SUPPLEMENTARY INFORMATION

Basal expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses

Daisuke Yamane^{1,2,3*}, Hui Feng^{1,2}, Efraín E. Rivera-Serrano^{1,2}, Sara R. Selitsky¹, Asuka Hirai-Yuki^{1,2,4}, Anshuman Das^{1,2}, Kevin L. McKnight^{1,2}, Ichiro Misumi⁵, Lucinda Hensley^{1,2}, William Lovell^{1,2}, Olga González-López^{1,2}, Ryosuke Suzuki⁶, Mami Matsuda⁶, Hiroki Nakanishi⁷, Takayo Ohto-Nakanishi⁸, Takayuki Hishiki³, Eliane Wauthier^{1,9}, Tsunekazu Oikawa^{1,9,10}, Kouichi Morita¹¹, Lola M. Reid^{1,9}, Praveen Sethupathy^{1,12}, Michinori Kohara³, Jason K. Whitmire^{1,5}, and Stanley M. Lemon^{1,2*}

Supplementary Information Contents

The Supplementary Information comprises the 10 Supplementary Figures and 9 Supplementary Tables.

Supplementary Figures

Supplementary Figure 1. shRNA-mediated knockdown of host factors linked to RLR and TLR signaling pathways.

Supplementary Figure 2. IRF1 is dispensable for RIG-I-triggered, IRF3-dependent antiviral responses.

Supplementary Figure 3. IFN-independent activity of IRF1 upon RNA virus infection in Huh-7.5 cells.

Supplementary Figure 4. Host antiviral factors that restrict replication of HCV RNA in PH5CH8 cells.

Supplementary Figure 5. Regulation of basal and induced IRF1 abundance and IRF1 transcriptional activity.

Supplementary Figure 6. Transcriptomic analysis of PH5CH8 cells expressing IRF1 vs. IRF3 sgRNAs.

Supplementary Figure 7. Antiviral activities of IRF1 target genes and their IRF1-dependent expression *in vitro* and *in vivo*.

Supplementary Figure 8. Effect of RARRES3 overexpression on replication of HCV, DENV and HRV-14, and cellular glycerophospholipid profiles in Huh-7.5 cells.

Supplementary Figure 9. Data for additional biological replicates.

Supplementary Figure 10. Uncropped blots.

Supplementary Tables

Supplementary Table 1. Short hairpin RNAs used for knockdowns.

Supplementary Table 2. Single guide RNAs used for CRISPR/Cas9 knockouts.

Supplementary Table 3. Oligonucleotide primers used for qRT-PCR of IRF1-target host genes.

Supplementary Table 4. siRNAs used for gene silencing.

Supplementary Table 5. Differentially expressed genes (> 1.0 log2) in PH5CH8 cells transduced with 2 independent sgRNAs targeting *IRF1*.

Supplementary Table 6. Gene Ontology (GO) analysis and functional annotation of IRF1regulated genes.

Supplementary Table 7. Differentially expressed genes (> 0.9 log2) in PH5CH8 cells transduced with *IRF3* sgRNA.

Supplementary Table 8. IRF1-binding sites identified within the transcription regulatory region of IRF1 effector genes.

Supplementary Table 9. The exact *p*-values for the statistical analysis in Figures 1-4.

Supplementary Figure 1. shRNA-mediated knockdown of host factors linked to RLR and TLR signaling pathways. (a) Immunoblots of RIG-I-like receptors (RLRs) in PH5CH8 cells stably expressing indicated shRNAs. Cells were stimulated with 100 U ml⁻¹ IFN- α for 24 h where indicated. (b) Functional depletion of the RLRs was confirmed by stimulation with either Sendai virus (SeV) challenge (50 U ml⁻¹) or polyIC transfection (1 µg ml⁻¹). Values shown are mean ± s.d. from 3 independent experiments. **p < 0.0001 vs. non-targeting control (two-way ANOVA with Sidak's multiple comparisons test). (c) Immunoblots of STING and MyD88 in the indicated shRNA-transduced PH5CH8 cells. (d) shRNA knockdown of *IRF1* and *IRF3* and its effects on HAV replication over ensuing 5 days. Values shown are mean ± s.d. of 3 technical replicates representative of 2 independent experiments. *p < 0.0001 vs. non-target shRNA, by two-way ANOVA with Dunnett's multiple comparisons test. (e) Immunoblot of IFNAR1 in PH5CH8 cells transduced with shRNA targeting *IFNAR1* versus *IFNLR1*. (f) Immunoblot of IFNLR1 in PH5CH8 cells cells expressing shRNA targeting *IFNLR1*. Normalized quantity of IFNLR1 is shown below. Data showin in (a, c, e, f) are representative of 2 independent experiments.

Supplementary Figure 2. IRF1 is dispensable for RIG-I-triggered, IRF3-dependent antiviral responses. (a) Relative HAV RNA levels in control vs. IRF7 siRNA-transfected PH5CH8 cells expressing IRF3 sgRNA on day 4 post-infection. Immunoblots of IRF7 and IRF3 are shown on left. Values shown are mean ± s.d. from 3 technical replicates representative of 2 independent experiments. (b) HAV RNA present in fecal (left) and liver (right) samples in mice with different genetic backgrounds over 28 days following intravenous infectious virus challenge. Values shown are mean ± s.d. from 3-4 animals in each group (each symbol = one animal). **p = 0.002 (vs. Irf3-^{/-}), p = 0.0004 (vs. naïve) by two-sided unpaired t-test. (c, d) Immunoblots of ISG proteins (left, IFIT1 and OAS1) or IFN- β promoter activities (right) in PH5CH8 cells expressing *IRF1* vs. *IRF3* sgRNAs stimulated by either (c) SeV challenge (50 U ml⁻¹ for 24 h, **p < 0.0001 vs. control, twoway ANOVA with Dunnett's multiple comparisons test) or (d) MAVS overexpression (24 h posttransfection, *p = 0.038 vs. control (two-sided unpaired t-test). Values shown are mean \pm s.d. from 3 independent experiments. (e) Replication of HAV RNA introduced by electroporation in indicated PH5CH8 sgRNA knockout cell lines. Values shown are mean ± s.d. from 3 independent transfections. *p = 0.022, **p = 0.0013 (IRF#1), p = 0.0012 (IRF1#2), p < 0.0001 (IRF3+IRF1#2) vs. control (two-way ANOVA with Holm-Sidak's multiple comparisons test). (f) Immunoblots of ISGs, OAS1 and IFIT1, and Actin as loading control in extracts of RNA-transfected (upper) versus virus-infected (lower) PH5CH8 cells expressing IRF3 vs IRF1 sgRNAs. Data shown represent 2 independent experiments.

Supplementary Figure 3. IFN-independent activity of IRF1 upon RNA virus infection in Huh-7.5 cells. (a) Infectious yields of flaviviruses (DENV and ZIKV) from IRF1-depleted versus control Huh-7.5 cells at 24 h post infection (p.i.). Values shown are mean \pm s.d. from 3 independent experiments. **p* = 0.0249 (DENV), *p* = 0.0139 (ZIKV) vs. control (two-sided unpaired t-test) (b) Relative viral RNA levels at 24 h p.i. (HAV and DENV) or relative GLuc activity at 48 h p.i. (HCV/GLuc) in Huh-7.5 cells treated with DMSO or 3 µM ruxolitinib. Values are mean \pm s.d. from 3 technical replicates and are representative of 2 independent experiments.

