of interest: All authors have none to declare". |

## Sharpe et al. 1999 [47]

| Bias                           | Authors'<br>judgement | Support for judgement                                            |
|--------------------------------|-----------------------|------------------------------------------------------------------|
| Random sequence generation     | Unclear risk          | Quote: "were prospectively randomized".                          |
| (selection bias)               |                       | Comment: unclear, as a similar trial by these investigators also |
|                                |                       | did not elaborate on their method of randomization.              |
| Allocation concealment         | Unclear risk          | Not described.                                                   |
| (selection bias)               |                       | Comment: unclear, as one similar trial by these investigators    |
|                                |                       | also did not include a statement on their allocation             |
|                                |                       | concealment.                                                     |
| Blinding of participants and   | Low risk              | Quote: "An unmarked syringe of the study agent was then          |
| personnel (performance bias)   |                       | infused at a predetermined rate."                                |
|                                |                       | Comment: probably done.                                          |
| Blinding of outcome            | Low risk              | Quote: "All observations were made by a single blinded           |
| assessment (detection bias)    |                       | observer".                                                       |
|                                |                       | Comment: probably done.                                          |
| Incomplete outcome data        | Unclear risk          | Quote: "All patients left intensive care on the first            |
| (attrition bias)               |                       | postoperative day".                                              |
|                                |                       | Comment: no lost to follow-up in this short period of time,      |
|                                |                       | however one might argue that this follow-up period is too        |
|                                |                       | short for a reliable assessment of mortality.                    |
| Selective reporting (reporting | Unclear risk          | The authors did not register the trial or prepublished the trial |
| bias)                          |                       | design. The outcome measures are mentioned in methods and        |
|                                |                       | reported in results section.                                     |
| Other bias                     | Unclear risk          | The manuscript does not contain a statement on conflicts of      |
|                                |                       | interest or financial disclosures.                               |

## Sinclair et al. 1997 [48]

| Bias                                        | Authors'<br>judgement | Support for judgement                                                            |
|---------------------------------------------|-----------------------|----------------------------------------------------------------------------------|
| Random sequence generation                  | Unclear risk          | Quote: "were randomly allocated".                                                |
| (selection bias)                            |                       | Comment: unclear, as a similar trial by these investigators also                 |
|                                             |                       | did not elaborate on their method of randomization.                              |
| Allocation concealment                      | Unclear risk          | Not described.                                                                   |
| (selection bias)                            |                       | Comment: unclear, as one similar trial by these investigators                    |
|                                             |                       | also did not include a statement on their allocation                             |
|                                             |                       | concealment.                                                                     |
| Blinding of participants and                | High risk             | Quote: "allocated to receive an infusion of either dopexamine                    |
| personnel (performance bias)                |                       | 2.0 mg/kg per min, or dopamine 2.5 mg/kg per min"                                |
|                                             |                       | Comment: probably not blinded.                                                   |
| Blinding of outcome                         | High risk             | Quote: "Urinary analysis was blinded to which                                    |
| assessment (detection bias)                 |                       | pharmacological agent the patient had received."                                 |
|                                             |                       | Comment: assessors of the clinical outcome were probably not blinded.            |
| Incomplete outcome data<br>(attrition bias) | Low risk              | All patients were follow-up until the end of the follow-up period (In-hospital). |
| Selective reporting (reporting              | Unclear risk          | The authors did not register the trial or prepublished the trial                 |
| bias)                                       | Officieal fisk        | design. The outcome measures are mentioned in methods and                        |
| 51357                                       |                       | reported in results section.                                                     |
| Other bias                                  | High risk             | Quote: "Our work was supported, in part, by a grant from                         |
|                                             |                       | Speywood Pharmaceuticals (UK) Ltd".                                              |
|                                             |                       | Comment: probably high risk of industry bias.                                    |

