

Supplementary Fig. 1. Otub1 deficiency does not influence the frequency of thymocyte and peripheral T cell populations. a, Schematic picture of *Otub1* gene targeting using an FRT-LoxP vector. Targeted mice were crossed with FLP deleter (Rosa26-FLPe) mice to generate *Otub1*-floxed mice, which were further crossed with *Cd4*-Cre mice to generate T cell-conditional KO (TKO) mice. **b**, Genotyping PCR analysis of floxed and control mice using P1/P2 primer pair for WT allele and P3/P4 primer pair for flox allele. **c**, Immunoblot analysis of Otub1 using sorted T and B cells from WT or *Otub1*-TKO mice. **d**, Flow cytometric analysis of thymocytes from WT and *Otub1*-TKO mice (6 wk old), showing the percentage of CD4⁻CD8⁻ double negative, CD4⁺CD8⁺ double positive, and CD4⁺ and CD8⁺ single positive populations. A summary graph of total thymocyte cell number is shown. **e**, Flow cytometric analysis of frequency of CD4 and CD8 T cells in the splenocytes of WT and *Otub1*-TKO mice.

Supplementary Fig. 2. Otub1 is dispensable for Treg cell generation and function. a,b, Flow cytometric analysis of the frequency of Treg cells (Foxp3⁺CD25⁺) among CD4⁺T cells in the thymus and spleen of age- and sex-matched WT and *Otub1*-TKO mice (6-8 weeks), presented as a representative plot (a) and summary graph based on multiple mice (b, each circle represents an individual mouse). c, Body weight loss of 6-week-old *Rag1*-TKO mice following adoptive transfer with WT naïve CD45RB^{hi} CD4 T cells together with either PBS (CD45RB^{hi}+PBS) or sorted Treg cells derived from 6-week-old WT mice (CD45RB^{hi}+WT Treg) or Otub1-TKO mice (CD45RB^{hi}+TKO Treg). d, Bone marrow cells (2 x 10⁶) from *Otub1*-TKO (CD45.1⁻CD45.2⁺) and WT B6.SJL (CD45.1⁺CD45.2⁻) mice were mixed in 1:1 ratio and adoptively transferred into γ -irradiated *Rag1*-TKO mice. After 6 weeks, recipient mice were sacrificed for flow cytometric analyses of CD4 and CD8 T cells derived from WT and Otub1-TKO bone marrows (left) and the naïve and memory populations based on CD44 and CD62L markers (naïve: CD44^{lo}CD62L^{hi}; memory: CD44^{hi}CD62L^{lo}) (right). e, Summary graphs of the naïve and memory T cell data from d based on four recipients of each group. **P*<0.05(two-tailed unpaired t test).

Supplementary Fig. 3. IL-15 primes CD8 T cells for activation under the control of Otub1. a, ELISA of naïve CD8 T cells derived from WT, *Otub1*-TKO, WT/*II15ra^{-/-}*, and *Otub1*-TKO/*II15ra^{-/-}* mice, in vitro stimulated with anti-CD3 plus anti-CD28 for 66 h. **b**, Schematic of mixed T cell adoptive transfer and listeria infection. *II15ra^{+/+}* or *II15ra^{-/-}* mice were adoptively transferred with CFSE-labeled WT OT-I or *Otub1*-TKO OT-I naïve CD8 T cells mixed in 1:1 ratio (5 x 10⁶ cells each) and infected with ovalbumin-expressing recombinant Listeria monocytogenes (LM-OVA, 2 x 10⁴). Transferred OT-I cells were analyzed 7 days later. **c,d**, Flow cytometric analysis of total population (**c**) or IFN₇-producing effector frequency of WT and *Otub1*-TKO OT-I cells isolated from the LM-OVA-infected recipient mice shown in **b**, stimulated *in vitro* with OVA257-274 for 6 h (**d**). **e**, Scatterplot of significantly upregulated (pink, 6821genes) and downregulated (blue, 1142 genes) genes in *Otub1*-TKO OT-I T cells relative to WT OT-I T cells. Some of the genes presented in the heatmap shown in Fig. 2g are indicated in green color. RNA sequencing was performed with RNA isolated from untreated naïve WT or *Otub1*-TKO OT-I CD8 T cells. NS, non-significant; *P<0.05; **P<0.01, two-tailed student's t-test.