Supplementary Figure 4. Host antiviral factors that restrict replication of HCV RNA in PH5CH8 cells. (a) Organization of the HCV reporter virus genome that expresses Gaussia luciferase (GLuc) fused to foot-and-mouth disease virus 2A autoprotease as part of the HCV polyprotein. (b-f) PH5CH8 cells were co-electroporated with HCV RNA (JFH1-QL/GLuc, 5 μg) and 250 nmol miR-122 duplex mimics. GLuc activities were measured in culture supernatant fluids collected at 6, 24, 48 and 72 h. Cells were re-fed with fresh culture medium at each interval. (b) Kinetics of HCV RNA replication over 72 h following electroporation of PH5CH8 cells. A directacting antiviral (DAA, 30 µM sofosbuvir) was added to provide a non-replicating control. Note that a miR-122 mutant containing a substitution at the p6 position (miR-122mut) within the guide sequence failed to promote replication. Values are mean ± s.d. from 3 technical replicates representative of 2 independent experiments. (c) Replication of HCV RNA co-transfected with miR-122 mimics into PH5CH8 cells expressing the indicated shRNAs. Relative activities of GLuc secreted between 24-48 h are shown. Values shown are mean ± s.d. from 3 independent experiments. **p = 0.0038 (MAVS), p < 0.0001 (IRF1) vs. control (one-way ANOVA with Dunnett's multiple comparisons test) (d) Kinetics of GLuc produced from PH5CH8 cells expressing IRF1 vs. IRF3 sgRNAs between 6 and 72 h following RNA electroporation (left), and HCV RNA levels at 48 h (right). Values are mean ± s.d. from 3 technical replicates representative of 2 independent experiments (left) or 3 (right) independent experiments. (left) **p < 0.0001, knockouts vs. control (two-way ANOVA with Dunnett's multiple comparisons test), (right) *p = 0.0072 (*IRF1*#1), p =0.008 (IRF1#2) vs. control (two-sided unpaired test). (e) JFH1-QL/GLuc replication in electroporated PH5CH8 cells expressing indicated sgRNAs. Values shown are mean ± s.d. from 3 independent experiments. **p = 0.0004 (IFNAR1#1), p = 0.0065 (IFNAR1#2), p = 0.0005 (IFNLR1#2), p < 0.0001 (IRF1#2) vs. control (one-way ANOVA with Dunnett's multiple comparisons test) (f) HCV replication in PH5CH8 cells expressing control vs. IRF1 sgRNAs treated with 3 μ M ruxolitinib or DMSO vehicle. Values shown are mean ± s.d. from 3 independent experiments. **p = 0.0001 (DMSO), p = 0.0002 (Ruxolitinib) vs. control (two-way ANOVA with Sidak's multiple comparisons test).

Supplementary Figure 5. Regulation of basal and induced IRF1 abundance and IRF1 transcriptional activity. (a) IRF1 protein abundance is not altered following HAV challenge of PH5CH8 cells at an m.o.i. of 10. Relative IRF1 protein abundance normalized to that of actin is shown below. Data shown are representative of 2 independent experiments. (b) Basal ISRE activity in PH5CH8 cells is not regulated by JAK/STAT signaling. PH5CH8 cells were treated with indicated doses of ruxolitinib and ISRE promoter activity measured. Values shown are mean \pm s.e.m. from 3 technical replicates representative of 2 independent experiments. (c) Nuclear localization of IRF1 in different hepatic cell cultures under basal conditions and following treatment with the agonist IFN- γ (1,000 U ml⁻¹ for 24 h). The antibody staining of PH5CH8 cells expressing control vs. IRF1 #1 sgRNAs is shown on lower right panels to demonstrate the specificity of the nuclear IRF1 signals. Scale bar, 50 μ m. Data shown are representative of 2 independent with different with different concentrations of actinomycin D (ActD). Huh-7.5 cells pretreated with ActD were stimulated with 100 U ml⁻¹ IFN α for 16 h and analyzed for transcripts of two IFN-responsive genes (*MX1* and *IRF1*) and actin (*ACTB*). Values shown are mean \pm s.d. from 3 technical replicates.

Supplementary Figure 6. Transcriptomic analysis of PH5CH8 cells expressing IRF1 vs. **IRF3 sqRNAs.** RNA samples extracted from HAV-infected PH5CH8 cells expressing IRF1 #1, IRF1 #2, IRF3, and control sgRNAs in triplicate cultures were subjected to high throughput sequencing. Reads were identified from an average of 16,402 ± 151 s.d. genes in each cell line. Compared with control cells, 652 genes were down-regulated (adjusted p-value <0.01) in IRF1 sqRNA #1 cells, 71 of which were down-regulated >2-fold, whereas 1100 genes were downregulated in IRF1 sgRNA #2 cells (89 >2-fold); 559 genes were up-regulated in IRF1 sgRNA #1 cells (17 >2-fold), and 871 genes in IRF1 sgRNA #2 cells (48 >2-fold). In aggregate, 48 genes were downregulated and 4 upregulated >2-fold in both IRF1 sqRNA expressing cell lines, and not similarly regulated in IRF3 sgRNA cells. (a) Scatter plots showing changes in relative transcript levels of genes in PH5CH8 cell lines expressing the two independent IRF1 sgRNAs. Each symbol represents mean value of RNA transcript reads from 3 technical replicates. Note that genes reduced >2-fold are highly congruent (highlighted in the yellow area). (b) Volcano plots showing changes in relative RNA transcript abundance in the PH5CH8 cell lines expressing indicated sgRNAs. Each symbol represents mean value of RNA transcript reads from 3 technical replicates. The p-values were determined using the negative binomial Wald test. The p-values were adjusted using false discovery rate (FDR) correction.

Supplementary Figure 7. Antiviral activities of IRF1 target genes and their IRF1-dependent expression in vitro and in vivo. (a) The basal protein expression of IRF1-regulated genes, PSMB9 and NMI, is reduced in PH5CH8 cells expressing IRF1 sgRNAs. Data shown are representative of 2 independent experiments. (b) Both basal expression of TLR3 and TLR3mediated induction of the ISG, IFIT1, in response to poly(I:C) added to culture medium (50 µg ml⁻ ¹ for 6 h) are impaired in *IRF1* sgRNA-expressing PH5CH8 cells. Data shown are representative of 2 independent experiments. (c) Abundance of basally-expressed IRF1, IRF3, IRF7 and IRF1responsive gene transcripts in primary adult human hepatocytes and human fetal hepatocytes. Values shown are means ± s.d. from 3 independent donors and are from previously published data¹⁹. (d) Basal expression levels of select IRF1 target gene mRNAs are reduced in *Irf1^{-/-}* mouse liver tissues. Values shown are mean \pm s.d. of 3 animals. n.d., not detected. **p < 0.0001 (*Psmb9*, Uba7), p = 0.0002 (Ifit3), vs. WT (two-sided unpaired t-test). (e) Knockdown efficiency of IRF1 effector genes as assessed by quantitative RT-PCR or by immunoblot analysis for IRF1 protein shown in red. Values shown are means ± s.d. from 3 technical replicates (RNA abundance) or from 2 biological replicates (IRF1 protein abundance). (f) Correlation between knockdown efficiency of individual siRNAs (Y-axis) versus replication enhancement of HAV RNA (X-axis). Each symbol represents a mean value from a single siRNA, each analyzed in 3 technical replicates. Nonlinear regression curves were fit according to a three-parameter model. (g) Immunoblots of PSMB9 and APOL1 expressed in Huh-7.5 cells stably transduced with indicated lentiviral vectors. Data shown are representative of two independent experiments. (h) Replication of flavivirus RNA and infectious virus titers at 24 h p.i. in Huh-7.5 cells expressing the indicated

genes. Values shown are means ± s.d. from 3 independent experiments. **p < 0.0001 vs. vector control (two-way ANOVA with Sidak's multiple comparisons test) (i) GLuc activities reflecting replication of JFH1-QL/GLuc virus on 3 d p.i. (left) and infectious titers of JFH1-QL virus on 3 day post RNA transfection (right) in Huh-7.5 cells expressing the indicated genes. Values shown are means \pm s.d. from 3 independent experiments. **p = 0.0002 (GLuc, PSMB9), p = 0.0004 (GLuc, APOL1), p = 0.0016 (virus titer) vs. control (two-sided unpaired t-test) (j) Cell viability in Huh-7.5 cells transfected with indicated siRNAs directed to IRF1 and its target genes as measured by WST-8 assay. Values shown are means \pm s.d. from 3 technical replicates. (k) IFN- γ , an IRF1agonist, restricts HAV replication via an IRF1-dependent mechanism. Note that the anti-HAV action of IFN-y is diminished in Huh-7.5 cell lines expressing two independent IRF1 sgRNAs. Values shown are means ± s.d. from 3 technical replicates and are representative of 2 independent experiments. (I) Depletion of RARRES3 partially attenuates the anti-HAV effect of overexpressed IRF1. Immunoblots of IRF1 and GAPDH are shown on right (IFN-γ, 1,000 U ml⁻¹ for 24 h). Values shown are means ± s.d. from 3 technical replicates and are representative of 3 independent experiments. *p = 0.0309, **p = 0.005 vs. control (two-way ANOVA with Dunnett's multiple comparisons test).

Supplementary Figure 8. Effect of RARRES3 overexpression on replication of HCV, DENV and HRV-14, and cellular glycerophospholipid profiles in Huh-7.5 cells. (a) Replication of HCV/GLuc (genotype 2a JFH1-QL and genotype 1a H77D), DENV/NLuc, or human rhinovirus 14 (HRV-14) in Huh-7.5 cells stably expressing empty vector, RARRES3, or RARRES3/C113S (catlytically inactive). DAA, sofosbuvir for HCV/GLuc or 2'CMA for DENV/NLuc (30 μ M each). Values shown are mean ± s.d. from 3 technical replicates. (b) Glycerophospholipid profiles of Huh-7.5 cells stably expressing RARRES3 vs. empty vector control. Units are pmol per 10⁶ cells. Values shown are mean ± s.d. from 3 independent experiments.