## Sindone et al. 1998 [8]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                        |
|-----------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)               | Unclear risk          | Not described in abstract.                                                                   |
| Allocation concealment (selection bias)                   | Unclear risk          | Not described in abstract.                                                                   |
| Blinding of participants and personnel (performance bias) | Unclear risk          | Not stated in abstract.                                                                      |
| Blinding of outcome<br>assessment (detection bias)        | Unclear risk          | Not stated in abstract.                                                                      |
| Incomplete outcome data<br>(attrition bias)               | Unclear risk          | Unclear from abstract.                                                                       |
| Selective reporting (reporting bias)                      | High risk             | High risk: one treatment arm terminated prematurely.                                         |
| Other bias                                                | Unclear risk          | The abstract does not contain a statement on conflicts of interest or financial disclosures. |

## Sirivella et al. 2000 [14]

| Bias                           | Authors'<br>judgement | Support for judgement                                                                                                |
|--------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|
| Random sequence generation     | Unclear risk          | Quote: "Patients were randomized either to receive".                                                                 |
| (selection bias)               |                       | Comment: unclear, as a similar trial by these investigators also did not elaborate on their method of randomization. |
| Allocation concealment         | Unclear risk          | Not described.                                                                                                       |
| (selection bias)               |                       | Comment: unclear, as one similar trial by these investigators                                                        |
|                                |                       | also did not include a statement on their allocation                                                                 |
|                                |                       | concealment.                                                                                                         |
| Blinding of participants and   | High risk             | Blinding not described, however dosing schemes of both                                                               |
| personnel (performance bias)   |                       | interventions differed.                                                                                              |
|                                |                       | Comment: probably not blinded.                                                                                       |
| Blinding of outcome            | High risk             | Quote: "Criteria for dialysis were the same in both groups, and                                                      |
| assessment (detection bias)    |                       | were established and carried out by the nephrologists of this                                                        |
|                                |                       | institution; in none of the patients was the dialysis given either                                                   |
|                                |                       | prematurely or postponed because of bias."                                                                           |
|                                |                       | Comment: the nephrologists were probably aware of the                                                                |
|                                |                       | treatment allocation.                                                                                                |
| Incomplete outcome data        | Unclear risk          | No patients seemed to be lost to follow-up. However one                                                              |
| (attrition bias)               |                       | might argue that the follow-up period is too short to assess                                                         |
|                                |                       | the true number of mortality and SAEs.                                                                               |
| Selective reporting (reporting | High risk             | The authors did not register the trial or prepublished the trial                                                     |
| bias)                          |                       | design. The primary outcome of this meta-analysis (mortality)                                                        |
|                                |                       | is not reported.                                                                                                     |
| Other bias                     | Unclear risk          | The manuscript does not contain a statement on conflicts of                                                          |
|                                |                       | interest or financial disclosures.                                                                                   |

## Soliman et al. 2017 [54]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                   |
|-----------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation (selection bias)               | Low risk              | Quote: "simple randomization through a process of<br>coin-tossing"<br>Comment: low risk according to the Cochrane handbook.                             |
| Allocation concealment (selection bias)                   | Unclear risk          | Quote: "simple randomization through a process of<br>coin-tossing"<br>Comment: unclear description of allocation concealment.                           |
| Blinding of participants and personnel (performance bias) | Low risk              | Quote: "The study medication was prepared in 50 ml syringe<br>by nursing staff and given to the anesthetist blindly"<br>Comment: probably low risk      |
| Blinding of outcome<br>assessment (detection bias)        | Unclear risk          | Not described.                                                                                                                                          |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | All included patients completed the study and none seemed to be lost to follow-up.                                                                      |
| Selective reporting (reporting bias)                      | Unclear risk          | The authors did not register the trial or prepublished the trial design. The outcome measures are mentioned in methods and reported in results section. |
| Other bias                                                | Low risk              | Quote: "There are no conflicts of interest."                                                                                                            |

