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APPENDIX

Appendix A. Design-based true sampling weight from two-phase studies

We consider here two-phase studies where all longitudinal samples from individuals selected into

the subcohort are measured, therefore πij ≡ πi. The form of πi can be obtained explicitly for both

stratified case cohort (sCCH) (Gray, 2009; Liu and others, 2012) and nested case-contro (NCC)

studies (Samuelsen, 1997; Cai and Zheng, 2011) designs with a discrete stratification/matching

variable Z taking S unique values, z1, ..., zS . Specifically, for sCCH design,

πi =

1∑
d=0

S∑
s=1

nds I(∆i = d,Zi = zs)∑n
j=1 I(∆j = d,Zj = zs)

where nds is the number of subjects sampled from the set {i : ∆i = d,Zi = zs}, typically specified

by design. For a matched NCC (mNCC) design with m controls matched to each case on the

matching variable Z, πi can be calculated as π̃i = ∆i + (1−∆i){1− G̃(Wi)}, with

G̃(Wi) =
∏

j:Xj6Xi

{
1− m∆jI(Zj = Zi)∑n

k=1 I(Xk > Xj ,Zk = Zi)− 1

}
. (A.1)
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Appendix B. Asymptotic linear expansion of R̂i(τ0|sij)

We first show that β̂τ0 in Equation (3) is consistent for βτ0 . For simplicity, we drop the subscript

of β̂τ0 and denote the true value of βτ0 by β0. Denote

Ri(β, sij , τ0) = Hi(sij) {I(Xi 6 sij + τ0)− g{βTHi(sij)}}

where Hi(sij) is a vector of partial longitudinal information collected up to time sij and may

include some flexible functionals of components in Hi(sij), the observed covariate information

up to time sij for subject i. Assume that π̂S
ij = P (ξij = 1|wij) is modeled correctly by (2) with

parameters denoted by γ, where wij = (Xi,∆i,AT
ij)

T (See section 3.1 of the main paper). The

estimator using Nadaraya-Watson weights can be derived under similar conditions and procedures

in Appendix A of Qi, Wang and Prentice (2005), and is thus omitted here. The estimators of β

and γ can be obtained simultaneously be solving estimation equation

U(β,γ) =

Uβ(β,γ)

Uγ(γ)

 = 0,

where

Uβ(β,γ) =
1

n

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

ŵC
ij(τ0)Ri(β, sij , τ0),

and

Uγ(γ) =
1

n

n∑
i=1

mi∑
j=1

{ξij − πS
ij(γ)}

∂πS
ij(γ)

∂γ
.

Note that Uβ(β,γ) can be written as

1

n

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

wC
ij(τ0)Ri(β, sij , τ0) +

1

n

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

(ŵC
ij(τ0)− wC

ij(τ0))Ri(β, sij , τ0).

The second term is bounded by

max
i,j
|ŵC
ij(τ0)− wC

ij(τ0)| × 1

n

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

|Ri(β, sij , τ0)|.



iii

The empirical sum converges by the law of large numbers and the term maxi,j |ŵC
ij(τ0)−wC

ij(τ0)| →

0 in probability since the Kaplan-Meier estimator is uniformly consistent. Thus, it turns out that

Uβ(β,γ) =
1

n

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

wC
ij(τ0)Ri(β, sij , τ0) + op(1).

Take partial derivative of Uβ(β, γ) with respect to β, we have

∂Uβ(β,γ)

∂β

∣∣∣∣
β=β0

= − 1

n

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

ŵC
ij(τ0)Hi(sij)Hi(sij)T ġ{βT

0Hi(sij)}

P−→
mi∑
j=1

E
[
wC
ij(τ0)wS

ijHi(sij)Hi(sij)T ġ{βT

0Hi(sij)}
]
≡ Iβ

uniformly in a neighborhood of β0. Clearly, ∂Uγ(γ)
∂β = 0. It can be shown that ∂Uγ(γ)

∂γ converges

to its limit Iγ and ∂Uβ(β,γ)
∂γ converges to its limit Iβγ and denote

I =

(
Iβ Iβγ

0 Iγ

)
.

Because det(Iβ) 6= 0, det(Iγ) 6= 0, det(Iβγ) 6= 0, and det(Iγβ) = 0, I is invertible. Following

the same argument as in the proof of Theorem 2 of Xu and others (2009), we have the existence

and consistency of γ̂ and β̂(γ̂).

Now we show the asymptotic expansion of n1/2Uβ(β,γ). It can be written as

1√
n

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

wC
ij(τ0)Ri(β, sij , τ0) +

1√
n

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

(ŵC
ij(τ0)− wC

ij(τ0))Ri(β, sij , τ0).