Supplementary Figure 9. Data for additional biological replicates. (a-m) Number of experimental replicates and statistical tests are equivalent to that of the main figures.

Supplementary Figure 10. Uncropped blots. Boxes indicate the cropped areas shown in the indicated figures. Molecular weight is indicated in numbers.

Figure 1g

Figure 1h

Supplementary Figure 1a

Supplementary Figure 1f

Supplementary Figure 2a

Supplementary Figure 2c

Supplementary Figure 2d

Supplementary Figure 2d

Supplementary Figure 2d

	250		
	<u> </u>		
	100		
	 75		
GAPDH	<u> </u>	GAPDH	
	37 —		
	<u> </u>		
	. <u> </u>		
	15		

Supplementary Figure 2f

Supplementary Figure 5a

Supplementary Figure 7a

Supplementary Figure 7b

TLR3	250 150 150 75 50 37 25 20 15	IFIT1	
Actin	250 150 100 75 50 37 25 20 15		

Supplementary Figure 7g

Supplementary Figure 7I

Target gene	Target sequence	Sigma catalog# or Clone ID
Non-target control	CAACAAGATGAAGAGCACCAA	SHC002
RIG-I	CCAGAATTATCCCAACCGATA	NM_014314.2-505s1c1
MDA5	CCAACAAAGAAGCAGTGTATA	NM_022168.2-1565s1c1
LGP2	GCAAGAAGTGATCCAGAAGTT	NM_024119.1-1483s1c1
MAVS	GCATCTCTTCAATACCCTTCA	NM_020746.1-296s1c1
STING	GCAGAGCTATTTCCTTCCACA	NM_198282.1-1472s1c1
MYD88	GCAGAGCAAGGAATGTGACTT	NM_002468.2-723s1c1
TRIF	CTCCAACTTTCTGTAGAAGAT	NM_014261.1-588s1c1
IRF3	GCCAACCTGGAAGAGGAATTT	NM_001571.1-265s1c1
IRF7	GCTGGACGTGACCATCATGTA	NM_001572.2-1156s1c1
IRF1	CGTGTGGATCTTGCCACATTT	NM_002198.1-1769s1c1
IFNAR1	GTTGACTCATTTACACCATTT	NM_000629.2-496s1c1
IFNLR1	GCCGGAAACAAGACCCTATTT	NM_170743.2-512s1c1

Supplementary Table 1. Short hairpin RNAs used for knockdowns.

Supplementary Table 2. Single guide RNAs used for CRISPR/Cas9 knockouts.

Target gene	Target sequence
Non-target control	CACTCACATCGCTACATGA
IRF1 (#1)	GAAGCATGCTGCCAAGCA
IRF1 (#2)	GAGCCAGATCCCAAGACG
IRF3	AGTATTCTCCAGGGAGG
IFNAR1 (#1)	GCTGCGGACAACACCCA
IFNAR1 (#3)	GTTATGTGGGCTTTGGA
IFNLR1 (#1)	GCAGGAAGGCCATGGCG
IFNLR1 (#2)	GCAGGCCGCTCCAGGTA
MAVS	TATAAGTCCGAGGGCACCTT
STAT1	GCAGCTTGACTCAAAATTCC
RELA (#1)	CAATGATCTCCACATAG
RELA (#3)	CAATGATCTCCACATAG
RARRES3	GGTGATCATCAGTTCTGCGA

Supplementary	Table 3.	Oligonucleotide	primers	used f	for	qRT-PCR	of	IRF1-target I	host
genes.									

Gene	Forward	Reverse
RARRES3	GATTTTCCGCCTTGGCTATG	TTGCTCAGGACTGAGAAGAC
PSMB9	GTGGATGCAGCATATAAGCC	AGTGACCAGGTAGATGACAC
APOL6	CTATTGCTCCCAGGCTACGCA	CCCTGCAAGCTCCATTCGTAGT
GBP3	CGCACAGGAAAATCCTACCT	ACACACCACATCCAGATTCC
ERAP2	GGGCCTCATTACATATAGGGA	ATTCCATTGTGACCAGGTTG
APOL1	ATAATGAGGCCTGGAACGGA	GGTTGTCCAGAGCTTTACGG
SAMD9L	AAGCTCTGAGAGCAGATAGG	TTGAGTTTTGCTGCAGTAGG
UBA7	TGATGCCCTCGATTGTCTTC	ACTTTGAGCAGCTCACAACC
IFIT3	CTGGCAATTGCGATGTACCA	GTTTCAGGCCCAAGAGAACC
CXCL8	AAGAGCCAGGAAGAAACCAC	CTTGGCAAAACTGCACCTTC
NMI	GGAGTTACAAGAGGCTACCA	CGAGCTCACTTGAAACGAAC
TLR3	TAGCAAACACAAGCATTCGG	AGGAATCGTTACCAACCACA
CFB	TTCCCTGACAGAGACCATAG	CTGTCTGATCCATCTAGCAC
TAP2	CCTCACTATTCTGGTCGTGT	GATCCGCAAGTTGATTCGAG
IFIT2	GAGAATTGCACTGCAACCATGAG	CGATTCTGAAACTCAGTCCGGTAA
APOL3	ATCCACACAGCTCAGAACAG	CAGCAAATGCCAAGACCAAC
MX1	CAGTTACCAGGACTACGAGA	GGGTGATTAGCTCATGACTG
DDX60	CTTCTATCTGGTTGAACGCT	CAGGGAAGTTGAAATACGCA
ZNF827	AATCGGGCGAGAGAAAACCGAA	GACAGTTGAAAGAGGAGCTCGGAA
CXCL1	ATTCACCCCAAGAACATCCA	CAGGATTGAGGCAAGCTTTC
FYN	CAATGAGTACACAGCAAGAC	AGCTCTGTGAGTAAGATTCC
TENM3	GACAGCTCCAAACAGTTTACCTCA	TGTCTCGCAGGTCATAGCGAA
COL4A1	GCCTGGTGAGTTTTATTTCGAC	ACGCTCTCCTTTCAATCCTAC
COL4A2	GGTTTCTACGGAGTTAAGGG	TTCACCCTTGTACTGATCTG
DPYSL3	GAGCAAACCCGCATGTTGGA	GCAATGGTGATGGCACGGAA
ACTB	GACCCAGATCATGTTTGAGACC	GTCACCGGAGTCCATCACGA

Supplementary Table 4. siRNAs used for gene silencing.