## Sumeray et al. 2001 [49]

| Bias                           | Authors'     | Support for judgement                                            |
|--------------------------------|--------------|------------------------------------------------------------------|
|                                | judgement    |                                                                  |
| Random sequence generation     | Low risk     | Quote: "randomised patients according to a e-Table of            |
| (selection bias)               |              | random numbers".                                                 |
|                                |              | Comment: probably done.                                          |
| Allocation concealment         | Low risk     | Quote: "The Pharmacy Department (UCLH) randomised                |
| (selection bias)               |              | patients".                                                       |
|                                |              | Comment: probably done properly as allocation was                |
|                                |              | performed centrally.                                             |
| Blinding of participants and   | Low risk     | Quote: "Participating physicians and nursing staff were          |
| personnel (performance bias)   |              | blinded to the syringe contents until the conclusion of the      |
|                                |              | trial".                                                          |
| Blinding of outcome            | Unclear risk | Not stated. Probably not done.                                   |
| assessment (detection bias)    |              | Comment: Low risk for mortality, high risk for other outcomes.   |
| Incomplete outcome data        | Low risk     | Quote: "2 patients were excluded due to technical error with     |
| (attrition bias)               |              | baseline GFR measurement" and "data sets were incomplete         |
|                                |              | for 7 patients discharged prior to the second GFR                |
|                                |              | measurement".                                                    |
|                                |              | Comment: Only 2/46 were excluded after allocation and            |
|                                |              | reasons for exclusion are well described.                        |
| Selective reporting (reporting | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                          |              | design. The outcome measures are mentioned in methods and        |
|                                |              | reported in results section.                                     |
| Other bias                     | Low risk     | Quote: "This study was supported by grants from North            |
|                                |              | Thames NHS R&D Responsive Funding Group, the Royal               |
|                                |              | College of Surgeons of Edinburgh and the Society of              |
|                                |              | Cardiothoracic Surgeons of Great Britain and Ireland".           |
|                                |              | Comment: probably low risk.                                      |

# Tarr et al. 1993 [16]

| Bias                       | Authors'     | Support for judgement                                            |
|----------------------------|--------------|------------------------------------------------------------------|
|                            | judgement    |                                                                  |
| Random sequence generation | Unclear risk | Quote: "were randomly allocated".                                |
| (selection bias)           |              | Comment: unclear, as a similar trial by these investigators also |
|                            |              | did not elaborate on their method of randomization               |

| ·                                           |              |                                                                  |
|---------------------------------------------|--------------|------------------------------------------------------------------|
| Allocation concealment                      | Unclear risk | Not described.                                                   |
| (selection bias)                            |              | Comment: unclear, as one similar trial by these investigators    |
|                                             |              | also did not include a statement on their allocation             |
|                                             |              | concealment.                                                     |
| Blinding of participants and                | Low risk     | Quote: "ideal values and accepe-Table ranges were                |
| personnel (performance bias)                |              | set for each individual patient by an anaesthetist outside of    |
|                                             |              | the study group, who was blinded to the patient's drug           |
|                                             |              | allocation."                                                     |
|                                             |              | Comment: probably done.                                          |
| Blinding of outcome                         | Low risk     | Not stated. Probably not done.                                   |
| assessment (detection bias)                 |              | Comment: Low risk for mortality.                                 |
| Incomplete outcome data<br>(attrition bias) | High risk    | This trial excluded patients who not responded to therapy.       |
| Selective reporting (reporting              | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                                       |              | design. Follow-up on mortality was only reported for all         |
|                                             |              | included patients (not only the succesfully treated patients).   |
| Other bias                                  | High risk    | Possible carry-over effect in cross-over design. The manuscript  |
|                                             |              | does not contain a statement on conflicts of interest or         |
|                                             |              | financial disclosures.                                           |