Following from the asymptotic expansion of Kaplan-Meier estimator,

n
1
2

{
G(t)/Ĝ(t)− 1

}
= n−

1
2

n∑
i=1

UGi(t) + op(1),

we have

n−1/2
n∑
i=1

Ri∑
j=1

ξij
πS
ij(γ)

(ŵC
ij(τ0)− wC

ij(τ0))Ri(β, sij , τ0) = n−1/2
n∑
i=1

∫
UGi(u)dΦ(u) (B.1)

where UGi(t) =
∫ t
0
P (Xi > u)−1[I(Xi 6 u)(1−∆i) + I(Xi > u)d log{G(u)}], and

Φ(u) =

mi∑
j

E{I(Xi ∧ sij + τ0 6 u)wC
ij(τ0)Ri(β, sij , τ0)}. (B.2)
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Hence,

√
n(β̂ − β) = n−1/2

n∑
i=1

ζi(τ0|s),

where

ζi(τ0|s) = T I−1
 ∑mi

j=1
ξij

πS
ij(γ)

wC
ij(τ0)Ri(β, sij , τ0) +

∫
UGi(u)dΦ(u)∑mi

j=1{ξij − πS
ij(γ)}∂π

S
ij(γ)

∂γ

 ,

and T = {Tjk} be a p1 × (p1 + p2) matrix with elements Ijk = 1 for j = 1, . . . , p1, k = j,

and Tjk = 0 otherwise, where p1 is the length of β and p2 is the length of γ. Then ÛR(τ0 | s) =

√
n
[
R̂i(τ0|s)−Ri(τ0|s)

]
is asymptotically equivalent to a sum of i terms, n−1/2

∑n
i=1{ζi(τ0|s)

∂Ri(τ0|s)
∂β } ≡

n−1/2
∑n
i=1 ζRi(τ0|s).

Appendix C. Asymptotic linear expansion of longitudinal summary measures As,τ0

Let UAs,τ0 =
√
n(Âs,τ0 − As,τ0). As an example, we consider As,τ0 in the case of TPFs,τ0(ψ).

Below we use TPFs,τ0(ψ) to denote a simple setting where Ri(τ0 | sij) is known with parameters

estimated with another cohort, i.e.,

T̂PFs,τ0(ψ) =

∑
ij I(|sij − s| 6 ε)I(Ri(τ0 | sij) > ψ) I(s < Xi 6 s+ τ0) ŵC

ij(τ0)ŵS
ij∑n

i=1

∑mi
j=1 I(s < Xi 6 s+ τ0) ŵC

ij(τ0)ŵS
ij

.

Let UTPFs,τ0
(ψ) = n1/2{T̂PFs,τ0(ψ)− TPFs,τ0(ψ)}, we have

UTPFs,τ0
(ψ) = n−1/2

n∑
i=1

mi∑
j=1

ξij
πS
ij(γ̂)

ŵC
ij(τ0)ζTPF,ij(ψ), (C.1)

where ζTPF,ij(ψ) = I(s<Xi6s+τ0)
1−P (T>s+τ0)

{I(Ri(τ0 | sij) > ψ)I(|sij − s| 6 ε)− TPFs,τ0(ψ)}. Further, C.1

is equivalent to

n−1/2
n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)

ŵC
ij(τ0)ζTPF,ij(ψ)

+ n−1/2
n∑
i=1

mi∑
j=1

{
ξij

πS
ij(γ̂)

− ξij
πS
ij(γ)

}
ŵC
ij(τ0)ζTPF,ij(ψ) (C.2)

Following the same argument in Appendix B, the first term of (C.2) can be written as

n−1/2
n∑
i=1


mi∑
j=1

ξij
πS
ij(γ)

wC
ij(τ0)ζTPF,ij(ψ) +

∫
UGi(u)dΦA(u)

 ≡ n−1/2
n∑
i=1

η1,Ai(τ0|s),
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where ΦA(u) = E{
∑mi
j I(Xi ∧ sij + τ0 6 u)wC

ij(τ0)ζTPF,ij(ψ)}, and the second term of (C.2)

can be written as

n−1/2
n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)2

{
πS
ij(γ̂)− πS

ij(γ)
}
wC
ij(τ0)ζTPF,ij(ψ)

+ n−1/2
n∑
i=1

mi∑
j=1

ξij
πS
ij(γ)2

{
πS
ij(γ̂)− πS

ij(γ)
}
{ŵC

ij(τ0)− wC
ij(τ0)}ζTPF,ij(ψ)