Gene Symbol	Gene	Sequence				
RARRES3	NM_004585	GCACUGGGCCCUGUAUAUA	UAUGGCAAGUCCCGCUGUA			
		CAACAGUGCAGAGGUGAAA	CGAAGGAGAUGGUUGGUCA			
PSMB9	NM_148954	GCAAAUGUGGUGAGAAAUA	GAACCGAGUGUUUGACAAG			
		GGCAGCACCUUUAUCUAUG	ACGUGAAGGAGGUCAGGUA			
GBP3	NM_018284	GAGAAGACCCUCACUAGUA	CCACUGAAGUCUAUAUGAA			
		GAACAGGCCCGAGUACUAA	CGCAUAAGCUAAAGAUCUA			
SAMD9L	NM_152703	GGAAGGGUCUAAACAGUAU	GUAGGAGCAUUACUGUUAA			
		GCAACGGGAUGUAGAUUUC	CAGAAAAGGAUUUGCGAUA			
IFIT3	NM_001549	GCAAUAUGCUAUGGACUAU	GACUGGCAAUUGCGAUGUA			
		GAGACGGAAUGUUAUCAGA	UAGAGUGUGUAACCAGAUU			
APOL6	NM_030641	GAGAGAAUUUCCCAGAUUG	AGAAACACCUUGAAGUAUG			
		GAACAACACUGGCGAUGAC	GGGAAGUGGGAGUCGAACA			
ERAP2	NM_022350	GAAAGCUGCUGAACUCUUC	GAUCAUCUCUGGCACAACA			
		GAGUAGGUCUGAUUCAUGA	GAUCACAUCUGGAUAUUUU			
UBA7	NM_003335	GAACAAAGCCCUGGAAGUC	GGGCAGUGCUACAGUAUUC			
		GCACUUCCCACCUAAUAAA	UGAAGCCUCUGAUGUUUGA			
APOL1	NM_003661	GUUCCAAGUGGGACAGAUA	ACGAUAAAGGCCAGCAGUA			
		AGAAUAUAUUGACGGAAGA	AAUGGGAACUGGAGAGUGU			
CFB	NM_001710	CGAAGCAGCUCAAUGAAAU	GGAGAUAGAAGUAGUCCUA			
	_	ACACGUACCUGCAGAUCUA	ACAGGAAGGGUACCGAUUA			
APOL3	NM_145640	GGUCAAGCAGAGAGAACGA	CAACCUUGUAUACGAGUCA			
		CAACCAGCAUUGACCGAUU	CCUGUGACCACCUGGCGAA			
NMI	NM_004688	CCAAAGAAUUCCAGAUUAA	GCUCGAAAGUUCCUUAUGA			
		CAAGUGAGCUCGAAAGUUC	CGAAAGUUCCUUAUGAGAU			
MX1	NM_002462	UCACAGAUGUUUCGAUAAA	GAAUGGGAAUCAGUCAUGA			
		CCACAAAUGGAGUACAAUA	CGACAUACCGGAAGACGAA			
TLR3	NM_003265	GAAGCUAUGUUUGGAAUUA	GAAGAGGAAUGUUUAAAUC			
		GAUCAUCGAUUUAGGAUUG	CAACAUAGCCAACAUAAAU			
IFIT2	NM_001547	CAAAUUGGGUGCUGCUAUA	GGAGAAAGCCCCAGGUGUA			
		GCAAAAGUCUUCCAAGUAA	GAACUAAUAGGACACGCUG			
TAP2	NM_018833	GUAACUGGCUUCCUUUAAA	CAUGAAGUCUGUCGCUAUA			
		GGAAAUGGAGCAUGGAAUA	GAAACAACGUCUGGCCAUU			
DDX60	NM_017631	GAAGGUAUUUGGUCGAGUA	GCACUCACCAUUAAAUCUA			
		GGAGAGAGGUAUAAUGAUC	AAAUGUCGCUUAAUGCCUA			
RPS6KB1	NM_003161	GGACUAUGCAAAGAAUCUA	GGUUUUUCAAGUACGAAAA			
IRF7	NM_001572	GUCUAAUGAGAACUCCAGA	GCCUAGAACCCAGUCUAAU			
IRF1	NM_002198	UCACAGAUCUGAAGAACAU	CCAAGAACCAGAGAAAAGA			
Non-targeting	N/A	UAGCGACUAAACACAUCAA	AUGUAUUGGCCUGUAUUAG			
Control		UAAGGCUAUGAAGAGAUAC	AUGAACGUGAAUUGCUCAA			

Supplementary Table 5. Differentially expressed genes (> 1.0 log₂) in PH5CH8 cells transduced with 2 independent sgRNAs targeting *IRF1*.

The differential mRNA expression in the sgRNA-expressing cells grown in triplicate compared to control was determined using DESeq2. The p-values were determined using the negative binomial Wald test. The p-values were adjusted using false discovery rate (FDR) correction.

a. Differentially expressed genes (> 1.0 log₂) in PH5CH8 cells transduced with *IRF1* #1 sgRNA.

			Down-regu	lated ge	enes			_	Up-regulated genes			
Rank	Gene	Log2 Foldchange	padj	Rank	Gene	Log2 Foldchange	padj		Rank	Gene	Log2 Foldchange	padj
1	RARRES3	-4.30605607	0	51	BIRC3	-1.173786664	2.40E-28		1	DPYSL3	2.045356184	3.48E-187
2	PSMB9	-3.070227661	4.01E-141	52	ATP10D	-1.171899468	3.06E-22		2	COL4A2	1.841361391	7.97E-252
3	APOL6	-2.618325001	3.61E-173	53	IFIH1	-1.171377019	7.87E-18		3	ST6GAL2	1.638743861	2.62E-35
4	GBP3	-2.564265161	2.41E-85	54	SOD2	-1.168138821	9.89E-75		4	TENM3	1.5263704	7.90E-50
5	ERAP2	-2.545561012	7.42E-212	55	HPGD	-1.141701789	6.97E-38		5	MFAP2	1.517383068	3.60E-43
6	APOL1	-2.518894585	0	56	IL15	-1.124268707	3.62E-17		6	COL4A1	1.406611737	5.65E-123
7	SAMD9L	-2.509506919	2.56E-81	57	OAS1	-1.121088971	1.04E-20		7	TRPC4	1.3888227	3.98E-24
8	UBA7	-2.449501879	6.30E-135	58	FOSL1	-1.106411339	8.16E-48		8	PLCB1	1.191797824	1.46E-17
9	IFIT3	-2.339444768	6.62E-103	59	OAS3	-1.105874085	1.41E-66		9	COL11A1	1.163894321	4.83E-46
10	CXCL8	-2.238182461	1.24E-117	60	TNFAIP3	-1.099669587	1.88E-28		10	FLRT3	1.140975771	6.08E-28
11	NMI	-2.150694321	1.51E-78	61	CXCL2	-1.094667802	1.36E-15		11	SVEP1	1.127943548	7.23E-16
12	TLR3	-2.085901887	2.44E-54	62	TNFRSF14	-1.070706215	1.03E-15		12	ST6GAL1	1.120598896	4.49E-17
13	CFB	-1.949049961	1.39E-78	63	NFIX	-1.052325125	5.38E-15		13	LTBP1	1.118949669	6.11E-36
14	C3	-1.917893461	6.57E-118	64	TRABD2A	-1.029835611	3.43E-13		14	FGF13	1.055492212	9.45E-14
15	MEG3	-1.893786333	1.29E-44	65	TRANK1	-1.024365993	2.22E-26		15	DCDC2	1.035073651	1.45E-58
16	PSMB8	-1.885590966	1.53E-135	66	TM4SF18	-1.023442793	2.86E-16		16	CPE	1.019168811	1.47E-50
17	TAP2	-1.876453474	3.35E-160	67	GLUL	-1.02290644	1.20E-36		17	COL4A4	1.003119198	1.54E-79
18	FGB	-1.870468009	5.95E-92	68	ACTA2	-1.019950576	7.18E-13					
19	IFIT2	-1.793546489	1.29E-52	69	STARD4	-1.011659171	1.78E-14					
20	APOL3	-1.754325695	3.44E-38	70	OSBPL6	-1.011470949	1.11E-14					
21	DDX60	-1.750967907	1.70E-44	71	DTNA	-1.008331529	1.53E-12					
22	MX1	-1.748456819	7.04E-56									
23	PARP10	-1.706256534	6.50E-75									
24	ZNF827	-1.657126982	1.64E-34									
25	CXCL1	-1.654437285	1.46E-49									
26	IRF1	-1.620030816	4.90E-125									
27	FYN	-1.584149049	3.32E-38									
28	BTN3A3	-1.561734794	1.23E-66									
29	UBE2L6	-1.555460225	7.92E-70									
30	AASS	-1.555233906	8.60E-30									
31	PARP14	-1.525757089	5.70E-120									
32	HLA-B	-1.499518883	5.89E-83									
33	UBD	-1.489687126	6.91E-28									
34	VCAM1	-1.486441985	4.53E-119									
35	PARP12	-1.46314127	5.34E-66									
36	PSMB10	-1.433041032	5.56E-45									
37	ERAP1	-1.410032105	1.80E-63									
38	PSMB8-AS1	-1.386597048	1.39E-23									
39	TNFAIP2	-1.337873899	8.94E-171									
40	TRIM22	-1.328653068	7.17E-22									
41	FGG	-1.287772344	2.18E-20									
42	ACSL5	-1.284806127	2.98E-24									
43	LGALS9	-1.266127198	7.66E-20									
44	CCL2	-1.263565625	8.71E-65									
45	CTSS	-1.253522216	3.32E-21									
46	DDX60L	-1.238249346	1.04E-20									
47	MUC5AC	-1.197902994	2.50E-18									
48	DTX3L	-1.195713255	3.57E-64									
49	NT5E	-1.190971531	5.81E-26									
50	TAP1	-1.183769535	4.20E-72					_	_			