#### Triposkiadis et al. 2014 [3]

| Bias                                                      | Authors'<br>judgement | Support for judgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random sequence generation<br>(selection bias)            | Low risk              | Quote: "Patients with ADHF were randomly assigned in a 1:1:1<br>ratio to: a) HDF, b) LDFD, or c) LDF arms using randomization<br>method based on random number generation."<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                                    |
| Allocation concealment<br>(selection bias)                | Unclear risk          | Quote: "were subsequently randomized".<br>Comment: unclear information on this risk of bias. Similar<br>trials by these investigators also do not elaborate on their<br>allocation concealment.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Blinding of participants and personnel (performance bias) | High risk             | Quote: "single blind, randomized trial".<br>Comment: the paper only describes that outcome assessors<br>were blinded, treating physicians were probably aware of the<br>assigned intervention.                                                                                                                                                                                                                                                                                                                                                                                                            |
| Blinding of outcome<br>assessment (detection bias)        | Low risk              | Quote: "An investigator in each hospital who was blinded to<br>the treatment allocation performed all measurements" and:<br>"Investigators locally at the participating sites adjudicated all<br>outcomes events and adverse events".<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                          |
| Incomplete outcome data<br>(attrition bias)               | Low risk              | Quote: "Four hundred and twenty-seven consecutive patients<br>were screened. Of the 212 who had oxygen saturation b90%<br>and qualified for participation, 51 patients were further<br>excluded (14 severe aortic stenosis, 11 acute coronary<br>syndrome, 8 severe mitral regurgitation, and 17 refused to<br>participate). A total of 161 patients fulfilled all criteria and<br>were enrolled" and: "No patient was lost to follow-up".<br>Comment: probably low risk, as all allocated patients<br>completed the trial and withdrawals were before allocation<br>according to the exclusion criteria. |
| Selective reporting (reporting bias)                      | Low risk              | The authors registered the trial prior to the start of the study.<br>All measured outcomes mentioned in the methods section<br>were reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other bias                                                | Low risk              | Quote: "The study was not sponsored by industry support and was funded locally."<br>Comment: probably done.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Varriale et al. 1997 [10]

| Bias                           | Authors'     | Support for judgement                                            |
|--------------------------------|--------------|------------------------------------------------------------------|
|                                | judgement    |                                                                  |
| Random sequence generation     | Unclear risk | Quote: "randomized consecutively to one of two treatment         |
| (selection bias)               |              | strategies".                                                     |
|                                |              | Comment: insufficient information and no previous trials from    |
|                                |              | the same researchers are available for additional information.   |
| Allocation concealment         | Unclear risk | Quote: "randomized consecutively to one of two treatment         |
| (selection bias)               |              | strategies".                                                     |
|                                |              | Comment: insufficient information and no previous trials from    |
|                                |              | the same researchers are available for additional information.   |
| Blinding of participants and   | High risk    | Blinding not described, however dosing schemes of both           |
| personnel (performance bias)   |              | interventions differed.                                          |
|                                |              | Comment: probably not blinded.                                   |
| Blinding of outcome            | Unclear risk | Not stated.                                                      |
| assessment (detection bias)    |              |                                                                  |
| Incomplete outcome data        | Low risk     | All included patients completed the study and none seemed to     |
| (attrition bias)               |              | be lost to follow-up.                                            |
| Selective reporting (reporting | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                          |              | design. All outcome measures are reported                        |
| Other bias                     | Unclear risk | The manuscript does not contain a statement on conflicts of      |
|                                |              | interest or financial disclosures.                               |

# Woo et al. 2002 [50]

| Bias                           | Authors'     | Support for judgement                                            |
|--------------------------------|--------------|------------------------------------------------------------------|
|                                | judgement    |                                                                  |
| Random sequence generation     | Unclear risk | Quote: "Subjects were randomized into two groups".               |
| (selection bias)               |              | Comment: insufficient information and no previous trials from    |
|                                |              | the same researchers are available for additional information.   |
| Allocation concealment         | Unclear risk | Quote: "Subjects were randomized into two groups".               |
| (selection bias)               |              | Comment: no details on allocation method described and no        |
|                                |              | previous trials from the same researchers are available for      |
|                                |              | additional information.                                          |
| Blinding of participants and   | High risk    | No statement on blinding.                                        |
| personnel (performance bias)   |              | Comment: probably not blinded.                                   |
| Blinding of outcome            | High risk    | No statement on blinding.                                        |
| assessment (detection bias)    |              | Comment: probably not blinded                                    |
| Incomplete outcome data        | Low risk     | Quote: "Forty-two of the 50 patients enrolled completed the      |
| (attrition bias)               |              | study".                                                          |
|                                |              | Comment: Reasons for exclusion of the 8 patients (< 10%) are     |
|                                |              | well described.                                                  |
| Selective reporting (reporting | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                          |              | design. All outcome measures are reported.                       |
| Other bias                     | Unclear risk | The manuscript does not contain a statement on conflicts of      |
|                                |              | interest or financial disclosures.                               |

