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Transition of adiabatic control from a constant gap to a gap with energy
level crossings. (A to F) Simulated projections of the state driven by the adiabatic proto-
col as in Fig. 1 in the main text but using different values of a in the energy gap Ωπ(λ) =
Ω′0 [1 + a cos(2Ω′0Tλ)]. Diamonds show the projection to the ideal adiabatic state |+λ〉 (i.e.,
fidelity of adiabatic evolution) during the evolution time t = Tλ. The state projections to |x〉
(circles), |y〉 (squares), and |z〉 (triangles) are also shown to demonstrate the evolution of the
adiabatic process. Solid lines are the case of a perfect adiabatic evolution (e.g., for T → ∞).
For a = 0, the control is the conventional adiabatic driving with a constant gap (see Fig. 1D in
the main text for experimental results). Increasing the parameter to a = 1 will close the gap at
t = π/(2Ω′0). When a > 1, there are energy level crossings (see Fig. 1H in the main text for
experimental results). (G) Calculated adiabatic fidelity of the final state at time t = T as a func-
tion of a. The amplitudes Ω′0 =

√
2/(2 + a2)Ω0 are used to have the same average microwave

power in all plots and hence is smaller than Ω0 = 2π × 6 MHz. All plots demonstrate that the
state follows the adiabatic evolution with high fidelity.

Fig. S1. 
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Robustness of the jumping protocol against different kinds of control noise.
(A, C, and E) Exemplary time traces of the driving Rabi frequency for a mean of 2π × 5
MHz and a standard deviation of 2π × 2.5 MHz. (B, D, and F) Simulated fidelity of adiabatic
evolution for the jumping protocol with a total time T = 0.5 µs and a Rabi frequency of 2π× 5
MHz as a function of the standard deviation of the applied noise illustrated in (A), (C), and
(E). The simulations have been averaged over 104 random time traces of noise. While the
fidelity decays as the strength of the noise in the Rabi frequency increases, the fidelity of the
jumping protocol remains high for a wide range of noise amplitudes. Three types of noise on
the Rabi frequency of the control pulses are studied in the simulation: the white noise with the
uncorrelated Gaussian distribution on the amplitudes in (A) and (B), the Ornstein-Uhlenbeck
process modeled noise in (C) and (D), and the static noise in (E) and (F). The amplitudes of
the Gaussian distributed noise in (A) are uncorrelated at every slices of duration of 10 ns. The
Ornstein-Uhlenbeck process modeled noise in (C) satisfies the following differential equation:
dXt = −β(Xt−α)dt+ σdWt, where α = 2π× 5 MHz is the mean value and σ is the standard
deviation; Wt is modeled by the Wiener process fWt(x) = 1√

2πt/t0
e−x

2/(2t/t0) with t0 = 1 µs; the

decay rate β = 10 s−1 and the time slice dt = 1 ns are used in the simulation. The static noise
in (E) has a random constant amplitude over each run of the adiabatic protocol with a Gaussian
distribution.

Fig. S2.
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(A) Simulated fidelity to the ideal adiabatic state at the final time of evolution for different decay
rates β in the Ornstein-Uhlenbeck process modeled noise. The red, black, blue, and green lines
correspond to β = 100, 10, 1 and 0.1 s−1, respectively. The simulations in (A) show that the
fidelity of the jumping protocol decays slower with the increase of the noise strength when the
decay rate β goes higher. (B) Simulated fidelity to the ideal adiabatic state at the final time of
evolution for different kinds of noise. The jumping protocol uses a driving Rabi frequency with
a mean of 2π×5 MHz. The results in (B) show that in the presence of control errors the fidelity
of the jumping protocol can be increased by increasing the total time T for adiabatic evolution.
The red, blue, and black dots correspond to the uncorrelated Gaussian distribution noise, static
noise, and Ornstein-Uhlenbeck process modeled noise, respectively. The parameters in these
noise models are the same as the ones chosen in fig. S2.

 Enhancing the robustness of jumping protocol in the presence of control noise.Fig. S3. 
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 (A to D) Fidelity to the ideal
adiabatic state at the final evolution as a function of the total time that is much larger than the
NV coherence time T ∗2 = 1.7 µs without control. The evolution path, the control parameters,
as well as the meaning of the blue dots (experiment) and red lines (simulation) are the same as
those used in Fig. 4 in the main text. (A) and (C) Results for the continuous protocol with a
constant gap. (B) and (D) Results for the jumping protocol. In (A) and (B) the initial state was
prepared in |x〉, while in (C) and (D) the initial state was prepared in |y〉.

Coherence protection during adiabatic evolutions.Fig. S4. 
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The whole setup mainly consists of two parts: a
home-built confocal microscopy and a microwave synthesizer. The microwave used to control
the spin evolution was generated through I/Q modulation. The desired waveform was uploaded
form the PC to the AWG. The two separated channels on the AWG generated the I and Q signal
respectively and transmitted to the VSG, then the VSG did the I/Q modulation. An atomic clock
was used to synchronize the AWG and VSG. A pulse blaster served to provide TTL signals to
control the switch of the AWG and AOM, and also the time bin of the counter.

   Sketch of the experimental setup.Fig. S5. 
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Experimental pulse sequence. Green laser was applied in the beginning to initialize
the electronic spin and at the end to readout the spin state. The first πy/2 pulse is used to set the
spin state to be aligned with +x axis. The continuous or pulsed protocol drives the spin state for
quantum adiabatic evolution. When doing the quantum state tomography, three different kinds
of pulses were applied, i.e., πx/2, πy/2, or the identity operator.

Fig. S6. 
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