Down-regulated genes Up-regulated genes Rank padi Gene Log2 Foldchange padj Rank Gene Log2 Foldchange padi Rank Gene Log2 Foldchange RARRES3 -3.9797151 0 51 PARP14 -1.31951145 2.52E-91 TENM3 2.59907996 8.19E-171 1 1 2 PSMB9 8.92E-125 LRP3 2 -3.04157472 52 -1.3062438 4.12E-20 DPYSL3 2.3470478 8.35E-240 -1.28266879 3 FYN -2.71569318 2.62E-81 53 BMP5 1.52E-67 3 COL4A2 1.98925264 1.00E-278 1.87126782 4 GBP3 -2.62753909 3.15E-74 54 DPYD -1.27776913 2.74E-25 4 CPS1 3.85E-38 -1.27482521 5 5 SAMD9L -2.55223866 2.28E-69 55 NFIX 6.81E-18 ADAP2 1.68675434 1.63E-29 6 EPHA3 -2.38994137 4.93E-171 56 FBN1 -1.26243065 2.79E-40 6 ST6GAL2 1.65957594 1.54E-28 7 CXCL8 -2.38385062 1.04E-123 57 OSBPL6 -1.24682701 8.68E-16 7 COL4A1 1.63883655 4.11E-171 IFIT3 PSMB8 8 TRPM2 8 -2.32135177 1.57E-91 58 -1.23399641 2.20E-65 1.62428886 7.93E-25 -2.16384796 FGG -1.20962596 9 1.58385023 9 CFB 5.17E-88 59 2.21E-14 APBB1IP 2.14E-23 10 10 APOL3 -2.16271531 3.06E-43 60 CXCL2 -1.200739822.52E-15 PLAC8 1.50945035 5.01E-36 1.08E-34 11 -2.13538021 1.05E-71 61 DMKN -1.19809836 5.65E-51 11 CDA MX1 1.49642137 12 UBA7 -2.08939534 3.48E-99 62 ELOVL7 -1.19603982 2.35E-14 12 L1CAM 1.46939018 8.21E-198 13 13 ERAP2 -2.04585084 1.11E-149 63 BCAT1 -1.19072612 5.68E-15 MYO7A 1.41126263 8.11E-29 14 BCHE -2.01280126 4.23E-122 64 DDX26B -1.18319328 2.66E-13 14 TIMP3 1.40930019 4.88E-53 -1.97748878 15 APOL6 6.57E-117 65 TRANK1 -1.175457292.57E-30 15 MALRD1 1.38551206 9.89E-40 16 16 APOL1 -1.91956954 1.93E-270 66 ACSL5 -1.16641946 GADL1 1.38265219 1.41E-17 3.32E-20 17 CDH6 -1.85291099 1.93E-53 67 SLC16A7 -1.16012119 1.54E-16 17 FMOD 1.34811809 3.36E-22 18 CXCL1 -1.8376753 1.49E-55 68 PCDH18 -1.14546803 7.43E-13 18 F10 1.34602364 2.66E-17 MARCKS 19 SPOCK1 19 MEG3 -1.83584728 4.08E-34 69 -1.14163347 1.72E-30 1.34139016 3.17E-99 20 ZNF827 -1.7999967 1.20E-32 70 BCO1 -1.10058789 20 NOTUM 1.32299038 2.39E-11 6.06E-20 21 TLR3 -1.77443867 3.89E-33 71 **RNF217** -1.09514509 2.48E-11 21 ITGA11 1.3187266 3.42E-16 22 AMPH -1.77178777 3.33E-45 72 PCDH10 -1.07378563 22 1.28245386 1.75E-15 1.18E-12 HOXC12 23 NMI -1.74529971 1.91E-56 73 DDX60L -1.07228272 2.53E-12 23 FAM49A 1.26821737 3.86E-15 24 PSMB10 -1.743854 2.90E-58 74 TRABD2A -1.0700364 1.80E-11 24 TNC 1.26275069 2.39E-106 25 TMPRSS15 -1.72236919 1.43E-131 75 GREM1 -1.05714764 6.94E-60 25 PTGS1 1.2390419 1.37E-21 26 UBE2L6 -1.719796782 39E-79 76 HMCN1 -1.05126845 2.89E-83 26 ADM2 1.23305933 9.56E-15 27 27 DDX60 -1.69922312 5.41E-37 77 IL15RA -1.04574927 5.04E-12 TCF21 1.23102459 2.40E-14 28 PVRL3 -1.68958306 2.62E-33 78 IFIH1 -1.04323298 3.07E-10 28 APCDD1L-AS1 1.22639092 4.29E-65 29 IFIT2 -1 67977636 1 40F-41 79 SLITRK3 -1.039102181 11E-10 29 NDRG1 1 20209538 5 54E-62 30 UBD 2.47E-25 CD74 -1.03828198 3.28E-10 30 B3GALT5 1.18919321 -1.65555172 80 6.85E-16 31 FGB -1.61005657 2.42E-65 81 ATP10D -1.02983714 8.96E-16 31 ARFGEF3 1.18884895 1.24E-13 32 TAP2 -1.579845392.36E-136 82 HIST1H1C -1.02772643 4.08E-34 32 APCDD1L 1.1668644 1.84E-58 33 -1.56133472 2.05E-23 83 PGM5 -1.02542065 3.93E-10 33 PCDHGA4 1.13357058 2.43E-12 LGALS9 -1.53276464 34 PCDH7 5.30E-23 84 PTX3 -1.02480435 1.43E-10 34 CPM 1.12043845 3.43E-13 35 BTN3A3 -1.50838594 1.84E-58 85 ST3GAL1 -1.0215178 35 ENG 1.11392435 1.46E-45 1.91E-17 36 VANGL2 -1.50397963 7.12E-23 86 MX2 -1.01047767 1.19E-09 36 IL20RA 1.11267656 6.06E-12 37 C3 -1.48301596 6.14E-72 87 HLA-B -1.00132638 1.25E-40 37 FBLN2 1.1108584 1.49E-41 38 IL15 -1.46681703 5.72E-21 88 DTNA -1.00092823 1.55E-09 38 PALMD 1.0906187 5.06E-12 39 CTSS -1.45305055 9.51E-23 89 KCTD12 -1.00005731 1.88E-09 39 PDE1C 1.07482238 1.09E-110 40 **KIAA1211** -1.433823567.58E-20 40 B4GALNT2 1.07429855 7.28E-14 41 PSMB8-AS1 -1.42295053 2.25E-19 41 ACSS1 1.06358194 4.66E-20 42 TRIM22 -1.4155635 9.97E-19 42 MFGE8 1.05614296 2.38E-90 43 TNFAIP2 -1.399223368.11E-194 43 TNS4 1.0509688 5.34E-16 44 PCOLCE2 -1.39911257 1.92E-18 44 TLN2 1.04209086 3.45E-45 45 PTN -1.34105797 2.24E-41 45 CTSH 1.03611327 1.45E-41 46 VCAM1 -1.33887411 46 ALPK2 2.10E-10 1.01E-102 1.03509411 47 47 CBLN2 -1.33755103 4.65E-35 SARDH 1.02997474 4.28E-12 48 PIK3AP1 -1.32320088 2.73E-19 48 ALPPL2 1.02084613 4.38E-29 49 CCL2 -1.31961393 5.60E-67 50 PARP10 -1.31952853 5.93E-46

b. Differentially expressed genes (> 1.0 log₂) in PH5CH8 cells transduced with IRF1 #2 sgRNA.

Supplementary Table 6. Gene Ontology (GO) analysis and functional annotation of IRF1-regulated genes.

Gene ontology enrichment analysis was performed using DAVID 6.8. The threshold of EASE Score, a modified Fisher Exact P-Value, was used for gene-enrichment analysis.