#### Wu et al. 2011 [52]

| Bias                           | Authors'     | Support for judgement                                            |
|--------------------------------|--------------|------------------------------------------------------------------|
|                                | judgement    |                                                                  |
| Random sequence generation     | Unclear risk | Quote: "received dopamine or noradrenaline randomly".            |
| (selection bias)               |              | Comment: insufficient information and no previous trials from    |
|                                |              | the same researchers are available for additional information.   |
| Allocation concealment         | Unclear risk | Not described.                                                   |
| (selection bias)               |              | Comment: insufficient information and no previous trials from    |
|                                |              | the same researchers are available for additional information.   |
| Blinding of participants and   | High risk    | Blinding not described, however dosing schemes of both           |
| personnel (performance bias)   |              | interventions differed.                                          |
|                                |              | Comment: probably not blinded.                                   |
| Blinding of outcome            | High risk    | Not stated. Probably not done.                                   |
| assessment (detection bias)    |              |                                                                  |
| Incomplete outcome data        | Low risk     | All included patients completed the study and none seemed to     |
| (attrition bias)               |              | be lost to follow-up.                                            |
| Selective reporting (reporting | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                          |              | design. All outcome measures are reported.                       |
| Other bias                     | Unclear risk | The manuscript does not contain a statement on conflicts of      |
|                                |              | interest or financial disclosures.                               |

## Zhuangyu et al. 2005 [51]

| Bias                           | Authors'     | Support for judgement                                            |
|--------------------------------|--------------|------------------------------------------------------------------|
|                                | judgement    |                                                                  |
| Random sequence generation     | Unclear risk | Quote: "randomly divided into two groups".                       |
| (selection bias)               |              | Comment: insufficient information and no previous trials from    |
|                                |              | the same researchers are available for additional information.   |
| Allocation concealment         | Unclear risk | Not described.                                                   |
| (selection bias)               |              | Comment: insufficient information and no previous trials from    |
|                                |              | the same researchers are available for additional information.   |
| Blinding of participants and   | High risk    | Blinding not described, however dosing schemes of both           |
| personnel (performance bias)   |              | interventions differed.                                          |
|                                |              | Comment: probably not blinded.                                   |
| Blinding of outcome            | High risk    | Not stated. Probably not done.                                   |
| assessment (detection bias)    |              | Not stated. I robably not done.                                  |
| Incomplete outcome data        | Low risk     | All included patients completed the study and none seemed to     |
| (attrition bias)               |              | be lost to follow-up.                                            |
| Selective reporting (reporting | Unclear risk | The authors did not register the trial or prepublished the trial |
| bias)                          |              | design. No outcome measures reported in the methods              |
|                                |              | section.                                                         |
| Other bias                     | Unclear risk | The manuscript does not contain a statement on conflicts of      |
|                                |              | interest or financial disclosures.                               |

## 4. References

1. Kamiya M, Sato N, Nozaki A, Akiya M, Okazaki H, Takahashi Y, et al. Renal effects of added low-dose dopamine in acute heart failure patients with diuretic resistance to natriuretic peptide. J Cardiovasc Pharmacol 2015 March 01;65(3):282-288.

2. Shah RA, Subban V, Lakshmanan A, Narayanan S, Udhayakumaran K, Pakshirajan B, et al. A prospective, randomized study to evaluate the efficacy of various diuretic strategies in acute decompensated heart failure. Indian Heart J 2014 June 01;66(3):309-316.