Supplementary Fig. 4. Otub1 negatively regulates AKT activation in CD8 T cells. a-c, Immunoblot analysis of the indicated phosphorylated (P-) and total proteins in naïve OT-I CD8 T cells (a,b), naïve CD8 T cells (c), or naïve CD4 T cells (d) stimulated with the indicated inducers. A panel of P-AKT T308 with 3 times more loading materials (3 x loading) was included in a to visualize the weak AKT T308 phosphorylation stimulated by IL-15. e, Co-IP analysis of Otub1-AKT interaction in HEK293 cells transiently transfected with expression vectors encoding the indicated proteins. f,g, Immunoblot analysis of the indicated phosphorylated (P-) and total proteins in IL-15-stimulated Otub1-deficient OT-I CD8 T cells (f) or Otub1-knockdown 15R-KIT T cells (g) infected with an empty retroviral vector or vectors encoding Otub1 wildtype (WT) or an inactive mutant (Mut, D88A/C91S).

Supplementary Fig. 5. Otub1 controls gene expression in CD8 T cells. Scatterplot of significantly upregulated (pink, 1254) and downregulated (blue, 297) genes in Otub1-TKO OT-I T cells relative to WT OT-I T cells stimulated with anti-CD3 plus anti-CD28 for 24 h and analyzed by RNA sequencing. Some of the genes presented in the heatmap of Fig. 6a are indicated in green color.

Supplementary Fig. 6. Otub1 deletion promotes antitumor immunity via CD8 T cells and NK cells. a, Schematic of experimental procedure, in which the indicated mice were injected with tamoxifen daily for 4 consecutive times starting from day 14 before tumor cell inoculation and one more time on day 7 after tumor inoculation for generating WT or *Otub1* induced KO (iKO) MC38-bearing mice. **b**, Tumor burden of WT and *Otub1*-iKO mice, presented as tumor grow curve (left) and day 19 tumor weight (right). **c**, Summary graph of flow cytometric analysis of tumor-infiltrating immune cells in WT and *Otub1*-iKO mice. **d**,**e**, Schematic of experimental procedure, in which the indicated mice were injected with tamoxifen daily for 4 consecutive times starting from day 14 before tumor cell inoculation and one more time on day 7 after tumor inoculation for generating WT or *Otub1*-iKO mice. **d**,**e**, Schematic of experimental procedure, in which the indicated mice were injected with tamoxifen daily for 4 consecutive times starting from day 14 before tumor cell inoculation and one more time on day 7 after tumor inoculation for generating WT or *Otub1*-iKO B16F10-bearing mice. Some of the tumor-bearing mice were also injected i.p with anti-NK1.1 and anti-CD8a for depletion of NK cells and CD8 T cells, respectively. (**e**) Flow cytometric analysis of NK cells and CD8 T cells showing the efficiency of antibody-mediated depletion. P values are determined by two-way ANOVA with Bonferroni's post-test (**b**) or two-tailed student's t-test (**c**).

Supplementary Fig. 7. Otub1 expression level is inversely associated with patient survival and effector T cell signature gene expression in skin cutaneous melanoma. a, Heatmap illustrating the expression of major CD8 effector T cell signature genes (rows) across the 458 skin cutaneous melanoma patients (columns). The color scale of the heatmap indicates relative gene expression. b, mRNA level of CD8 T cell signature genes in Otub1 low and high group. ****P<0.0001, two-tailed student's t-test. c, Kaplan-Meier plot comparing survival for the two broad clusters of patients identified in hierarchical clustering analysis. (p<0.0001, Log-Rank test).

Supplementary Fig. 8. Live immune cell populations were gated on the FSC-A and SSC-A, and single cells were gated basing on FSC-A and FAS-H. The subpopulations of the indicated immune cells were gated basing on specific surface markers as indicated in the individual panels.

figure 3b

Supplementary Figure 9. Full scans of blots for figures 3b.

Supplementary Figure 11. Full scans of blots for figures 5a-5i and 5k-5m.

Supplementary Figure 12. Full scans of blots for figures 6b.