Term	%	p-value	Genes
inflammatory response	18.52	1.53E-06	CXCL1, APOL3, NMI, CCL2, C3, CXCL2, CXCL8, TLR3, IL15, LGALS9
defense response to virus	12.96	9.13E-06	IFIT3, IFIT2, DDX60, TLR3, MX1, TRIM22, GBP3
response to virus	11.11	1.84E-05	IFIT3, IFIT2, IFIH1, DDX60, MX1, TRIM22
immune response	16 67	3 12E-05	CXCL1, CCL2, C3, CXCL2, CXCL8, IL15,
	10.07	0.122 00	HLA-B, CTSS, TRIM22
type I interferon signaling pathway	9.26	3.87E-05	IFIT3, IFIT2, HLA-B, MX1, PSMB8
innate immune response	14.81	2.65E-04	IFIH1, APOL1, FYN, FGB, DDX60, TLR3,
proteolysis involved in cellular protein catabolic process	7.41	3.91E-04	PSMB10, CTSS, PSMB8, PSMB9
chemotaxis	9.26	4.72E-04	CXCL1, CCL2, CXCL2, CXCL8, LGALS9
signal transduction	22.22	5.03E-04	CXCL1, APOL3, FGG, CCL2, FGB, C3, TENM3, CXCL8, TLR3, IL15, MX1, DTNA
antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent	7.41	8.70E-04	PSMB10, HLA-B, PSMB8, PSMB9
cell chemotaxis	7.41	9.53E-04	CXCL1, VCAM1, CCL2, CXCL2
adaptive immune response	9.26	9.74E-04	FYN, FGB, TAP2, ERAP2, CTSS
chemokine-mediated signaling pathway	7.41	0.001231285	CXCL1, CCL2, CXCL2, CXCL8
interferon-gamma-mediated signaling pathway	7.41	0.001231285	VCAM1, NMI, HLA-B, TRIM22
positive regulation of I-kappaB kinase/NF-kappaB signaling	9.26	0.001330272	APOL3, FYN, UBD, TRIM22, LGALS9
lipid transport	7.41	0.001498741	APOL3, APOL1, OSBPL6, APOL6
viral process	11.11	0.001904387	PSMB10, VCAM1, FYN, HLA-B, PSMB8,
positive regulation of neutrophil chemotaxis	5.56	0.001932233	CXCL1, CXCL2, CXCL8
negative regulation of type I interferon production	5.56	0.003583763	IFIH1, UBA7, UBE2L6
antigen processing and presentation of peptide antigen via MHC class I	5.56	0.003583763	TAP2, ERAP2, HLA-B
stimulatory C-type lectin receptor signaling pathway	7.41	0.003762113	PSMB10, FYN, PSMB8, PSMB9
lipoprotein metabolic process	5.56	0.005704509	APOL3, APOL1, APOL6
MAPK cascade	9.26	0.007600966	PSMB10, CCL2, FYN, PSMB8, PSMB9
T cell receptor signaling pathway	7.41	0.009716944	PSMB10, FYN, PSMB8, PSMB9
regulation of cellular amino acid metabolic process	5.56	0.010094659	PSMB10, PSMB8, PSMB9
antigen processing and presentation	5.56	0.01166882	HLA-B, CTSS, PSMB8
blood coagulation, fibrin clot formation	3.70	0.011858397	FGG, FGB
cellular response to interferon-gamma	5.56	0.012493782	CCL2, TLR3, LGALS9
response to lipopolysaccharide	7.41	0.012816289	CXCL1, VCAM1, CXCL2, LGALS9
negative regulation of angiogenesis	5.56	0.014664146	COL4A2, CCL2, MEG3
modification-dependent protein catabolic process	3.70	0.014801397	UBA7, UBE2L6
detection of virus	3.70	0.014801397	IFIH1, TLR3
positive regulation of ERK1 and ERK2 cascade	7.41	0.015239694	FGG, CCL2, FGB, LGALS9
proteolysis	11.11	0.016165826	C3, CFB, TRABD2A, UBD, ERAP2, CTSS
NIK/NF-kappaB signaling	5.56	0.016508931	PSMB10, PSMB8, PSMB9
ISG15-protein conjugation	3.70	0.017735806	UBA7, UBE2L6
negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle	5.56	0.018946536	PSMB10, PSMB8, PSMB9
cellular response to interleukin-1	5.56	0.018946536	CCL2. FGB. CXCL8
positive regulation of inflammatory response	5.56	0.019961569	CCL2. TLR3. IL15
extracellular matrix organization	7.41	0.020540948	VCAM1, COL4A2, FGG, FGB
antigen processing and presentation of endogenous peptide antigen via			
MHC class I	3.70	0.020661649	TAP2, ERAP2
positive regulation of apoptotic cell clearance	3.70	0.020661649	CCL2, C3
positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycle transition	5.56	0.021526047	PSMB10, PSMB8, PSMB9
anaphase-promoting complex-dependent catabolic process	5.56	0.023139967	PSMB10, PSMB8, PSMB9

Supplementary Table 6. (continued)

positive regulation of peptide hormone secretion	3.70	0.023578952	FGG, FGB
plasminogen activation	3.70	0.026487737	FGG, FGB
response to molecule of bacterial origin	3.70	0.026487737	CXCL2, CXCL8
cellular response to interferon-alpha	3.70	0.026487737	IFIT3, IFIT2
angiogenesis	7.41	0.028671722	COL4A2, CCL2, CXCL8, TNFAIP2
positive regulation of neuron projection development	5.56	0.028864466	FYN, TENM3, DPYSL3
cell-matrix adhesion	5.56	0.029465192	VCAM1, FGG, FGB
negative regulation of cell proliferation	9.26	0.029944147	CXCL1, IFIT3, RARRES3, MEG3, CXCL8
Wnt signaling pathway, planar cell polarity pathway	5.56	0.030681622	PSMB10, PSMB8, PSMB9
positive regulation of heterotypic cell-cell adhesion	3.70	0.032279854	FGG, FGB
PERK-mediated unfolded protein response	3.70	0.035163235	CCL2, CXCL8
regulation of mRNA stability	5.56	0.037717825	PSMB10, PSMB8, PSMB9
protein polymerization	3.70	0.038038195	FGG, FGB
complement activation, alternative pathway	3.70	0.038038195	C3, CFB
response to ethanol	5.56	0.039057882	VCAM1, CCL2, FYN
cellular response to tumor necrosis factor	5.56	0.042486433	VCAM1, CCL2, CXCL8
platelet activation	5.56	0.04602387	FGG, FYN, FGB
tumor necrosis factor-mediated signaling pathway	5.56	0.048197	PSMB10, PSMB8, PSMB9
positive regulation of canonical Wnt signaling pathway	5.56	0.049666362	PSMB10, PSMB8, PSMB9
cellular protein complex assembly	3.70	0.05228754	FGG, FGB
cellular response to platelet-derived growth factor stimulus	3.70	0.05228754	CCL2, FYN
positive regulation of NF-kappaB transcription factor activity	5.56	0.059601848	TLR3, TRIM22, LGALS9
fibrinolysis	3.70	0.06073764	FGG, FGB
positive regulation of exocytosis	3.70	0.06073764	FGG, FGB
positive regulation of NF-kappaB import into nucleus	3.70	0.06073764	TLR3, LGALS9
negative regulation of gene expression	5.56	0.062786869	FYN, PARP10, LGALS9
maternal process involved in female pregnancy	3.70	0.071889672	CCL2, LGALS9
toll-like receptor signaling pathway	3.70	0.077416922	TLR3, CTSS
positive regulation of interferon-beta production	3.70	0.077416922	IFIH1, TLR3
negative regulation of endothelial cell apoptotic process	3.70	0.080168437	FGG, FGB
negative regulation of canonical Wnt signaling pathway	5.56	0.084804646	PSMB10, PSMB8, PSMB9
regulation of complement activation	3.70	0.085647363	C3, CFB
cellular response to fibroblast growth factor stimulus	3.70	0.085647363	CCL2, CXCL8
aging	5.56	0.086585008	VCAM1, CCL2, IL15
positive regulation of substrate adhesion-dependent cell spreading	3.70	0.091094304	FGG, FGB
positive regulation of vasoconstriction	3.70	0.091094304	FGG, FGB
JAK-STAT cascade	3.70	0.091094304	NMI, CCL2
protein ubiquitination	7.41	0.091143526	UBA7, UBD, UBE2L6, TRIM22
negative regulation of extrinsic apoptotic signaling pathway via death domain receptors	3.70	0.093805836	FGG, FGB
regulation of immune response	5.56	0.098426464	VCAM1, C3, HLA-B
Fc-epsilon receptor signaling pathway	5.56	0.098426464	PSMB10, PSMB8, PSMB9

Supplementary Table 7. Differentially expressed genes (> 0.9 log2) in PH5CH8 cells transduced with *IRF3* sgRNA.

The differential mRNA expression in the sgRNA-expressing cells grown in triplicate compared to control was determined using DESeq2. The p-values were determined using the negative binomial Wald test. The p-values were adjusted using FDR correction.

	Down-r	egulated genes			Up-re	gulated genes	
Rank	Gene	Log2 Foldchange	padj	Rank	Gene	Log2 Foldchange	padj
1	FGB	-2.43110474	5.88E-180	1	COL11A1	1.451866601	1.55E-108
2	FBN1	-1.89904401	3.17E-115	2	COL4A2	1.040039013	3.33E-100
3	FYN	-1.30487143	1.28E-42	3	PLAC8	0.927984568	7.00E-22
4	MEG3	-1.22357953	5.77E-37	4	PIEZO2	0.921067089	1.01E-20
5	PTN	-1.18972062	1.47E-49				
6	DSE	-1.06998253	7.70E-42				
7	HPGD	-1.01419017	3.89E-38				
8	ZNF827	-0.98038598	3.29E-23				
9	FGG	-0.97147061	7.62E-25				
10	C3	-0.95927482	1.92E-43				
11	ADAMTS1	-0.9025002	4.15E-25				

Supplementary Table 8. IRF1-binding sites identified within the transcription regulatory region of IRF1 effector genes.