3. Triposkiadis FK, Butler J, Karayannis G, Starling RC, Filippatos G, Wolski K, et al. Efficacy and safety of high dose versus low dose furosemide with or without dopamine infusion: the Dopamine in Acute Decompensated Heart Failure II (DAD-HF II) trial. Int J Cardiol 2014 Mar 1;172(1):115-121.

4. Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA 2013 Dec 18;310(23):2533-2543.

5. Giamouzis G, Butler J, Starling RC, Karayannis G, Nastas J, Parisis C, et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J Card Fail 2010 Dec;16(12):922-930.

6. Arutiunov GP, Arutiunov AG, Volkova AL. Study evaluating the impact of a combination of inotropic support and heart rate control on prognosis and stabilization rate in patients with decompensated chronic heart failure (LEGION). Ter Arkh 2010;82(3):47-52.

7. Hsueh CW, Lee WL, Chen CK, Ho HY, Chen CP, Huang JL, et al. Dopamine and dobutamine have different effects on heart rate variability in patients with congestive heart failure. Zhonghua Yi Xue Za Zhi (Taipei) 1998 April 01;61(4):199-209.

8. Sindone, A, MacDonald, P, K, A. Haemodynamic, neurohumoral and symptomatic effects of dobutamine, dopamine and milrinone in severe heart failure. Aust N Z J Med 1998;28:113.

9. Cotter G, Weissgarten J, Metzkor E, Moshkovitz Y, Litinski I, Tavori U, et al. Increased toxicity of highdose furosemide versus low-dose dopamine in the treatment of refractory congestive heart failure. Clin Pharmacol Ther 1997 August 01;62(2):187-193.

10. Varriale P, Mossavi A. The benefit of low-dose dopamine during vigorous diuresis for congestive heart failure associated with renal insufficiency: does it protect renal function? Clin Cardiol 1997 July 01;20(7):627-630.

11. Oppizzi M, Montorsi E, Tosoni A, Casati V, Venturino M, Franco A, et al. The effectiveness of enoximone in patients with serious left ventricular dysfunction submitted for aorto-coronary bypass. Minerva Anestesiol 1997 February 01;63(1-2):17-27.

12. Costa P, Ottino GM, Matani A, Pansini S, Canavese C, Passerini G, et al. Low-dose dopamine during cardiopulmonary bypass in patients with renal dysfunction. J Cardiothorac Anesth 1990 August 01;4(4):469-473.

13. Bove T, Landoni G, Calabro MG, Aletti G, Marino G, Cerchierini E, et al. Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation 2005 June 21;111(24):3230-3235.

14. Sirivella S, Gielchinsky I, Parsonnet V. Mannitol, furosemide, and dopamine infusion in postoperative renal failure complicating cardiac surgery. Ann Thorac Surg 2000 February 01;69(2):501-506.

15. Rosseel PM, Santman FW, Bouter H, Dott CS. Postcardiac surgery low cardiac output syndrome: dopexamine or dopamine? Intensive Care Med 1997 September 01;23(9):962-968.

16. Tarr TJ, Moore NA, Frazer RS, Shearer ES, Desmond MJ. Haemodynamic effects and comparison of enoximone, dobutamine and dopamine following mitral valve surgery. Eur J Anaesthesiol Suppl 1993;8:15-24.

17. Hausen B, Heublein B, Vogelpohl J, von der Leyen H, Haverich A. Comparison of enoximone and piroximone in patients after mitral valve operation: a prospective and controlled clinical study. J Cardiovasc Pharmacol 1992 March 01;19(3):299-307.

18. Johri AM, Picard MH, Newell J, Marshall JE, King ME, Hung J. Can a teaching intervention reduce interobserver variability in LVEF assessment: a quality control exercise in the echocardiography lab. JACC Cardiovasc Imaging 2011 August 01;4(8):821-829.

19. Cole GD, Dhutia NM, Shun-Shin MJ, Willson K, Harrison J, Raphael CE, et al. Defining the real-world reproducibility of visual grading of left ventricular function and visual estimation of left ventricular ejection fraction: impact of image quality, experience and accreditation. Int J Cardiovasc Imaging 2015 October 01;31(7):1303-1314.

20. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015 Mar;16(3):233-270.

21. Rao V, Ivanov J, Weisel RD, Ikonomidis JS, Christakis GT, David TE. Predictors of low cardiac output syndrome after coronary artery bypass. J Thorac Cardiovasc Surg 1996 Jul;112(1):38-51.

22. Maganti M, Badiwala M, Sheikh A, Scully H, Feindel C, David TE, et al. Predictors of low cardiac output syndrome after isolated mitral valve surgery. J Thorac Cardiovasc Surg 2010 October 01;140(4):790-796.

23. Algarni KD, Maganti M, Yau TM. Predictors of low cardiac output syndrome after isolated coronary artery bypass surgery: trends over 20 years. Ann Thorac Surg 2011 November 01;92(5):1678-1684.

24. Pieri M, Belletti A, Monaco F, Pisano A, Musu M, Dalessandro V, et al. Outcome of cardiac surgery in patients with low preoperative ejection fraction. BMC Anesthesiol 2016 October 18;16(1):97.

25. Matyal R, Hess PE, Subramaniam B, Mitchell J, Panzica PJ, Pomposelli F, et al. Perioperative diastolic dysfunction during vascular surgery and its association with postoperative outcome. J Vasc Surg 2009 July 01;50(1):70-76.

26. Flu WJ, van Kuijk JP, Hoeks SE, Kuiper R, Schouten O, Goei D, et al. Prognostic implications of asymptomatic left ventricular dysfunction in patients undergoing vascular surgery. Anesthesiology 2010 June 01;112(6):1316-1324.

27. Jardin F, Fourme T, Page B, Loubieres Y, Vieillard-Baron A, Beauchet A, et al. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest 1999 November 01;116(5):1354-1359.

28. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 2008 June 01;36(6):1701-1706.

29. Keller H, Bezjak V, Stegaru B, Buss J, Holm E, Heene DL. Ventricular function in cirrhosis and portasystemic shunt: a two-dimensional echocardiographic study. Hepatology 1988 June 01;8(3):658-662.

30. Grose RD, Nolan J, Dillon JF, Errington M, Hannan WJ, Bouchier IA, et al. Exercise-induced left ventricular dysfunction in alcoholic and non-alcoholic cirrhosis. J Hepatol 1995 March 01;22(3):326-332.

31. Fede G, Privitera G, Tomaselli T, Spadaro L, Purrello F. Cardiovascular dysfunction in patients with liver cirrhosis. Ann Gastroenterol 2015 March 01;28(1):31-40.

32. Birnbaum DE, Preuner JG, Gieseke R, Trenk D, Jaehnchen E. Enoximone versus dopamine in patients being weaned from cardiopulmonary bypass. Cardiology 1990;77 Suppl 3:7.

33. Carcoana OV, Mathew JP, Davis E, Byrne DW, Hayslett JP, Hines RL, et al. Mannitol and dopamine in patients undergoing cardiopulmonary bypass: a randomized clinical trial. Anesth Analg 2003 November 01;97(5):1222-1229.

34. Chen H, Zeng Z. Comparison of the effect and complication between dopamine and norepinephrine on treatment of the septic shock. Jiangxi Medical Journal 2012;47:565-567.

35. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010 Mar 4;362(9):779-789.

36. Gatot I, Abramov D, Tsodikov V, Yeshayahu M, Orman S, Gavriel A, et al. Should we give prophylactic renal-dose dopamine after coronary artery bypass surgery? J Card Surg 2004 April 01;19(2):128-133.

37. Gao J, Li X, Wang A. Impact of dopamine and norepinephrine on renal perfusion in patients with septic shock. & nbsp; Journal of Hebei Medicine 2008;30:1188-1121.

38. Hua F, Wang X, Zhu L. Terlipressin decreases vascular endothelial growth factor expression and improves oxygenation in patients with acute respiratory distress syndrome and shock. J Emerg Med 2013 February 01;44(2):434-439.

39. Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 2000 January 01;11(1):97-104.