By the Taylor expansion and by expanding the form of πS
ij , the first term above is asymptotically

equivalent to

n−1/2Iγ
n∑
i=1

mi∑
j=1

{ξij − πS
ij(γ)}

∂πS
ij(γ)

∂γ
E


mi∑
j=1

1

πS
ij(γ)

wC
ij(τ0)ζTPF,ij(ψ)

 ≡ n−1/2
n∑
i=1

η2,Ai(τ0|s)

and the second term is negligible. Therefore, we have

UTPFs,τ0
= n−1/2

n∑
i=1

(η1,Ai + η2,Ai) ≡ n−1/2
∑
i

ηAi(τ0|s).
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Appendix D. Nested case-control sample of the HALT-C clinical trial

●
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Fig. 1. An overview of the nested case-control sample of the HALT-C clinical trial. The visits where
DCP marker was measured are shown as empty circles, the event times are shown as filled circles, and
non-events (censoring times) as filled triangles. The subjects are grouped according to their matching
in the nested case-control study, with subjects with the same color belonging to the same risk set. The
estimated nested case-control inverse probability sampling weights are shown to the right of each event
time for the cases, and censoring time for the non-events.
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Fig. 2. The des-γ-carboxyprothrombin (DCP) marker observations in nested case-control subset of the
HALT-C clinical trial, stratified by cirrhosis and treatment assignment. The DCP values were truncated
at 2000 units and log2 transformed. The thick red lines indicate the conditional linear fit with time
modeled as a spline with 3 degrees of freedom.
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Appendix E. Results of analysis of example simulated datasets

A tutorial where we show examples on how to obtain risk predictions based on longitudinal marker

in a case-cohort or a nested case-control sample, using methods described the manuscript available

at http://rpubs.com/marlenamaziarz/risk-prediction-in-longitudinal-two-phase-studies.

The code for estimating the weights in CCH and NCC samples, obtaining risk predictions and

evaluating those predictions, as well as example datasets for CCH and NCC are available in

https://github.com/marlenamaziarz/longitudinal-two-phase. Specifically, the examples in

the tutorial illustrate the use of our methods to predict risk using PCGLM based on a longitu-

dinal biomarker with a survival outcome, as well as all evaluation measures of prediction and

their standard error discussed in the paper. Namely, the evaluation measures we considered are

the prediction error (PE), true and false positive fractions (TPF and FPF), the area under the

Receiver Operating Characteristics curve (AUC), the proportion of cases followed (PCF) and the

proportion of cases needed to be followed (PNF). Below are results of the analysis using example

(simulated) datasets.

Nested case-control
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Table 1. Results of the nested case-control (NCC) analysis for different combinations of conditioning time
(s) and prediction time (t = s + τ) (s from 6 to 36 in increments of 6, and τ = 6). Prediction timeframe
= τ , Est = estimate, SE = standard error, n.case = number of cases in the sample at time s, n.ctrl =
number of controls at s, and n.cens = number of subjects censored up to time s. SE was estimated based
on 500 perturbations. PE = prediction error, TPF/FPF = true/false positive fraction, AUC = the area
under the Receiver Operating Characteristics curve, PCF = the proportion of cases followed, and PNF
= the proportion of cases needed to be followed. A tutorial on how to run this analysis can be found on
Rpubs, the code and example datasets are on GitHub.