IRF1-consensus sites aligning with the sequence Logo of the JASPAR IRF1 matrix (Matrix ID: MA0050.2)¹ are shown in **bold**. IRF1-ChIP sequence results were obtained from the UCSC Genome Browser².

0		
Gene		position
RARRES3		chr11:63304093-
		63304448
	GIGICAAAAG <mark>GAAAGTGAAAGTGAAATT</mark> CICICCIICAGCAIAAAAGCIGAICCACAAACAAGAGGAGCACCAGA	
PSMB9	GCCCCGGTGGGGCCTGAAGCTCCGGGTACCGCCGAGTCCTCCCCTACTGGCGGCTGGGGGAGGGA	chr6:32821462-
	CGGGGCTCTCGGAAAGTCCCAGGAACAGGCTGATCCTGCGCTGGCGAGAAGCTCAGCCATTTAGGG <u>GAAAGCG</u>	32822061
	AAATCGAAAGCGGCCGCCTGCTCACTAGATAACGCCTACTTCCAAAAGTGGCCTGCCCAGACTATTTTGGTAGCAA	
	GCGTGGAAATCAGATCTGAGAATCTCGGGAGCAGCCCTGGTGCCCAATTTTCTCCATCACGCACACCCTTCTCGC	
	CTCTCCCTGCCTCCTGCCTTTCCACTTGCACCAGTTTTCCCACCCCAGCCTCAGGGCGGGGCTGCCTCGTCACTT	
	GTCTCGGGGCAGATCTGCCCTACACACGTTAGCGCCGCGCGCAAAGCAGCCCCGCAGCACCCAGGCGCCTCCT	
	GGCGGCGCCGCGAAGGGGCGGGGCTGTCGGCTGCGCGTTGTGCGCTGTCCCAGGTTGGAAACCAGTGCCCCA	
	GGCGGCGAGGAGAGCGGTGCCTTGCAGGGATGCTGCGGGCGG	
	GAGAAGTCCACA	
0002		abr1:00400205
GDF3		00400704
		09400704
SAMD9L	CTCTCAGGGACAAGCCCACCCCATCTTTGAGAGACCCTCAGCAACACCGCTGATATCCATGCCCTAGGGAGGTGT	chr7:92776771-
	TCTGCTCTGCAGGATTCTTAGAACTGATGTAGGGGAAACACACTTCAGAATCTGGCTGTAGCCCAGGAGAGCTACC	92777145
	ATTTTTTTTTTTAGTTTTCAACCAGATTGCTGGATAAGATGTATGT	
	TGCAGAGTATTAACTTTGATAAAATGTAAAAAGTTTTAATAACATCTTACGTTATGAAGACAGAATTT	
IFIT3	CTCTCAGGGACAAGCCCACCCCATCTTTGAGAGACCCTCAGCAACACCGCTGATATCCATGCCCTAGGGAGGTGT	chr7:92776771-
	TCTGCTCTGCAGGATTCTTAGAACTGATGTAGGGGAAACACACTTCAGAATCTGGCTGTAGCCCAGGAGAGCTACC	92777145
	CACACCCTCCTTGCATAGTCTGGCAGACAGAAGCCACAAGCAAG	
	ATTTT	
	TGCAGAGTATTAACTTTGATAAAATGTAAAAGTTTTAATAACATCTTACGTTATGAAGACAGAATTT	
		chr7:02776771
		02777145
		52111145
ERAP2	CATACCCCATATAGGTCCATCCTATAACACAGCCAGGACAGAGAGAG	chr22:36044284-
		36044593
	TTCCTGGAAGAGCCCTAGAGCTTTGCTTTTCTCTCCTGCAGCACTTAACCGAAACCAGTTTTGCAATCAAT	
	TTCAAAGGCCACCCTACTCTTCCTATCCGTCTTTCTCCAGCCCAGACACTCACAGCCCCCTGCCAGACCAGGGGA	
	CCTCGG	
UBA7	GAACAGTAGGCTGCAGCGCTCAGAGATAGGGTCTTTGTGTAGGTGGCGGTGACAGTAGGGGCCAGTGCCCTGCT	chr3:49851237-
	GTAGCCAGTGCAAACAGGAACCAAGGCCAAGCGAATAAGGGACGCTGCTGGTCACAGCTCTCCTGGAGAAA	49851592
	AGAAAAGTGAAAGTTAAACTATGCTCTGAGCTGGCTCCTGATCCTGCCTCCAGACGCCCAGCCCCAGACAGGCCAT	
	GGAGGCATGGGGCAGCCACATTCACACATGTTCTTATTTTCCTTTTTAGACTTTTATTT	
1		

APOL1	ACCCCCAGCCCTGAGGATGCGAGGCAGGTGGGTTGGATGAGAGGGGATCTGGATGTCTGGTCTCAGGCTGCTCCT CTAAGGGCAGCAAGGAAGGGTGGGGGCTGGACTGAAGGTGGAGGGGGGGG	chr22:36648954- 36649263
CFB	TTCCCCTCCGCAACCAACTCACCAGCCGCGGGGGGGGGG	chr6:32806409- 32806769
APOL3	GAACAGTAGGCTGCAGCGCTCAGAGATAGGGTCTTTGTGTAGGTGGCGGTGACAGTAGGGGCCAGTGCCCTGCT GTAGCCAGTGCAAACAGGAACCAAGGCCAAGCGAATAAGGGACGCTGCTGGTCACAGCTCTCTTCCTGGAGAAA AG <u>AAAAGTGAAAG</u> TTAAACTATGCTCTGAGCTGGCTCCTGATCCTGCCTCCAGACGCCAGGCCCAGACAGGCCAT TCAGGGTCTAAAACCTGGGATGAGTTCCAAGGACTCTCAAGAGGTGATCAGTCTCTGAGTGTCAGACCTGAGGGTG GGAGGCATGGGGCAGCCACATTCACACATGTTCTTATTTTCCTTTTAGACTTTTATTT	chr3:49851237- 49851592
NMI	TTATGTTAGTTTATATTGCAAAGGAGAATTAAGGCTGCAGATTGAATTAAGGTTGCTAATCAGCTTGCTT	chr2:152144687- 152144996
MX1	GAACAGTAGGCTGCAGCGCTCAGAGATAGGGTCTTTGTGTAGGTGGCGGTGACAGTAGGGGGCCAGTGCCCTGCT GTAGCCAGTGCAAACAGGAACCAAGGCCAAGCGAATAAGGGACGCTGCTGGTCACAGCTCTCTTCCTGGAGAAA AG <u>AAAAGTGAAAG</u> TTAAACTATGCTCTGAGCTGGCTCCTGATCCTGCCTCCAGACGCCCAGCCCCAGACAGGCCAT TCAGGGTCTAAAACCTGGGATGAGTTCCAGGACTCTCAAGAGGTGATCAGTCTCTGAGTGTCAGACCTGAGGGTG GGAGGCATGGGGCAGCCACATTCACACATGTTCTTATTTTCCTTTTAGACTTTTATTT	chr3:49851237- 49851592
TLR3	GTGAGGTCCCCACTTTCAACTTTAGCTGTTGCTAAATCTGTGACCCTTTCAATGAAATCCAAGGATCTCAGCTTAAA AAAAGTTAAAATAAAA	chr4:186990085- 186990465
IFIT2	CCCCAGACCCATCTTTAAGTGAAGCACCAGGCCGATGAAACATCCCTCTCTGCTGCCTTCTTTCT	chr10:91061551- 91061906
TAP2	TTCCCCTCCGCACCAACTCACCAGCCGCGGCGGGGAGACCGCAGCTCCGGGGACTTCTGCTTCAGCGCTGAGG TCCGCTCCGTCTCTCCCAACCTCGCTACCGGCTCGGTCCGCCAGCTACGCTCGGCCAGGGCGGGC	chr6:32806409- 32806769
DDX60	CTCAGGACCGGTGGTGTCCAAAGACCCGCGAGCTGCGCGCCCCGCGGGGAGGGA	chr4:169239779- 169240134

Supplementary References

1 Mathelier, A. *et al.* JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. *Nucleic Acids Res* **44**, D110-115 (2016).