40. Liu P, Chen T, Zhang Y. Comparison evaluation of resuscitation effect of norepinephrine and dopamine on the treatment of septic shock. Clinical Education of General Practice 2010;8:265-267.

41. Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 1994 Nov 2;272(17):1354-1357.

42. Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 1993 Jun;103(6):1826-1831.

43. Mathur S, Dhunna R, Chakraborty A. Comparison of norepinephrine and dopamine in the management of septic shock using impedance cardiography. Indian J Crit Care Med 2007;11(4):186-191.

44. Myles PS, Buckland MR, Schenk NJ, Cannon GB, Langley M, Davis BB, et al. Effect of "renal-dose" dopamine on renal function following cardiac surgery. Anaesth Intensive Care 1993 February 01;21(1):56-61.

45. Schmoelz M, Schelling G, Dunker M, Irlbeck M. Comparison of systemic and renal effects of dopexamine and dopamine in norepinephrine-treated septic shock. J Cardiothorac Vasc Anesth 2006 Apr;20(2):173-178.

46. Schneider M, Valentine S, Hegde RM, Peacock J, March S, Dobb GJ. The effect of different bypass flow rates and low-dose dopamine on gut mucosal perfusion and outcome in cardiac surgical patients. Anaesth Intensive Care 1999 February 01;27(1):13-19.

47. Sharpe DA, Mitchel IM, Kay EA, McGoldrick JP, Munsch CM, Kay PH. Enhancing liver blood flow after cardiopulmonary bypass: the effects of dopamine and dopexamine. Perfusion 1999 Jan;14(1):29-36.

48. Sinclair DG, Houldsworth PE, Keogh B, Pepper J, Evans TW. Gastrointestinal permeability following cardiopulmonary bypass: a randomised study comparing the effects of dopamine and dopexamine. Intensive Care Med 1997 May 01;23(5):510-516.

49. Sumeray M, Robertson C, Lapsley M, Bomanji J, Norman AG, Woolfson RG. Low dose dopamine infusion reduces renal tubular injury following cardiopulmonary bypass surgery. J Nephrol 2001 October 01;14(5):397-402.

50. Woo EB, Tang AT, el-Gamel A, Keevil B, Greenhalgh D, Patrick M, et al. Dopamine therapy for patients at risk of renal dysfunction following cardiac surgery: science or fiction? Eur J Cardiothorac Surg 2002 July 01;22(1):106-111.

51. Zhuangyu Y. Affect of norepinephrine and dopamine on infectious tissue oxygen metabolism and hemodynamics in patients with shock. Shandong Medicine Journal 2011;51:93-94.

52. Wu Y, Zhang N, Wu Y, Zheng Y, You X, Cao Z, et al. Effects of dopamine, norepinephrine and dobutamine on gastric mucosal pH of septic shock patients. Exp Ther Med 2016 August 01;12(2):975-978.

53. Kanchi M, Manjunath R, Massen J, Vincent L, Belani K. Neutrophil gelatinase-associated lipocalin as a biomarker for predicting acute kidney injury during off-pump coronary artery bypass grafting. Ann Card Anaesth 2017 September 01;20(3):297-302.

54. Soliman R, Hussien M. Comparison of the renoprotective effect of dexmedetomidine and dopamine in high-risk renal patients undergoing cardiac surgery: A double-blind randomized study. Ann Card Anaesth 2017 December 01;20(4):408-415.

55. Chaiyaroj S, Tatoulis J. Low-dose dopamine in coronary artery bypass patients with preoperative renal dysfunction. Asian Cardiovasc Thorac Ann 1999;7(1):9-12.

56. Dzhaiani NA, Kositsyna IV, Gnidkina NA, Tereshchenko SN. Efficacy of levosimendan vs dopamine in patients with resistant cardiac failure. Ter Arkh 2011;83(6):53-59.

57. Patel GP, Grahe JS, Sperry M, Singla S, Elpern E, Lateef O, et al. Efficacy and safety of dopamine versus norepinephrine in the management of septic shock. Shock 2010 Apr;33(4):375-380.