Measure s t τ Est SE ncase nctrl ncens
PE 6 12 6 0.03 0.00 53 512 8
TPF(0.4) 6 12 6 0.13 0.05 53 512 8
FPF(0.3) 6 12 6 0.01 0.00 53 512 8
AUC 6 12 6 0.79 0.03 53 512 8
PCF(0.2) 6 12 6 0.55 0.07 53 512 8
PNF(0.8) 6 12 6 0.44 0.07 53 512 8
PE 12 18 6 0.06 0.01 74 423 15
TPF(0.4) 12 18 6 0.24 0.06 74 423 15
FPF(0.3) 12 18 6 0.04 0.01 74 423 15
AUC 12 18 6 0.83 0.02 74 423 15
PCF(0.2) 12 18 6 0.61 0.06 74 423 15
PNF(0.8) 12 18 6 0.35 0.06 74 423 15
PE 18 24 6 0.10 0.01 89 310 24
TPF(0.4) 18 24 6 0.24 0.05 89 310 24
FPF(0.3) 18 24 6 0.09 0.02 89 310 24
AUC 18 24 6 0.80 0.03 89 310 24
PCF(0.2) 18 24 6 0.56 0.05 89 310 24
PNF(0.8) 18 24 6 0.40 0.06 89 310 24
PE 24 30 6 0.11 0.01 57 226 27
TPF(0.4) 24 30 6 0.22 0.06 57 226 27
FPF(0.3) 24 30 6 0.12 0.02 57 226 27
AUC 24 30 6 0.78 0.03 57 226 27
PCF(0.2) 24 30 6 0.47 0.07 57 226 27
PNF(0.8) 24 30 6 0.46 0.05 57 226 27
PE 30 36 6 0.12 0.01 50 145 31
TPF(0.4) 30 36 6 0.31 0.07 50 145 31
FPF(0.3) 30 36 6 0.12 0.03 50 145 31
AUC 30 36 6 0.81 0.03 50 145 31
PCF(0.2) 30 36 6 0.47 0.06 50 145 31
PNF(0.8) 30 36 6 0.41 0.05 50 145 31
PE 36 42 6 0.11 0.02 19 104 22
TPF(0.4) 36 42 6 0.37 0.11 19 104 22
FPF(0.3) 36 42 6 0.20 0.04 19 104 22
AUC 36 42 6 0.72 0.06 19 104 22
PCF(0.2) 36 42 6 0.42 0.11 19 104 22
PNF(0.8) 36 42 6 0.53 0.07 19 104 22
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Case-cohort

Table 2. Results of the case-cohort (CCH) analysis for different combinations of conditioning time (s)
and prediction time (t = s + τ) (s from 6 to 36 in increments of 6, and τ = 6). Prediction timeframe
= τ , Est = estimate, SE = standard error, n.case = number of cases in the sample at time s, n.ctrl =
number of controls at s, and n.cens = number of subjects censored up to time s. SE was estimated based
on 500 perturbations. PE = prediction error, TPF/FPF = true/false positive fraction, AUC = the area
under the Receiver Operating Characteristics curve, PCF = the proportion of cases followed, and PNF
= the proportion of cases needed to be followed. A tutorial on how to run this analysis can be found on
Rpubs, the code and example datasets are on GitHub

Measure s t τ Est SE ncase nctrl ncens
PE 6 12 6 0.04 0.00 74 639 124
TPF(0.4) 6 12 6 0.05 0.04 74 639 124
FPF(0.3) 6 12 6 0.01 0.00 74 639 124
AUC 6 12 6 0.81 0.02 74 639 124
PCF(0.2) 6 12 6 0.61 0.06 74 639 124
PNF(0.8) 6 12 6 0.41 0.05 74 639 124
PE 12 18 6 0.06 0.01 89 475 75
TPF(0.4) 12 18 6 0.14 0.06 89 475 75
FPF(0.3) 12 18 6 0.02 0.01 89 475 75
AUC 12 18 6 0.83 0.02 89 475 75
PCF(0.2) 12 18 6 0.65 0.06 89 475 75
PNF(0.8) 12 18 6 0.36 0.07 89 475 75
PE 18 24 6 0.10 0.01 104 326 45
TPF(0.4) 18 24 6 0.20 0.06 104 326 45
FPF(0.3) 18 24 6 0.05 0.01 104 326 45
AUC 18 24 6 0.77 0.03 104 326 45
PCF(0.2) 18 24 6 0.45 0.05 104 326 45
PNF(0.8) 18 24 6 0.42 0.06 104 326 45
PE 24 30 6 0.10 0.01 85 208 33
TPF(0.4) 24 30 6 0.28 0.07 85 208 33
FPF(0.3) 24 30 6 0.09 0.02 85 208 33
AUC 24 30 6 0.83 0.03 85 208 33
PCF(0.2) 24 30 6 0.58 0.06 85 208 33
PNF(0.8) 24 30 6 0.33 0.07 85 208 33
PE 30 36 6 0.11 0.01 54 128 26
TPF(0.4) 30 36 6 0.21 0.07 54 128 26
FPF(0.3) 30 36 6 0.09 0.03 54 128 26
AUC 30 36 6 0.76 0.04 54 128 26
PCF(0.2) 30 36 6 0.53 0.07 54 128 26
PNF(0.8) 30 36 6 0.56 0.07 54 128 26
PE 36 42 6 0.10 0.02 26 84 18
TPF(0.4) 36 42 6 0.22 0.10 26 84 18
FPF(0.3) 36 42 6 0.09 0.04 26 84 18
AUC 36 42 6 0.70 0.07 26 84 18
PCF(0.2) 36 42 6 0.53 0.11 26 84 18
PNF(0.8) 36 42 6 0.69 0.16 26 84 18
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