2 Casper, J. et al. The UCSC Genome Browser database: 2018 update. Nucleic Acids Res 46, D762-D769 (2018).

Figure	Comparison	n-value
10		ρ -value
1a 1b	HAV PNA /PE1 #1 va control	< 0.0001
10	HAV RNA, IRF1#1 VS. control	0.0002
10	HAV RNA, IRF1 #2 VS. control	0.0002
1b	HAV RNA, RELA #1 vs. control	0.015
1b	HAV titer, <i>IRF1</i> #1 vs. control	0.0091
1b	HAV titer, IRF1 #2 vs. control	< 0.0001
1c	Fecal HAV RNA, Irf1 ^{-/-} vs. WT	0.1304
1c	Liver HAV RNA (d7), <i>Irf1^{-/-}</i> vs. WT	0.0286
1d	IRF1 #2 vs. control	< 0.0001
1e	IRF1 #2 vs. control	0.001
1f	Ruxolitinib vs. DMSO	0.0018
1f	Pyridone 6 vs. DMSO	0.0105
1f	DMSO-treated, IRF1 #1 vs. control	0.0082
1f	DMSO-treated, IRF1 #2 vs. control	0.0042
1f	Ruxolitinib-treated, IRF1 #1 vs. control	0.0287
1f	Ruxolitinib-treated, IRF1 #2 vs. control	< 0.0001
1g	Control sgRNA, IRF1 #2 vs. control	0.0052
1g	MAVS sgRNA, IRF1 #2 vs. control	0.0095
1g	IRF3 sqRNA. IRF1 #2 vs. control	0.0016
 1h	IRF1 #1 vs. control	0.0006
1h	IRF1 #2 vs. control	0.0003
1h	DAA vs. control	0.0056
1i	24 h <i>IRF1</i> #1 vs. control	< 0.0000
1i	24 h <i>IRE1</i> #2 vs. control	< 0.0001
1i	48 h /RE1 #1 vs. control	< 0.0001
1;	48 h /PE1 #2 vs. control	< 0.0001
11	DENV 24 h JEE1 vs. control ciPNA	< 0.0001
 	DENV-24 II, IRFT VS. control siRNA	< 0.0001
1j 1i	ZIKV 24 h / RE1 vo. control ciPNA	0.0000
1j 1i	ZIKV-24 II, IKFT VS. CONTOL SIKNA	0.0013
ار د	ZIRV-40 II, IRF I VS. COILIOI SIRINA	0.0340
2a	Mock, PRDIII-I activity, IRF1 #1 vs. control	< 0.0001
2a	Mock, PRDIII-I activity, IRF1 #2 vs. control	< 0.0001
2a	Mock, PRDIII-I activity, IRF1 #1 VS. IRF3	< 0.0001
Za	MOCK, PRDIII-I activity, IRF1 #2 VS. IRF3	< 0.0001
2a	HAV, PRDIII-I activity, IRF1 #1 vs. control	< 0.0001
2a	HAV, PRDIII-I activity, IRF1 #2 vs. control	< 0.0001
2a	HAV, PRDIII-I activity, IRF1 #1 vs. IRF3	< 0.0001
2a	HAV, PRDIII-I activity, IRF1 #2 vs. IRF3	< 0.0001
2a	Mock, ISRE activity, <i>IRF1</i> #1 vs. control	< 0.0001
2a	Mock, ISRE activity, <i>IRF1</i> #2 vs. control	< 0.0001
2a	Mock, ISRE activity, IRF1 #1 vs. IRF3	< 0.0001
2a	Mock, ISRE activity, <i>IRF1</i> #2 vs. <i>IRF3</i>	< 0.0001
2a	HAV, ISRE activity, IRF1 #1 vs. control	< 0.0001
2a	HAV, ISRE activity, IRF1 #2 vs. control	< 0.0001
2a	HAV, ISRE activity, IRF1 #1 vs. IRF3	< 0.0001
2a	HAV, ISRE activity, IRF1 #2 vs. IRF3	< 0.0001
2b	PRDIII-I activity, SeV vs. Mock	0.0116
2b	ISRE activity, SeV vs. Mock	< 0.0001
2c	Mock, PRDIII-I activity, IRF1 #1 vs. control	< 0.0001
2c	Mock, PRDIII-I activity, IRF1 #2 vs. control	0.0001
2c	SeV, PRDIII-I activity, IRF1 #1 vs. control	< 0.0001
2c	SeV, PRDIII-I activity, IRF1 #2 vs. control	0.0002
2c	Mock, ISRE activity, IRF1 #1 vs. control	< 0.0001
2c	Mock, ISRE activity, IRF1 #2 vs. control	< 0.0001
2c	SeV, ISRE activity. IRF1 #1 vs. control	< 0.0001
20	SeV ISRE activity. IRE1 #2 vs. control	< 0.0001
20	DMSO <i>IRE1</i> #1 vs control	< 0.0001
20 2e	DMSO, IRF1 #2 vs. control	0.006
20	ActD IRE1 #1 vs. control	0.000
20	100, 111 1 11 10. 0011101	0.0010

Supplementary Table 9. The exact *p*-values for the statistical analysis in Figures 1-4.

-		
2e	ActD, IRF1 #2 vs. control	0.04
2f	DENV-DMSO, IRF1 vs. control siRNA	0.018
2f	DENV-ActD, IRF1 vs. control siRNA	0.021
2f	ZIKV-DMSO, IRF1 vs. control siRNA	0.0003
2f	ZIKV-ActD, IRF1 vs. control siRNA	0.015
3e	RARRES3 vs. control siRNA	< 0.0001
3e	APOL6 vs. control siRNA	0.0049
3e	ERAP2 vs. control siRNA	< 0.0001
3e	NMI vs. control siRNA	0.0004
3e	MX1 vs. control siRNA	0.0094
3f	RARRES3 vs. control siRNA	0.0015
3f	ERAP2 vs. control siRNA	0.0047
3f	NMI vs. control siRNA	0.0072
3f	MX1 vs. control siRNA	0.0125
3f	All 4 genes vs. control siRNA	0.004
3g	PSMB9 vs. control siRNA	< 0.0001
3g	IFIT3 vs. control siRNA	0.0348
3g	ERAP2 vs. control siRNA	0.0383
3q	APOL1 vs. control siRNA	< 0.0001
3g	MX1 vs. control siRNA	0.0003
3g	DAA vs. control siRNA	< 0.0001
3h	PSMB9 vs. control siRNA	0.0047
3h	APOL1 vs. control siRNA	0.0027
3h	MX1 vs. control siRNA	0.015
3h	All 3 genes vs. control siRNA	0.0003
3i	RARRES3 vs. control siRNA	0.0272
3i	PSMB9 vs. control siRNA	0.0275
3i	ERAP2 vs. control siRNA	0.0206
3i	MX1 vs. control siRNA	0.0192
3j	PSMB9 vs. control siRNA	0.0196
3j	MX1 vs. control siRNA	0.0155
3j	All 2 genes vs. control siRNA	0.0026
3k	RARRES3 vs. control siRNA	0.0015
3k	PSMB9 vs. control siRNA	< 0.0001
3k	ERAP2 vs. control siRNA	0.0058
3k	APOL1 vs. control siRNA	0.0011
3k	CFB vs. control siRNA	0.0003
3k	APOL3 vs. control siRNA	0.002
3k	NMI vs. control siRNA	0.0004
3k	MX1 vs. control siRNA	< 0.0001
3k	DDX60 vs. control siRNA	0.0149
31	PSMB9 vs. control siRNA	0.0015
31	MX1 vs. control siRNA	0.0014
31	All 2 genes vs. control siRNA	0.0002
4a	PH5CH8/IRF1 sgRNA, RARRES3 vs. Vector	< 0.0001
4a	PH5CH8/IRF1 sgRNA, C113S vs. Vector	0.0215
4a	Huh-7.5 cells, RARRES3 vs. Vector	< 0.0001
4b	24 h, DMSO, RARRES3 vs. Vector	< 0.0001
4c	HAV-Luc, RARRES3 vs. Vector	< 0.0001
4d	RARRES3 vs. Vector	< 0.0001
4h	Rapamycin, HAV/NLuc vs. HCV/GLuc	< 0.0001
4h	Rapamycin, HAV/NLuc vs. DENV/NLuc	< 0.0001
4h	Torin1, HAV/NLuc vs. HCV/GLuc	< 0.0001
4h	Torin1, HAV/NLuc vs. DENV/NLuc	< 0.0001
4h	PI-103, HAV/NLuc vs. HCV/GLuc	0.003
4h	PI-103, HAV/NLuc vs. DENV/NLuc	< 0.0001
4i	Rapamycin vs. DMSO	< 0.0001
4i	Torin1 vs. DMSO	< 0.0001
4i	PI-103 vs. DMSO	< 0.0001